Corrigendum to Phase Transitions on Fractal Lattices with Long-Range Interactions¹

O. Penrose²

The following proof of Theorem 2 should replace the one given in the paper. Indeed, it proves a slightly stronger version of the theorem, with the restriction $N \ge n$ removed.

As in the proof of Theorem 1, we can write \mathbf{x} in the form

$$\mathbf{x} = \sum_{0}^{q} m^{p} \mathbf{x}^{(p)}, \qquad \mathbf{x}^{(0)}, \dots, \mathbf{x}^{(q)} \in A$$
(C1)

where A is the generating set defined on p. 72 of the paper and q is some nonnegative integer depending on x.

To prove the right-hand inequality in Theorem 2, which is equivalent to

$$R_N(x) \leqslant K_2 N^{1/D} \tag{C2}$$

define k to be the nonnegative integer satisfying

$$n^{k-1} < N \leqslant n^k \tag{C3}$$

and consider the set Y consisting of all points whose position vectors y have the form

$$\mathbf{y} = \sum_{0}^{k-1} m^{p} \mathbf{y}^{(p)} + \sum_{k}^{\infty} m^{p} \mathbf{x}^{(p)}, \qquad \mathbf{y}^{(0)}, ..., \mathbf{y}^{(k-1)} \in A$$
(C4)

where $\mathbf{x}^{(p)}$ is defined to be 0 for all p > q.

By Theorem 1 each choice of the vectors $\mathbf{y}^{(0)}, \dots, \mathbf{y}^{(k-1)}$ gives a different y, and since there are n ways of choosing each $\mathbf{y}^{(p)}$, the number of points in

¹ This paper appeared in J. Stat. Phys. 45:69-88 (1986).

² Mathematics Department, Heriot-Watt University, Edinburgh EH14 4AS, Scotland.

Y is n^k . These points are all members of the fractal lattice F, and their Euclidean distances from x all satisfy

$$|\mathbf{y} - \mathbf{x}| = \left| \sum_{0}^{k-1} m^{p} (\mathbf{y}^{(p)} - \mathbf{x}^{(p)}) \right|$$

$$\leq (1 + m + \dots + m^{k-1}) \rho_{\max}$$

$$< m^{k} \rho_{\max} / (m-1)$$
(C5)

where ρ_{\max} is the Euclidean diameter of A; so there are at least n^k points of F within a distance $m^k \rho_{\max}/(m-1)$ of x. It follows, by the definition of $R_N(\mathbf{x})$, that

$$R_{n^k}(\mathbf{x}) \leqslant m^k \rho_{\max}/(m-1) \tag{C6}$$

From (C3) and the fact that $R_N(\mathbf{x})$ increases monotonically with N we have

$$R_{\mathcal{N}}(\mathbf{x}) \leqslant R_{n^k}(\mathbf{x}) \tag{C7}$$

and from (3.1) and the left-hand inequality in (C3) we have

$$\frac{m^{k}\rho_{\max}}{m-1} = \frac{n^{(k-1)/D}m\rho_{\max}}{m-1} < \frac{N^{1/D}m\rho_{\max}}{m-1}$$
(C8)

Combining (C6)–(C8) we verify (C2), with $K_2 = m\rho_{\text{max}}/(m-1)$.

To prove the left-hand inequality in Theorem 2, which is equivalent to

$$R_N(\mathbf{x}) \ge K_1 N^{1/D} \tag{C9}$$

we note that for every pair of vectors \mathbf{x} , \mathbf{y} in F the difference $\mathbf{x} - \mathbf{y}$ can be written in the form

$$\sum_{p \ge 0} m^p(\mathbf{x}^{(p)} - \mathbf{y}^{(p)})$$
(C10)

and is therefore a member of a new fractal lattice F^* whose generating set A^* consists of all distinct vectors of the form $\mathbf{a} - \mathbf{b}$, with \mathbf{a} and \mathbf{b} in A. Let H be the set consisting of all points in F^* whose Euclidean distance from the origin is less than δ , where δ is a length to be chosen later [Eq. (C16)], and let n(H) be the number of points in H. Assume for the moment that N > n(H), and let l be the nonnegative integer defined by

$$n(H) n^{l+1} > N \ge n(H) n^l \tag{C11}$$

Corrigendum

Any vector \mathbf{z} belonging to the original fractal lattice F can be written in the form

$$\mathbf{z} = \sum_{0}^{l-1} m^{p} \mathbf{z}^{(p)} + m^{l} \mathbf{z}^{\prime}$$
(C12)

where $\mathbf{z}^{(0)}, \dots, \mathbf{z}^{(l-1)}$ belong to A and

$$\mathbf{z}' = \sum_{p \ge l} m^{p-l} \mathbf{z}^{(p)}$$
(C13)

is a new vector in F. Decomposing x in the analogous way, we see that the Euclidean distance between z and x satisfies

$$|\mathbf{z} - \mathbf{x}| = \left| \sum_{0}^{l-1} m^{p} (\mathbf{z}^{(p)} - \mathbf{x}^{(p)}) + m^{l} (\mathbf{z}' - \mathbf{x}') \right|$$

$$\geq m^{l} |\mathbf{z}' - \mathbf{x}'| - \sum_{0}^{l-1} m^{p} |\mathbf{z}^{(p)} - \mathbf{x}^{(p)}|$$
(C14)

The vectors \mathbf{z} in F fall into two classes: F_1 , consisting of those vectors for which $|\mathbf{z}' - \mathbf{x}'| < \delta$, and F_2 , for which $|\mathbf{z}' - \mathbf{x}'| \ge \delta$. The set F_1 comprises at most n'n(H) points, since there are n choices for each of $z^{(0)}, \dots, z^{(l-1)}$ and at most n(H) for \mathbf{z}' , since $\mathbf{z}' - \mathbf{x}'$ is a member of H. For points \mathbf{z} in the set F_2 , we have from (C14)

$$|\mathbf{z} - \mathbf{x}| \ge m^{l} \delta - (1 + m + \dots + m^{l-1}) \rho_{\min}$$
(C15)

where ρ_{\min} is the least Euclidean distance between points of A. If we now choose δ as

$$\delta = \left(m + \frac{1}{m-1}\right)\rho_{\min} \tag{C16}$$

then (C15) implies

$$|\mathbf{z} - \mathbf{x}| > m^{l+1} \rho_{\min} \tag{C17}$$

for all \mathbf{z} in F_2 . Consequently, all the points \mathbf{z} of F for which $|\mathbf{z} - \mathbf{x}| \leq m^{l+1}\rho_{\min}$ belong to F_1 , and since F_1 comprises at most n'n(H) points, there are at most n'n(H) points of F within a distance $m^{l+1}\rho_{\min}$ of \mathbf{x} . Thus, it follows from the definition of $R_N(\mathbf{x})$ that

$$R_{n'n(H)}(x) \ge m^{l+1}\rho_{\min} \tag{C18}$$

and hence, using (C11), (3.1), and the monotonicity of $R_N(\mathbf{x})$ as we did at the end of the proof of (C2), that

$$R_{N}(\mathbf{x}) \ge \left[N/n(H) \right]^{1/D} \rho_{\min} \tag{C19}$$

The inequality (C19) was derived on the assumption that N > n(H), but since $R_N(\mathbf{x}) \ge \rho_{\min}$ for all N, the inequality (C19) also holds when $N \le n(H)$; therefore (C9) holds for all N, with $K_1 = \rho_{\min}/[n(H)]^{1/D}$. This completes the proof of Theorem 2.