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Corrigendum to Phase Transitions on 
Fractal Lattices with Long-Range Interactions 1 

O.  P e n r o s e  2 

The following proof of Theorem 2 should replace the one given in the 
paper. Indeed, it proves a slightly stronger version of the theorem, with the 
restriction N~> n removed. 

As in the proof of Theorem 1, we can write x in the form 

q 

x =  ~ mPx ~pl, x~~ x<ql e A (C1) 
0 

where A is the generating set defined on p. 72 of the paper and q is some 
nonnegative integer depending on x. 

To prove the right-hand inequality in Theorem 2, which is equivalent 
to 

RN(x)  <~ K 2 N  up (C2) 

define k to be the nonnegative integer satisfying 

n k - l  <N<~n  k (C3) 

and consider the set Y consisting of all points whose position vectors y 
have the form 

GO 
k-- i E mPx(P) ,  - 1) @ y =  ~ mPy(p)+ y(O) ..... y(k A (C4) 

0 k 

where x ~p) is defined to be 0 for all p > q. 
By Theorem 1 each choice of the vectors y~O),..., y~k- 1) gives a different 

y, and since there are n ways of choosing each y<P), the number of points in 
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Y is n k. These points are all members of the fractal lattice F, and their 
Euclidean distances from x all satisfy 

] y - x ]  = mP(y(P)--x (p)) 
o 

~<(1 + r n +  .-- +mk-1)Pma x 

< mkpmax/(m - -  1 ) ( C 5 )  

where P,~ax is the Euclidean diameter of A; so there are at least n k points of 
F within a distance mkpmax/(m- 1) of x. It follows, by the definition of 
RN(X), that 

R.~(x) ~< mkPrnax/(m -- I) (c6) 

From (C3) and the fact that RN(X ) increases monotonically with N we 
have 

RN(x)  ~< Rn4x)  (C7) 

and from (3.1) and the left-hand inequality in (C3) we have 

mkPma• n ( k -  l)/Dmpma x NVDmpmax 
- -  = < ( c 8 )  
m--1  m- -1  m- -1  

Combining (C6)-(C8) we verify (C2), with 1(2 =mpma• 
To prove the left-hand inequality in Theorem 2, which is equivalent to 

RN(X ) >/KI N 1/~ (C9) 

we note that for every pair of vectors x, y in F the difference x -  y can be 
written in the form 

m~(x  (~) - y(~)) (CIO) 
p>~O 

and is therefore a member of a new fractal lattice F* whose generating set 
A* consists of all distinct vectors of the form a - b, with a and b in A. Let 
H be the set consisting of all points in F* whose Euclidean distance from 
the origin is less than 6, where 6 is a length to be chosen later [Eq. (C16)], 
and let n(H) be the number of points in H. Assume for the moment that 
N >  n(H), and let l be the nonnegative integer defined by 

n(H) #+ 1 > N >~ n(H) n l (C11) 
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Any vector z belonging to the original fractal lattice F can be written in the 
form 

l 1 

z = ~, mPz <p) + m~z ' (C12) 
0 

where z(~ z ~-  1) belong to A and 

z ' =  ~ mP-~z ~p) (C13) 
p>~l 

is a new vector in F. Decomposing x in the analogous way, we see that the 
Euclidean distance between z and x satisfies 

l - -  1 -'[- ml(z ' -- x ' )  I z - - x l =  ~ mP(z ( p l - x  (p') 
0 

l - 1  

>~m t [ z ' - x ' [ -  ~ m p Iz(P)-x(P) I (C14) 
0 

The vectors z in F fall into two classes: F~, consisting of those vectors 
for which I z ' - x ' [  <6 ,  and F2, for which I z ' - x ' j  >~6. The set F~ comprises 
at most nln(H) points, since there are n choices for each of z(~ z It- 1) and 
at most n(H) for z', since z' - x '  is a member of H. For  points z in the set 
F2, we have from (C14) 

I z - x l ~ m t ~ - ( l + m +  -.. + m  I l )pmi  n (c15) 

where Pmin is the least Euclidean distance between points of A. If we now 
choose 6 as 

then (C15) implies 

( ' )  6 = m + Pmin (C16) 
m - 1  

lz - xl > m t+ Ipmin (C17) 

for all z in F2. Consequently, all the points z of F for which I z - x l  ~< 
m '+ lPmin belong to F~, and since F1 comprises at most #n(H)  points, there 
are at most #n(H)  points of F within a distance m ~+ ~Pmin of X. Thus, it 
follows from the definition of RN(X ) that 

l +  Rnln(ti)(X ) ~ . m  llOmi n ( C l 8 )  
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and hence, using (Cll), (3.1), and the monotonicity of RN(X ) as we did at 
the end of the proof of (C2), that 

RN(X ) >~ [N/n(H)] ,/D Pmin (C19) 

The inequality (C19) was derived on the assumption that N>n(H),  
but since RN(X)~Prn i  n for all N, the inequality (C19) also holds when 
N<~n(H); therefore (C9) holds for all N, with K 1 =pr~in/[n(H)] lID. This 
completes the proof of Theorem 2. 


