Corrigendum to Phase Transitions on Fractal Lattices with Long-Range Interactions ${ }^{1}$

O. Penrose ${ }^{2}$

The following proof of Theorem 2 should replace the one given in the paper. Indeed, it proves a slightly stronger version of the theorem, with the restriction $N \geqslant n$ removed.

As in the proof of Theorem 1, we can write \mathbf{x} in the form

$$
\begin{equation*}
\mathbf{x}=\sum_{0}^{q} m^{p} \mathbf{x}^{(p)}, \quad \mathbf{x}^{(0)}, \ldots, \mathbf{x}^{(q)} \in A \tag{C1}
\end{equation*}
$$

where A is the generating set defined on p. 72 of the paper and q is some nonnegative integer depending on \mathbf{x}.

To prove the right-hand inequality in Theorem 2, which is equivalent to

$$
\begin{equation*}
R_{N}(x) \leqslant K_{2} N^{1 / D} \tag{C2}
\end{equation*}
$$

define k to be the nonnegative integer satisfying

$$
\begin{equation*}
n^{k-1}<N \leqslant n^{k} \tag{C3}
\end{equation*}
$$

and consider the set Y consisting of all points whose position vectors \mathbf{y} have the form

$$
\begin{equation*}
\mathbf{y}=\sum_{0}^{k-1} m^{p} \mathbf{y}^{(p)}+\sum_{k}^{\infty} m^{p} \mathbf{x}^{(p)}, \quad \mathbf{y}^{(0)}, \ldots, \mathbf{y}^{(k-1)} \in A \tag{C4}
\end{equation*}
$$

where $\mathbf{x}^{(p)}$ is defined to be $\mathbf{0}$ for all $p>q$.
By Theorem 1 each choice of the vectors $\mathbf{y}^{(0)}, \ldots, \mathbf{y}^{(k-1)}$ gives a different \mathbf{y}, and since there are n ways of choosing each $\mathbf{y}^{(p)}$, the number of points in

[^0]Y is n^{k}. These points are all members of the fractal lattice F, and their Euclidean distances from \mathbf{x} all satisfy
\[

$$
\begin{align*}
|\mathbf{y}-\mathbf{x}| & =\left|\sum_{0}^{k-1} m^{p}\left(\mathbf{y}^{(p)}-\mathbf{x}^{(p)}\right)\right| \\
& \leqslant\left(1+m+\cdots+m^{k-1}\right) \rho_{\max } \\
& <m^{k} \rho_{\max } /(m-1) \tag{C5}
\end{align*}
$$
\]

where $\rho_{\max }$ is the Euclidean diameter of A; so there are at least n^{k} points of F within a distance $m^{k} \rho_{\max } /(m-1)$ of \mathbf{x}. It follows, by the definition of $R_{N}(\mathbf{x})$, that

$$
\begin{equation*}
R_{n^{k}}(\mathbf{x}) \leqslant m^{k} \rho_{\max } /(m-1) \tag{C6}
\end{equation*}
$$

From (C3) and the fact that $R_{N}(\mathbf{x})$ increases monotonically with N we have

$$
\begin{equation*}
R_{N}(\mathbf{x}) \leqslant R_{n^{k}}(\mathbf{x}) \tag{C7}
\end{equation*}
$$

and from (3.1) and the left-hand inequality in (C3) we have

$$
\begin{equation*}
\frac{m^{k} \rho_{\max }}{m-1}=\frac{n^{(k-1) / D} m \rho_{\max }}{m-1}<\frac{N^{1 / D} m \rho_{\max }}{m-1} \tag{C8}
\end{equation*}
$$

Combining (C6)-(C8) we verify (C2), with $K_{2}=m \rho_{\max } /(m-1)$.
To prove the left-hand inequality in Theorem 2, which is equivalent to

$$
\begin{equation*}
R_{N}(\mathbf{x}) \geqslant K_{1} N^{1 / D} \tag{C9}
\end{equation*}
$$

we note that for every pair of vectors \mathbf{x}, \mathbf{y} in F the difference $\mathbf{x}-\mathbf{y}$ can be written in the form

$$
\begin{equation*}
\sum_{p \geqslant 0} m^{p}\left(\mathbf{x}^{(p)}-\mathbf{y}^{(p)}\right) \tag{C10}
\end{equation*}
$$

and is therefore a member of a new fractal lattice F^{*} whose generating set A^{*} consists of all distinct vectors of the form $\mathbf{a}-\mathbf{b}$, with \mathbf{a} and \mathbf{b} in A. Let H be the set consisting of all points in F^{*} whose Euclidean distance from the origin is less than δ, where δ is a length to be chosen later [Eq. (C16)], and let $n(H)$ be the number of points in H. Assume for the moment that $N>n(H)$, and let l be the nonnegative integer defined by

$$
\begin{equation*}
n(H) n^{l+1}>N \geqslant n(H) n^{l} \tag{C11}
\end{equation*}
$$

Any vector \mathbf{z} belonging to the original fractal lattice F can be written in the form

$$
\begin{equation*}
\mathbf{z}=\sum_{0}^{l-1} m^{p} \mathbf{z}^{(p)}+m^{\prime} \mathbf{z}^{\prime} \tag{C12}
\end{equation*}
$$

where $\mathbf{z}^{(0)}, \ldots, \mathbf{z}^{(l-1)}$ belong to A and

$$
\begin{equation*}
\mathbf{z}^{\prime}=\sum_{p \geqslant l} m^{p-l} \mathbf{z}^{(p)} \tag{Cl3}
\end{equation*}
$$

is a new vector in F. Decomposing \mathbf{x} in the analogous way, we see that the Euclidean distance between \mathbf{z} and \mathbf{x} satisfies

$$
\begin{align*}
|\mathbf{z}-\mathbf{x}| & =\left|\sum_{0}^{l-1} m^{p}\left(\mathbf{z}^{(p)}-\mathbf{x}^{(p)}\right)+m^{l}\left(\mathbf{z}^{\prime}-\mathbf{x}^{\prime}\right)\right| \\
& \geqslant m^{l}\left|\mathbf{z}^{\prime}-\mathbf{x}^{\prime}\right|-\sum_{0}^{l-1} m^{p}\left|\mathbf{z}^{(p)}-\mathbf{x}^{(p)}\right| \tag{C14}
\end{align*}
$$

The vectors \mathbf{z} in F fall into two classes: F_{1}, consisting of those vectors for which $\left|\mathbf{z}^{\prime}-\mathbf{x}^{\prime}\right|<\delta$, and F_{2}, for which $\left|\mathbf{z}^{\prime}-\mathbf{x}^{\prime}\right| \geqslant \delta$. The set F_{1} comprises at most $n^{l} n(H)$ points, since there are n choices for each of $z^{(0)}, \ldots, z^{(l-1)}$ and at most $n(H)$ for \mathbf{z}^{\prime}, since $\mathbf{z}^{\prime}-\mathbf{x}^{\prime}$ is a member of H. For points \mathbf{z} in the set F_{2}, we have from (C14)

$$
\begin{equation*}
|\mathbf{z}-\mathbf{x}| \geqslant m^{\prime} \delta-\left(1+m+\cdots+m^{l-1}\right) \rho_{\min } \tag{C15}
\end{equation*}
$$

where $\rho_{\min }$ is the least Euclidean distance between points of A. If we now choose δ as

$$
\begin{equation*}
\delta=\left(m+\frac{1}{m-1}\right) \rho_{\min } \tag{C16}
\end{equation*}
$$

then (C15) implies

$$
\begin{equation*}
|\mathbf{z}-\mathbf{x}|>m^{l+1} \rho_{\min } \tag{C17}
\end{equation*}
$$

for all \mathbf{z} in F_{2}. Consequently, all the points \mathbf{z} of F for which $|\mathbf{z}-\mathbf{x}| \leqslant$ $m^{l+1} \rho_{\text {min }}$ belong to F_{1}, and since F_{1} comprises at most $n^{\prime} n(H)$ points, there are at most $n^{l} n(H)$ points of F within a distance $m^{l+1} \rho_{\text {min }}$ of \mathbf{x}. Thus, it follows from the definition of $R_{N}(\mathbf{x})$ that

$$
\begin{equation*}
R_{n^{\prime} n(H)}(x) \geqslant m^{I+1} \rho_{\min } \tag{C18}
\end{equation*}
$$

and hence, using (C11), (3.1), and the monotonicity of $R_{N}(\mathbf{x})$ as we did at the end of the proof of (C 2), that

$$
\begin{equation*}
R_{N}(\mathbf{x}) \geqslant[N / n(H)]^{1 / D} \rho_{\min } \tag{C19}
\end{equation*}
$$

The inequality (C 19) was derived on the assumption that $N>n(H)$, but since $R_{N}(\mathbf{x}) \geqslant \rho_{\min }$ for all N, the inequality (C 19) also holds when $N \leqslant n(H)$; therefore (C9) holds for all N, with $K_{1}=\rho_{\min } /[n(H)]^{1 / D}$. This completes the proof of Theorem 2.

[^0]: ${ }^{1}$ This paper appeared in J. Stat. Phys. 45:69-88 (1986).
 ${ }^{2}$ Mathematics Department, Heriot-Watt University, Edinburgh EH14 4AS, Scotland.

