Erratum: Hydrodynamics and Time Correlation Functions for Cellular Automata

M. H. Ernst² and J. W. Dufty³

Received April 17, 1990

The Green-Kubo formulas (5.12) for the diffusivities of the spurious diffusive modes in CA fluids are correct, but the expressions for the associated scalar transport coefficients $\kappa_1(s)$ and $\kappa_2(s)$ in (5.13) are not. They should read

$$\kappa_{1}(s) = (\chi_{l})^{-1} \sum_{t=0}^{*} e^{-st} \sum_{\mathbf{r}} (-1)^{t+\beta \cdot \mathbf{r}} \langle \sigma_{\perp}(0,0) \sigma_{\perp}(\mathbf{r},t) \rangle$$
(5.13)
$$\kappa_{1}(s) + \kappa_{2}(s) = (\chi_{l})^{-1} \sum_{t=0}^{*} \left| e^{-st} \sum_{\mathbf{r}} (-1)^{t+\beta \cdot \mathbf{r}} \langle \sigma_{\parallel}(0,0) \sigma_{\parallel}(\mathbf{r},t) \rangle \right|$$

where σ_{\perp} and σ_{\parallel} are components of the stress tensor orthogonal and parallel to any of the vectors $\hat{\beta}$; $\sigma_{\parallel} = \hat{k}_i \hat{\beta}_j \sigma_{ij}$ and $\sigma_{\perp} = \hat{k}_i \hat{\beta}_{\perp j} \sigma_{ij}$. Here $\hat{\beta}_{\perp}$ is orthogonal to $\hat{\beta}$ and σ_{ij} is the stress tensor. These results follow from the fact that the staggered diffusion coefficient $A_{\beta}(\hat{k}, s) = \hat{k}_i \hat{k}_j \Delta_{ij}(\beta)$ is related to a second order tensor field [see Eq. (5.11)] with the representation $\Delta_{ij}(\beta) = \kappa_1(s) \, \delta_{ij} + \kappa_2(s) \, \hat{\beta}_i \hat{\beta}_j$.

¹ This paper originally appeared in J. Stat. Phys. 58:57 (1990).

² Institute for Theoretical Physics, 3508 TA Utrecht, The Netherlands.

³ Department of Physics, University of Florida, Gainvesville, Florida 32611.