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An Elementary Proof of the Strong Law of Large Numbers 
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Summary. In the following note we present a proof for the strong law of large 
numbers which is not only elementary, in the sense that it does not use Kol- 
mogorov 's  inequality, but it is also more applicable because we only require 
the random variables to be pairwise independent. An extension to separable 
Banach space-valued r-dimensional arrays of random vectors is also discussed. 
For  the weak law of large numbers concerning pairwise independent random 
variables, which follows from our result, see Theorem 5.2.2 in Chung [1]. 

Theorem 1. Let {X,} be a sequence of pairwise independent, identically distributed 
n 

random variables. Let S, = ~ Xi. Then 
i = 1  

E[Xll< oo ~ l i m S " = g x 1  a.s. 
~ l ~o o  n 

Proof Since {X +} and {X2} satisfy the assumptions of the theorem and 
X i = X~- -X~- ,  without loss of generality we can assume that X~ >_ 0. Let Y~ = X d  

{X~ < i} with I the indicator function and S* = Y/. Now for e > 0 let k n - [ ~  ], 

> 1 and use Cheby~hev's inequality to obtain 

~=1 P ~ 1 Sk* -- ESk* Var Sk* = c Var Y~ 
k, ) - -  n=l k. =1 _1 

OOEE2 ~ 1 i <-cE =cET x2dF(x) 
i = 1  ~ i ~ l  0 

oo 1 l i - -  l k +  l 

eo | k + l  

<c ~ ~ ~ x2dF(x) (1) 
= k = O  k + l  k 

oo k @ l  

_<cE S 
k = O  k 

= cEX~ < oo, 
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where F(x)is the distribution of X1 and c is an unimportant positive constant 
which is allowed to change. We also have 

n 

EX~=l imyxdF(x )  " . ES* = 1 ,m E Y. = 1 ,m - - " .  
n ~ o o  0 n ~ o o  n ~ o o  k g  

(2) 

Therefore by the Borel-Cantelli Lemma 

. Sk* l m - - =  EX1 a.s. (3) 
n ~ o o  k n 

Also 

P{Y.=t=X.} = Z P { X . > n } =  SdF(x)= ~ dF(x) 
n = l  n- -1  n = l n  n = l i = n  i 

co i + l  cc i + 1  

= Z i ~ dF(x)<= Z ~ xdF(x) (4) 
i = 1  i i = 1  i 

<= EX 1 < o~. 

Hence by the Borel-Cantelli Lemma X, + Y, only finitely many times. Consequent- 
ly 

l imSg '=EX1 a.s. (5) 
n oo k n 

Now from monotonicity of S. we can conclude that 

1-(EX1)<limG<_I~S"<~(EX1) a.s. (61 
0~ n ~ o c  n n ~ o c  /'/ 

for every ~> 1 which gives us the desired result. 

Theorem 2. Let {Xm, } be a double sequence of pairwise independent, identically 

distributed random variables. Let S,,, = ~ ~ Xij. Then 
i = l j = l  

E([Xll [ log+[Xll[ )<oe ~ lim Smn=EX11 
( m , n ) ~ o o m n  

a . s .  

Proof The result follows immediately from Theorem 1 if we fix either m or n and 
let the other one go to infinity. Hence we consider the case when both m and n 
tend to infinity. We shall follow the proof of Theorem 1. Without loss of general- 
ity assume Xij>0.  Define new double sequences Y~j=Xj{Xu<i j }  and S*, 

= ~ ~ Yij. If we let dk to be the number of divisors of k i.e. the cardinality of 
i = l j - 1  

{(i,j):ij=k}, and F(x) be the distribution of X l l ,  then (4) adapted to this case 
becomes, 
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~ P{~ij:~=Xij} -~ 
i = l j = l  

~, ~,, P{Xi j>i j}- -  ~ d k P { X l l > k }  
i = l j = l  k = l  

= dk~dF(x)= ~ dF(x) 
k = l  k i -  k i 

i + 1  

<_-c / log/  ~ dF(x) 
i = 1  i 

<=c E(Xl l log+ X l l ) <  ~ , 

(7) 

where we use the fact that ~ dk=(number of positive integer lattice points 
k = l  

"under"  hyperbola x y= n)= O(n log n). Now if we let km=[s /n=[e"] and 
e >  1. Then the right hand side modified version of (1) gives us 

co oo E, y2  ~ d k 
cE 
z=l j=l UJ) k=l K 0 

, oo d \ i + 1  

<-_cE E S x2dF(x) 
L i+lk ! i (8) i = O  - 

oo 

< c ~ x log xdF(x)=c  E( Xl  l log + X l l) < co; 
1 

x_, d / l og / !  
where we use k=2,+1~=O \ i +  1! which follows easily by summation by part. 

The rest of the proof follows similarly. 

Remark 1. Theorem 2 is called the strond law of large numbers for 2-dimensional 
arrays of random variables. The generalization to r-dimensional array of random 
variables is immediate. The sufficient condition becomes g(lxl  (log + [Xt) r- 1) < or. 
For a martingale approach for i.i.d, random variables see Smythe [4]. 

Remark 2. Once we show the strong law for real-valued random variables, the 
generalization of the strong law for separable B-space-valued r-dimensional 
array of random vectors follows easily. Simply follow the proof of the strong 
law of large numbers given in Padgett [-3] pp. 42-44, with appropriate modifica- 
tions. The sufficient condition becomes E(LIXI] (log + ILxll)r-1)< oo, where II II is 
the norm in the Banach space. 

Remark 3. The converse to the above theorems in the Chung sense also follows 
easily (see Chung [1], Theorem 5.4.2 and Theorem 4.2.5), provided that we use 

a better estimate for ~ dk, namely ~ dk~n log n. For the latter see Hardy [2]. 
k = l  k = l  

See also Smythe [4]. 
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