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Summary. Two of the simplest interacting particle systems are the coalescing 
random walks and the voter model. We are interested here in the asymptotic 
density and growth of these systems as t-* oo. More specifically, let (~z~) be a 

(o system of coalescing random walks with initial state Z e, and ( t )  a voter 
model with a single individual originating at O. We analyse p ~ = P ( O ~  z~) 

1 log t 
=/~((~ and show that p ~ - - -  as t-* oo for d=2, and p~(?at) -I  as 

7c t 
t-* oo for d > 3 for some 7e. As a consequence, conditioned on non-extinction 
of ~o, ptl~o[ approaches an exponential distribution. Results of a recent paper 
by Sawyer are applied. 

1. Introduction 

Two of the simplest interacting particle systems on the d-dimensional integer 
lattice Z d are the coalescing random walks (~z,) and the voter model ((o). The 
process (~z~) consists of particles, one starting from each site x e Z  a. These 
particles undergo independent continuous time rate one simple random walks, 
except that whenever a particle jumps to a site which is already occupied by 
another, then the two particles coalesce into one. The state space is S---{all 
subsets of Za}, where x ~ t  if there is a particle at x at time t. The process (~o) is 
a continuous time Markov chain on the denumerable space S O = {finite subsets 
of Ze}, with (o=  {O}; it executs the jumps 

1 
A - * A u { x }  (x~A) at rate ~-d]{Y~A: Iry-xI]=-l)[ 

1 c A - * A - { x }  (xeA) at rate ~-~I{Y A :  ][y-xll=l}l, 
(1) 

A~S o, xEZ d. (We put [B]=cardinality of B~S o, Ac=Za-A ,  [J IF=Euclidean 
norm.) Here ~ot may be thought of as the sites occupied by particles at time t, so 
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~O that ( t ) represents the evolution of a finite configuration of particles on Z d. The 
process (~zd) belongs to the family of coalescing random walks A . {(it ), AeS} (the 
superscript A denoting the initial state), a Markov family of S-valued processes. 

~o Similarly, ( t ) is one of the voter models in {(~r AeS},  another such family. 
These are among the most widely studied interacting particle systems; for 
references and a recent survey, see [9]. Both {(~A)} and {(~r are additive in the 
sense of Harris [10]. Consequently the entire family {(ira)} can be constructed 
on a single canonical probability space and the family {(~A)} on another probabil- 
ity space, with the aid of their respective percolation substructures, in such a way 
that additivity holds. Namely 

~tAuR=~Aw~Bt A, BsS,  t >O, (2) 

~ A u B ~ - ~ A t . ) ~  B A, BES, t>O. (3) 
t t t 

Moreover, the substructures for these two systems are dual: for P governing 
{(~r and t 6 governing {(~A)}, a duality equation asserts that 

io(~B,0)=P(~,"c~A#r A,B~S, t>__O. (4) 

(See [9, 10] or [11] for more details concerning (2)-(4).) Setting A = Z  a and B 
= {0} in (4), we obtain 

v ( o  ~ ~ . ) =  p ( ~ o ,  r (5) 

thus the "particle density" of ~z~ equals the "survival probability" of ~o. Since 
we will be focussing on these two processes, from now on we will abbreviate it 
= t = ~r. It follows easily from (1) that 

nt = L~t[ (6) 

is a martingale. In fact, if z i is the time of the i'th jump of the process, then (n 0 is 
a simple symmetric random walk with absorption at 0. The holding times ~i 
- ~ i _  ~, however, are determined by the "boundary size" of ~ ,  i.e., the length of 
the borderline curve between sites in ~, and its complement. Since the geometry 
of ~, is not at all obvious, detailed analysis of n t is considerably more 
complicated. Nevertheless, since the jump is always at least 2, we do know that 
I~t] is eventually absorved at 0 with probability one. Thus, if Pt denotes the 
common value in (5), i.e., 

p, = P(O e it) = P((t # 0), (7) 
it follows that 

p, $ 0 as t---, oo. (8) 

Our principal objective in this paper is to determine the exact asymptotics for Pr 
in every dimension d. 

By way of motivation, let us first consider the one-dimensional case, where 
the analysis is quite easy. If d = 1, then (1~~ is a rate-2 simple random walk on Z 
with absorption at 0, since ({o) remains a "block" with boundary size 2 until it is 
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trapped at 0. The reflection principle and local central limit theorem together 
imply that 

1 
Pt~ ,-- as t ~  oo, 

V~t 
and 

l imP(nt<c~E[ntlnt>0 ][n t>O)=l-e  4 , (9) 

c~e[0, oo). Using the joint percolation substructure for {(~{)} and A {(~)}, O<_s<_t 
(cf. [9] or [10]), one sees that n t also has an interpretation for the coalescing 
random walks. Namely (in any dimension d), 

nt= the number of walks in (4.) which are at the origin (10) 
at time t as a result of coalescence. 

Thus (9) is a weak convergence result for the number of collisions up to time t 
experienced by the particle at 0, given that 0 is occupied at time t. Alternatively, 
if we think of the masses of particles as added together upon coalescing, then (9) 
describes the distribution of masses. 

In dimension d>2,  matters are not so simple. Here the evolution of the 
boundary of (~t) seems unmanageable; one must therefore resort to indirect 
reasoning to investigate Pt. In [4], the fact that the boundary of ~ must have 
dimension at least d - 1  was used to establish the crude estimate: 

pt=O(t-d/(d+l~) as t ~  oo. 

To date, this is apparently the only available upper bound. A different approach 
to the study of (~t) has relied on comparison with a certain "multi-type voter 
process" (~), about which more has been proved. (~t)=((~t(x); x~Z'l)) has state 
space (Za) z~, and may be defined in terms of the percolation substructure ~ for 
{(~A)} by 

~t(x)=y if there is a path up from (y, 0) to (x,t) in ~ (11) 

(cf. [9] or [10]). (~t) is well-defined because there is always exactly one y which 
works in (11). Introduce 

N~=l{xeZd: ~(x)= ~(O)}l. 

That is, let N~ be the "patch size" of particles in the multitype process which are 
the same type as the one at the origin at time t. Sudbury 1-17] observed that if R t 

is the range of a (continuous time rate 1) simple random walk on Z e up to time 
t, then 

/~ [Nt] = E [R2t 3. (12) 

Subsequently, Kelly [12] noted that 

P(N, =j) =j~(n, =j) j = 0, 1, ..., (13) 
so that 

pt=P(nt>O)=s 
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Asymptotics for E [Rtl  were obtained in a celebrated paper by Dvoretsky and 
ErdSs [8]; their results, together with (12), yield 

t 
/~[Nt]~2rClog t as t-~oo d=2,  

~27~t as t--,oo d>3,  
(14) 

where ?d is the probability that d-dimensional simple random walk never returns 
to its initial position. Kelly [12] exhibited lower bounds for Pt by noting that 

Pt = s  13 => (/~[Ntl)- a (15) 

and then appealing to (14). 
More recently, Sawyer has extended this line of analysis in a remarkable 

paper [141. His results deal with a generalization of the multi-type voter model 
which is known to mathematical geneticists as the "stepping stone model". He is 
able to compute the asymptotics of all moments for the size of the patch 
containing the origin in this model. It follows that the patch size, suitably 
normalized, converges weakly to a F-distributed limit. Specialized to (~t), the 
result is as follows. 

Sawyer's Theorem. For d > 2, 

lim I( ;] t~m - -  2k k = 1, 2, . . . .  (16) 

7bus for  an), as[0,  oo), 

lira f i (N  t <= ~/~ [ N t l  ) = ~ 4 u e -  2"du, 
t ~  0 

where/~[Nt] satisfies (14). 

Sawyer's Theorem comes tantalizingly close to determining the asymptotics 
for p~. From (13) we see that 

/~[n~1= s II k > l ,  (17) 

so we now asymptotics for all the moments of n t. Unfortunately, this is not quite 
enough to handle pt = P(n t > 0 ) = E  I N  t- 11. There is a problem of "tightness near 
0"; comparatively small values of N t may have a drastic influence on Pt without 
affecting (17) in the limit. 

The essential objective in this paper is to bridge the "technical gap" in the 
approach just outlined. In so doing, we derive exact asymptotics for Pt, as well 
as a counterpart to Sawyer's weak convergence theorem. Our main result is 

Theorem 1'. Let  (it) be the d-dimensional coalescing random walks starting from 
Zd, (~t) the voter model on Z d starting with a single particle at O. I f  p t is given by 
(7), and n t by (6) or (10), then 

1 log t 
pt ~ - -  as t--+ co d = 2  

~z t 
(18) 

~(Tdt) -1 as t--+oo d>=3 
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(Ya is as in (14)). For any d >  2, a~[O, oc), 

lim P(n t =< a p t  1l r/t > 0) = 1 - e-~. (19) 
t ~ C O  

We are unable to prove Theorem 1 directly from moment considerations. 
Rather, our approach is to obtain good upper bounds for Pt: 

Theorem 1. 
d=2,  

\ t /  
(20) 

=O(t  -a) as t--,c~ d>3.  

We then apply Sawyer's Theorem in order to determine the correct asymptotic 
constant. Once this constant is known, the accompanying weak convergence 
result follows easily. 

Section 2 contains the proof that Theorem 1 in conjunction with Sawyer's 
Theorem yields Theorem 1'. In Sect. 3 we prove Theorem 1. It is instructive to 
note that the proof deals almost entirely with the infinite system of coalescing 
random walks. The conventional wisdom of duality theory is that the finite dual 
system {(~a); A e S o  } is simpler to analyse than the infinite system A . {(~ ), A~S}. 
But the finite voter model in more than one dimension turns out to be 
sufficiently complicated that the ultimate solution of our problem involves 
considerable interplay between {(~A)}, {((a)} and (~t). Finally, Sect. 4 contains 
some additional remarks and open problems. 

2. Theorem 1 Implies Theorem 1' 

In this section we show, with the aid of Sawyer's Theorem, that (20) implies (18) 
and (19). The proof is not difficult; for the sake of clarity we make use of two 
lemmas. Throughout the remainder of the paper the dimension d will be thought 
of as fixed, and usually suppressed in the notation. It will also be convenient to 
introduce the notation 

t 
f=-  d=2,  

log t 

= t  d>3,  

and 
K ~ 7 ~  

=Td 

We now demonstrate the two lemmas. 

Lemma 1. For any e > O, 

lim K f P ( n  t > eKf~) = e -~. 
t ~ o o  

Proof  By (13), the left side equals 

d = 2 ,  

d > 3  (?a is as in (14)). 

, (21) 
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For N a random variable with density 4ue -z", Sawyer's weak convergence 
result, together with bounded convergence, implies that as t ~ 0% (21) converges 
to 

=1 14ue-2,du �89 -1, N > ~  u 

= e - e .  [ ]  

Lemma 2. I f  gt=O(1 ) as t ~ 0% then 

lim lim supJ~ff(ntE(0 , eft])= 0. 
e~O t ~  

Proof. For any s _<_ t, 

P(n,e(o,  4 3 )  = P%e(0,  ~f~], nt > o) + P(n~ > ~J;, ~, > 0 ) -  P(n, > af,). 

Taking s=(1-V~-)  t, and dropping n t>0  from the middle term on the right, we 
have 

By Lemma 1, the second term on the right is 
g 

O e - e - 2  a s  t ~ 0% 

and hence tends to 0 as e ~ 0, uniformly for large t. To bound the first term we 
use the Markov property, (3), and translation invariance: 

ftfi(n(l_V~)t~(0,gft], ~t4:0)=ft ~ P(~(1-V~)t=A)fi(~/~,4:0) 
A: I.ale(0, ~ft] 

A: IA] ~(0, eft] x~A 

<=f~Pc~ - ,/~),~f, P v~ 

l - V e  

By hypothesis this last term is ' 7-~[O(1)] 2, and therefore also tends to 0 
1 -1/~ 

uniformly for large t as e---, 0. []  

Lemma 2 establishes the "tightness at 0" necessary to apply Sawyer's 
Theorem to our problem. 

P r o p o s i t i o n .  I f  gt=O(1 ) as t-~o% then (18) and (19) hold. Hence (18) and (19) 
follow from (20). 
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Proof By Lemma 1, 

lim inf K g, > lim lira Kft/~(nt > e K f0 = 1. 

Also, for any e > 0, 

lim sup K g t <= lira K ftff(n t > eK f )  + lim sup K f t ff(nts(O, ~K f])  
t ~  t ~ o 9  t ~ o o  

=e-~+6~, 

where 6~ ~ 0  as 8---, 0 by Lemma 2. Thus lim sup Kgt = 1. We conclude that 
t ~ o o  

pt ~ (Kft)-  1 as t --+ 0% 

i.e., (18) holds. Now, using (16)-(18), observe that 

k~ 
--+ 2k- 1/~[Nk- 1] = 2k- 1 2k_ 1 -- k[ as t ~ o o .  

Since ff~[ntlnt>O]=p~-l~Kf, and since k! is the k'th moment of the standard 
exponential distribution, (19) follows by the method of moments. [] 

3. Proof  of  Theorem 1 

Our objective in this section is to prove 

/ lo~ t \  
p t = O [ - ~  -)  as t-+oo d=2 ,  

=O( t  -1) as t--+oo d__>3. 

(20) 

The proof constitues the major effort of the paper. We will work directly with 
the infinite systems of coalescing random walks A. {({, ), ASS}; since the proof is 
somewhat long, we pause to introduce some needed terminology. 

Extensive use will be made of the graphical representation of {({{)}, by 
means of which the entire family is defined on a single probability space; thus a 
certain familiarity with [9] or [10] will be assumed. {(~{)} is induced by its 
percolation substructure ~ :  

{r N?(x)>0} AsS, t>=O, 
where N/(x) is the number of paths up from (A, 0) to (x, t) in ~.  (22) 

More generally, if NtA,,,(B) denotes the number of paths up from (A, t) to (B, u) 
(t < u), then we can define 

{A.={xeZd: NtAu(X)>0} AeS, 0<t< .<o< 
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Note that 

~r  = ~A 0 --< t < U < ~ .  (23) 
t,u u 

Also, the additivity property (2) extends to 

~ A u B  A B (24) t,u =~t, uu~t , ,  A, BES, O<-t<-u< ~ .  

For brevity's sake, we write ~t,u = ~z~, it = ~zd. 
We let A denote the box of  side 2R centered at O, i.e., 

A = {(xl,. . . ,  xe)eZd: [xi[ <R} ,  

where R is a positive integer. Also, let V be the unique collection of sites in Z e 
such that the translations A + v, ve V, partition Z e. Any choice of R gives rise to 
a corresponding A and V. In what follows, think of R, A and V as fixed. 

We are now prepared to begin estimation of Pt. As the motivation may tend 
to become buried in the construction we are to employ, we first present a brief 
outline. We wish to show that Pt is decreasing at at least a fixed rate: log t/t if d 
= 2 and 1/t if d > 3. Our basic approach will be to exploit the fact that the larger 
Pt is, the more rapidly it must decay: the more coalescing random walks present 
at time t, the more frequently they coalesce with one another, and the more 
rapidly their density decreases. Thus, the process has, in some sense, a self- 
correcting mechanism which limits the number of distinct particles. The upper 
estimates obtained in this manner for Pt are (perhaps surprisingly) strong enough 
to yield (20). 

The methodology may be considered in analogy with a vector field (or flow) 
diagram in the context of differential equations. The function Pt has a negative 
derivative at each point (t, Pt) with Pt > 0, and becomes increasingly negative as Pt 
increases. If it is also true that gt =f~Pt (as defined in Sect. 2) has a negative 
derivative at large enough values of gt, then gt will be bounded, which is 
sufficient for (20). The actual problem is, however, somewhat more complicated 
in that it does not seem possible to compute P't itself. For a given density of 
particles at some fixed time in the coalescing random walk system, it is not clear 
what the actual spatial distribution of particles is; the rate at which particles 
coalesce is however certainly dependent on this distribution. (For example, if the 
particles are all spread far apart, then this rate will be zero.) Yet, one may 
circumvent this difficulty by choosing to observe the coalescing random walk 
system over a fixed spatial region for a time interval of appropriate length. 

What we do is to compute the decrease of the particle density over a box A 
with side 2R. If the box is chosen large enough, it will at time t contain a 
minimal expected number of particles (two is sufficient for our purposes). In 
Lemma 3, it is shown that, no matter what the relative positions of the particles 
in the box, then after additional time s, a minimal number of these particles will 
have coalesced. Repeating this procedure over disjoint time intervals, we obtain 
the estimate (27), which bounds gt in terms of this minimal expectation. This 
minimal rate at which particles coalesce may be computed without difficulty 
(Lemma 5). Therefore, appropriate choice of the spatial and time scales R and s 
(Lemma 4) ensures the desired bound given by (20). 
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We start off by reformulating the problem slightly, and define 

et(B)=E[l~tmB]] B~So, t>O. 

Note that by translation invariance 

e,(B) = ]BI p,. 

Thus, a little algebra shows that whenever 0 < t_< u < 0% 

pu=Pt[1 et(A)-eit(A)] j" 

On the other hand, (23), (24) and translation invariance yield 

(25) 

eu(A): E P( xe~r ~ t, It] 
x E A  

= ~t,u 
x e A  v ~ V  

x ~ A  v e V  

E f [ ~ r  ~ n A 1  
= L t ,  it lJ, 

Substituting this into (25), we obtain 

P,<Pt[1 At~j,it(A)] ~ t c s  A "] where At, it(A)=E[l~tc~AI - {it J (26) 

Inequality (26) states that Pt decreases at at least some fixed rate which involves 
the quantity At,,(A ). The following lemma enables us to make this expression 
more explicit, and states that particles executing coalescing random walks 
coalesce at at least a minimal rate independent of their initial configuration. 

Lemma 3. Let P~ be the probability law governing continuous time rate 2 d- 
dimensional simple random walk starting from x. I f  z is the hitting time for the 
origin, denote Hs(X)=Px(z <s). Let {(~A)} be the (rate 1) coalescing random walks 
on Z a. Then for any B~S o, B#r  

]BI-E[I~BI]_->(IBI - 1) min Hs(y -x  ). 
x, y~B 

Proof The left side is the expected number of tirrles particles of (~B.) coalesce 
through time s. The right side should be thought of as a lower bound for the 
expected number of particles which coalesce with some fixed particle through 
time s, where all interaction among other particles is suppressed. Formally, we 
note that in the percolation substructure N for {(~A)}, 

NB(Zd)=[B[ B~So, t >=O. 

(Nf(Z ~) is as in (22).) So for any x~B, 

Im " -I~ I = NY(zd) -l{zeZ d: Ny(z) > Oil 
= Ny(~f) + Ny (Z d- ~f) - (1 +[{z �9 d- 4f: Ns B(z) > O}l) 

B _->N; (~s)-- 1. 
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Taking expectations, we see that 

IB l -g [ - ]~ l ]  > ~ P(~=~s~). 
y~B 
y # 2  

Since the distance between ~Y and ~ is a rate 2 simple random walk, the claim t t 

follows. [] 

As a consequence of the Markov property and Lemma 3, we see that 

At, u(A) = ~ P(~tc~A=-B)E[lBl-I~ul] 
B ~ A  

> ~ P(~tmA=B)(IBI-  1) min I-I,,_t(y-x ) 
B o A  x ,y~B 

> (et(A) - 1) min H._~(y - x). 
x ,y~A 

We also let u = t + s, and set 

h s = min H s ( y -  x). 
x , y ~ A  

Substitution into (26) then yields 

pt+s<pt[1-(1-[et (A)]- l )hs]  s,t>O. 

Thus, we now have a bound for the rate of decrease of Pt after additional time s. 
To make the bound completely explicit, we still have to choose A and s as 
functions of t. Given t, we choose A = A  t to have side 2R with 

1 

R = R t = [(2pF ~)2] 

([k] = least integer > k), in order that 

et(A ) = Rapt > 2. 

With A so chosen we obtain the bound 

pt+s<pt[1-�89 s,t>=O. 

To make this inequality somewhat easier to handle, iterate it a total of [ts - l j  
times (Lk] = greatest integer__< k). Using the fact that Pt is decreasing we conclude 
that 

p2t=pt[1 --�89 
<pt  exp { -�89 s, t>O. 

Since f2t/ft --< 2, this last inequality may be rewritten as 

g2t<gtexp{log2-�89 s,t>O. (27) 

Our goal in this section is to demonstrate (20), namely, to show that gt is 
uniformly bounded on [0, oo). Inequality (27) is our main tool. As a consequence 
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of the next two lemmas, it will follow that the argument of the exponential term 
above is negative for large values of gt. Therefore by (27), gt cannot become too 
large, but must remain bounded. We now proceed to make this reasoning 
precise. 

Lemma 4. For an appropriate choice o f  s = s t, 

lim inf gt- ~ hs~ [t/st] > 0. (28) 
t+CO 

Assuming (28) for a moment, let us show that (20) follows from (27) and (28). 
By (28) there is an e > 0 and a t o < oo such that 

We claim that 
h ~ L t / s t l > e g  t for all t > t  o. (29) 

41og2 
gt <(  max g~ v for all t > 0  (30) 

r~[0,  2to] / 

(a v b = m a x  {a, b}). Suppose that (30) is violated at t = t ~ ,  and let 

t ,  =min  {2-"t~: (30) is violated at 2 -" t l ;  n=0,  1, ...}. 

gt, violates (30), so t ,  > 2to, and hence t , / 2  > t o. With e as in (29), if gt,/2 > -  
then  (29) and (27) imply that 

g t ,  < g t , / 2 ,  

2 log 2 
which contradicts (31). If, on the other hand, gt,/2<__ 
and Pt decreases, 

< <41og2 
g t  ~ = g t ,  = g 

(31) 

21og2 

, then since f2] f t  < 2 

Thus (30) cannot be violated for any t, i.e., (20) holds. 
To prove Lemma 4, thereby completing the proof of Theorem 1, we will need 

some elementary estimates for rate 2 continuous time simple random walk on 
Z a. Let (Xt) denote such a process, Px its law starting from x, Pt(x, y)= Px(Xt  = y), 

t 

G~(x) = ~ P~(x, O)ds, and define H~(x) as in Lemma 3. Then we have the following 
o 

lemma. 

Lemma 5. I f  x ~ Z  a with I[xl] =r,  then there is a constant Ca>0 such that 

P r o o f  Use the inequality 

H~2(x) => C2/log r d = 2  
=>Car 2-a d>3.= 

I4t (x) >= 6~ (x)/G,(o), 

together with the familiar asymptotics for the Green's function: as r =  ]rxl[ ~ o% 

G~2(x)~c~ z d=2,  
~o:ar 2-a d>3 ;  

G~2 (0) ~ f12 log r d = 2, 

~sup Gt(0)=fi d d>3 ;  
t 
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ea and/3 a are positive (finite) constants. The local central limit theorem yields 
these asymptotics (cf. the (discrete-time) computations in the proof of Prop- 
osition 26.1 of [16].) [] 

We now proceed to verify (28) for a suitable choice of s t. 

Proof of Lemma 4. Choose 1 
s t = d [(2 P t  1) d~ 2. 

Since the distance between any two sites in A t is 
1 

= ] / d  [-(2pt- 1)?-], Lemma 5 implies that 

h~= min Hs~(y-x)> min Hil~_yll~(y-x) 
x, yeAr x,y~A~ 

=> C2/log D t d = 2 
> CaD~ -a d~3.  

Now (8), (14) and (15) imply that as t ~  oo 

SO 

and 

2 
Pt-1 ~ O0 and t p2--* o% 

1 1 

V(2pt- l )g  I ~ (2pt- ~)5- 

Lt/stJ~t/s,. 

It follows that for d = 2, 

liminfgi-lhst[t/stJ>liminft+~ t+~o logtt Pt-l" C2 . t 
log (2p;- }) 4pt- t 

->liminfC2 [_[log2 logt ] 
- t~oo 4 +�89 - 1 ]  

> C2/2 > O, 

at most Dr=I/dR t 

where we have used the fact that log t/logp; -1>1 for large t since t p t ~  co. 
Similarly, for d > 3, 

1 
liminfg~_lhs~[_t/stj>liminft_lp~_l. Ca [l /~ (2pt_ 1)~] 2_a t 

t~o = t ~  d(2p21) z/a 

= Ca > 0 .  
2da/2 

This completes the proof of Lemma 4, and hence of Theorem 1. [] 

4. Additional Remarks 

We discuss briefly three directions in which Theorem 1' may be extended. 
(i) Domains of attraction. If the initial state Z a is replaced by other infinite 

states AES, or more generally measures /x on S, what happens to (18)? The 
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answer, for a large class of "nice" states, is that nothing new happens, i.e., 
Theorem 1' is quite stable under changes in the initial distribution. This 
phenomenon was studied in the one-dimensional setting in [3]. A simple 
illustration is the following result. 

Theorem 2. Let (~o) be the coalescing random walks on Z d starting from Bernoulli 
product measure with density 0E[0, 1]. Let p~176 ). I f  0e(0, 1), then pO has 
the same asymptotics (18) as Pt. 

Proof A special case of the duality equation for product measures (see e.g. (1.11) 
in [9]) asserts that 

P(O r ~o) = E [(1 - 0),~q. 

Manipulating this we get 

pO 
0 = < 1 - ~ =  p(lff~[ = k l C , # O ) ( 1 -  O) k . 

Pt k= 1 

Bound the rightmost expression by 

P(IC,[ ~(0, ef~] I Ct # 0) + (1 - 0) ~ ,  

where ft is defined as in Section 2. If we let t ~ ~ ,  then the second term goes to 
0; also as 5---,0, the first term goes to 0 uniformly in t by Theorems 1 and 1' and 
Lemma 2. Consequently, 

lim - - =  p~ 1, 
t ~  Pt 

which proves the theorem. [] 

(ii) Annihilating random walks. A second family of interacting particle sys- 
tems closely related to {(r is the annihilating random walks {(titA)}, where 
particles annihilate one another rather than coalesce upon collision. The systems 
(tiA) tend to be more difficult to analyse than (r but fortunately the asymptotic 
density starting from Z d is determined by combining Theorem 1' with a recent 
result due to Arratia [2]. 

T h e o r e m  3. Let (tlt) be d-dimensional annihilating random walks starting from Z a, 

and let pt=P(O~tit). Then Pt satisfies (18) with 1 replaced by 1 2~d. ~ 2~' 7d replaced by 

Proof A special case of Arratia's theorem states that 

lim P~ = �89 
t ~  Pt 

(iii) Shape of the voter model. Theorem 1' raises some intriguing and chal- 
lenging open problems concerning the voter model. The process (~tl ~t 4:0) may 
be thought of as the limiting critical case of a one-parameter family of super- 
critical models for tumour growth introduced by Williams and Bjerknes [-18]. 
The supercriticial models, conditioned on nonextinction, have an asymptotic 
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shape, which grows linearly in "radius" [5, 6]. By analogy, one can ask shape 
questions about (~tl ~t:# 0). The limit law (19) suggests that the normalized shape 
itself might converge in distribution in some sense. Any results along these lines 
would be of interest. As one would expect, the situation is altogether different 
from the supercritical case. For example, whereas the supercritical processes on 
Z d have boundary of asymptotic dimension d - l ,  Theorem 1' shows that 
(~t[ ~t =t= 0) has boundary of asymptotic dimension d for d > 3, "nearly d" for d = 2. 

(iv) Coalescing Brownian motions. Closely related systems of coalescing 
Brownian motions have been studied by Arratia [1] in dimension one, and by 
Smoluchowski [15], Chandrasekhar [7] and Lang and Nguyen [13] in dimen- 
sion three. 

Acknowledgments. We would like to thank Rich Arratia, Rick Durrett and Laurie Snell for their help 
with this project. 
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