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1 
Summary.  Let /~ be a probabili ty and v h = ~ it*" the corresponding har- 

n= l  F/ 
monic renewal measure. Complementing earlier results where /~ is con- 
centrated on a halfline we investigate the behaviour of Vh([X, X + 1]) and the 
harmonic renewal function G(X)=Vh( (- oO, x]) as X---~oo if m l = ~ x t l ( d x ) > O .  
We also consider the case m 1 =0.  

1. Introduction and Results 

For a given probability measure/~ on the Borel subsets ~3 of the real line let 

v 
~ 1 . , ,  

h = ~ 7.r' (1) 
n = l  rt 

denote the corresponding harmonic renewal measure. We assume throughout  
the paper that # has finite second moment ,  i.e. 

m2 = S x2 ~(dx) < ~ ,  (2) 

and we only consider non-lattice distributions: beyond this we assume that 

#*" has a non-vanishing absolutely 

continuous component  for some n 6 N  
(3) 

(see also 3.1 and 3.3 below). 
Harmonic  renewal measures are of interest in the theory of random walks. 

Let (Xi)i~ ~ be a sequence of i.i.d, r andom variables with distribution # on some 

probabili ty space ((~,9.I,P), put S o - 0 ,  Sn= ~ X i for all noN.  Besides the 
i=1 

obvious interpretation of v h as a harmonically discounted occupation measure 
of the random walk (S,),~o , 
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vh(A)=E IA(Sn) for all A ~ 3 ,  
L n ~  1 

we have the following important connection with the Wiener-Hopf factors of 
#: let N = i n f { n ~ N : S , > O } ,  assume m l = ~ x p ( d x ) > O  for the moment, then 
P ( N  < oo)= 1. Let #+ denote the distribution of Su, the first positive sum. Then 
the harmonic renewal measure associated with #+ is the restriction of v h to 
(0, oo) (see [7], w for the setting (Spitzer's identity and fluctuation theory), 
details, and diverse applications). 

In this paper we study asymptotic properties of harmonic renewal measures 
as for example the behaviour of % ( [ x , x + l ] )  as x ~ +  oo. In the special case of 
kt being concentrated on [0, oo) - we refer to this as the one-sided case in the 
sequel - asymptotics of harmonic renewal measures have been investigated in 
some detail by Greenwood, Omey and Teugels in [71 (see also [81). In [1] 
Embrechts, Maejima and Omey considered a generalization of (1) where the 

1 
coefficients - are replaced by some regularly varying sequence, again # is 

n 

assumed to be concentrated on [0, oo). In [71 and [81 as well as in El] the one- 
sidedness assumption is essential for the methods since these rely on Abelian 
and Tauberian theorems for Laplace transforms. We work with generalized 
functions and Gelfand transforms instead, the role of Abelian and Tauberian 
theorems is taken over by the Wiener-L6vy-Gelfand Theorem for certain con- 
volution algebras of complex measures (see also 3.5 and 3.6 below). 

The extension given here of harmonic renewal theory from the one-sided to 
the two-sided case is analogous for that for ordinary renewal theory. For  a 
brief treatment of this, and references, see e.g. [51, w XI.9. 

Let 2 denote the Lebesgue measure, let 2 h be the 2-continuous measure 
l 

with density x ~ l / x ~ ,  x~I( ,  and let ~ denote the restriction of 2 h to [0, oo). 

We call a monotone decreasing function z ' [0 ,  oo)-~ [0, oo) dominatedly varying 
(v is a DVF for short) if 

z(x) = O(z(2x)) as x ~  oo. (4) 

Our first result deals with the case of non-zero mean which we may take to be 
positive. Restricted to a compact interval v h - 2  [ is a finite signed measure, I% 
-2+1  denotes the corresponding total variation measure. 

Theorem 1. Let  #, v h and 2~ be as above, assume (2), (3) and m 1 >0, let ~ be a 
D VF. Then 

~ ( x ,  oo)) = o (~ (x ) )  

implies 

and 

implies 

Ivh - , ~ ;  r ( [ x ,  x + 1 ] )  = o(~(x)), 

~ ( ( -  oo ,  - x ] )  = o(~(x)) 

v h ( [ -  x ,  - x + 11) = o(~(x)) 

as x--,oo. The same holds if o is replaced by 0 throughout. 
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Because of (2) the conditions on the g-tails are automatically satisfied if ~ (x) 
--(1 +x2) -~, so vh-,~ 2 is a finite measure and the harmonic renewal function 
G, G(x)= vh( ( -  oo, x]) is (finite and) asymptotically equal to log x as x-- ,~.  We 
also get asymptotic equality of Vh(X+A) and ) ~ ( x + A )  as x ~ o o  for all 
bounded Borel sets A with ,~(A)>0 (see also 3.1 below). Furthermore the 
theorem shows that for bounded AE~3 the differences [vh(x + A ) - ) ~  (x + A)I are 
bounded by a multiple of/z([x, oo)) if # has a dominatedly varying right tail, 
i.e. if #([x, ov))=O(g([2x, ov))) as x ~ o v ;  similarly, if the left tail of /~ is 
dominatedly varying a multiple of it bounds vh(x + A) as x--*- oo. 

The next theorem deals with the harmonic renewal function, in it ? denotes 
Euler's constant. 

Theorem 2. Let # satisfy (2),  (3)  and m l > 0  , assume that # has dominatedly 
varying right tail; G(X)=Vh( ( -  oO, x]) for all xelR.  Then 

1 
G(x) -= log x - l o g  m 1 -t- ~ Af-~l 1 ~x ~((t, oo)) d t -~- O(~((x, oo))) 

as x--* ov ; in particular 

lira G ( x ) - l ~ 1 7 6  t 

x ~  ~ #((t, oo))dt ml" 
x 

The technique we use in the proof of this theorem was suggested by the 
methods used in [9], it might be of interest in its own right. 

We turn to the zero-mean case. Let gJl denote the space of all complex 
(finite) measures. In order of to make the results (and later on, the proofs) 
more transparent we introduce 

X: {/1~9)l: F~ 2-integrable} --,~l 
by 

(Zg)(A)=JF~dS~ for all A~3 ,  
A 

where for all/~egJ/F,: N ~ 2  is defined by 

F,(x)=#(IR)IEo,~)(X)- l~((-  oo,x]) for all xelR. 

Theorem 3. Let I~, V h be as above, assume (2), (3) and m1=0, let �9 be a DVF. Then 

implies 

and 

implies 

z ~((x, ~))= o(~(x)) 

Iv h - Ahl (Ix, x + 1]) = o ('c (x)), 

z ~ ( ( -  oo, - x))  = o (~(x ) )  

IVh--)~hl ( [  - -  X, - -  X + 1 ] )  = O(Z (X)) 

as x ~ o o .  The same holds if o is replaced by 0 throughout. 
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Because of (2) the conditions on the integrated tails are satisfied if r (x)=(1 
+x)  -1 which gives asymptotic equality of vh(x+A ) and )~h(X-t-A) as Ixl---~oo for 
all bounded AE~B with 2(A)>0. Similarly the other remarks following Theo- 
rem 1 may be transferred to the present situation. As an analogue of Theo- 
rem 2 in the zero-mean case we have the following result. 

T h e o r e m  4. Let # satisfy (3), S lxl3/~(dx)< oo and m 1 =0, assume that the tails of 
Z #  are of dominated variation," H(x)=vh([--x ,x])  for all x >=O. Then 

oo 

H(x) =2 l o g x - l o g m  2 + 2 7 + - -  ~ Z'#((t, oo))dt 
m 2  x 

1 - x  
- - - -  ~ Z#((--  oo, t])dt+O(Z,#([-x ,x]r  

m2 _ 

as x--* oo ; in particular 

limoo H ( x ) - 2 1 ~ 1 7 6  1 
- x  

x -~  ~ Z#((t ,~176 d t -  f Z # ( ( - o % t ] ) d t  m2 

From the point of view of random walk theory Theorem 2 gives an expansion 
1 

of ~ - P ( S , < x )  down to the order of P(X 1 >x);  this should be compared with 
n = l  n 

[7J, Theorem 3 and Example 3. Similarly Theorem 4 expands P(IS,I <x)  
o9 t t ~  1 r~ 

down to the order of ~ P(IXI[ >t)dt .  
x 

Proofs are given in Sect. 2. In Sect. 2.1, we regard v h as a tempered 
distribution and give its Fourier transform. Section 2.2 lists some facts from 
Banach algebra theory, the proofs of the theorems are then given in Sects. 2.3- 
2.6 respectively. Sect. 3 contains some concluding remarks. 

2. Proof s  

2.1. Let 5 p denote the space of rapidly decreasing functions, let 5 P' be the space 
of tempered distributions ([15], w contains all notions and facts from the 
theory of generalized functions we need in this section). Locally 2-integrable 
functions g and positive measures # which are finite on compact sets define 
tempered distributions via 

f ~ S f g d 2 ,  f ~ I f d #  ( f e Y )  

if i Ig[d2 and I#l (( - x ,  x) )  grow at most polynomially as x ~o o .  Using con- 

centration function estimates as given e.g. in [3] we see that v h has these 
properties and may thus be interpreted as a tempered distribution; we do not 
always distinguish between such measures (functions) and the associated tem- 
pered distributions, ^ denotes Fourier transformation in all these cases. 
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Let log: G ~ G ,  G- -C  -{ze( l ] :  I m z = 0 ,  Rez__<0} denote the principal branch 
of the logarithm (which is analytic on G). Expanding # about 0 and using (2) 

we see that i I@(O)ldO<oo for some e > 0 ,  where 

~,(0) = -- log(1 -/~(0)), 0 4 0 .  

We have lfi(0)[< 1 for all 0 4 0  since # is non-lattice, so the integral is finite for 
all c~>0. Further it is known that (3) implies Cram6r's condition, so the 
integral is bounded by a multiple of c( and 0 is a tempered distribution. 

Proposition 1. tp is the Fourier transform of v h. 

The proof follows standard patterns from the theory of generalized func- 
tions and is therefore omitted. 

Proposition 1 enables us to compute the Fourier transforms of measures 
which are sufficiently near to 2 ;  and )~h respectively for our later calculations. 

Example 1. Let // be the exponential distribution with parameter 1. Then #*" 
has density f~, 

x n -  1 

s  e ~ if x > 0 ,  f~(x)=0 otherwise, 
(n-i)! 

so v h has density fh, 

fh(x)=l (1 --e -~) if x > 0 ,  fh(x)=O otherwise. 

1 
We havefi(0) 1- io 'S~  

iO 
')h(0) = - - 1 o g i 0 _ l ,  040 .  

Example 2. Applying the transition x - ~ - x  in the situation of Example 1 we 

see that the measure with density 0 on [0, oo) and - l - ( 1 - e X )  on ( - o % 0 )  has 
iO x 

Fourier transform - l o g ~ ,  so if we define vl by 

we obtain 

Vl(A)= ! ~-x[ (1-e-lXl)dx for all A E~  

0 2 
~71(0) = - l o g  1 +0  - - i - '  04:0. 

Proposition 1 displays v 1 as the harmonic renewal measure of the bilateral 
exponential distribution with parameter 1. 

2.2 Let 113 be a commutative Banach algebra with unit, let .~ denote the set of 
its maximal ideals. To any I~.~ there corresponds uniquely a multiplicative 
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functional ~,~:IB--+C of norm one such that I = ~ / i 1 ( { 0 } ) ;  the Gelfand trans- 
form 2:.~--+117 of some xeIB is defined by 2(I)=Oi(x ). The Wiener-L6vy- 
Gelfand Theorem states that if xeIB, Uc lE ,  T: U-+C are such that 

2(-~) c U, U open, T analytic in U, 

then there exists a yeIB with ~=To2 ([63, w endowed with the total 
variation norm It. ]l rg and with convolution as multiplication, is such a Banach 
algebra; ~ and .~ refer to this space from now on. The important fact on .~ 
which we need below is the following: Ie.~ either contains 9J~ a, the set of all 
absolutely continuous complex measures, or it is of the form I=I(Oo) 
={#e!l.R:/~(0o)=0 } for some 0oelR ([6], w Identifying {I(0): 0MR} and N 
and using 

~(I(O))=~(O) for all 0eIR 

we see that we may regard the Gelfand transform as a continuation of the 
Fourier transform. Its great advantage lies in the fact, expressed in the Wiener- 
L6vy-Gelfand Theorem, that analytic functions of the transform of a measure 
are again transforms of measures. This carries over to certain subalgebras of 9J~ 
as we now explain. 

Let z be a DVF and put 

~ ( ~ )  = { # e ~ :  I#1 ([x, x + 1]) = O(z(x)) as x ~  oo}, 

9cJ~~ = {#eg)l: Ipl ([x, x + 1]) = o(~(x)) as x ~  oe}. 

Rogozin and Sgibnev [14] proved that these spaces, endowed with a suitable 
norm, are Banach algebras again, and that any maximal ideal in g)l(~) (92R~ 
is the intersection of some maximal ideal in 9)l with g)l(~) 0Jl~ Thus the 
range of the Gelfand transform with respect to 9J~(~) (g)l~ of some /.tegJ~(z) 
(gJ~~ is contained in /~(.3), and in order to apply the Wiener-L6vy-Gelfand 
Theorem with lB=gJt(z) or lB=g)~~ it is enough to consider the range of/~, 
the Gelfand transform of # with respect to ~Jl. 

2.3. Proof of Theorem 1. It is easily checked that 

~f i  1 if 0 * 0, E"'fi(0) = m l ,  

and evidently #([x, oo)) = o(r(x)) implies X pe~J~~ 
We put #1 = Z # + 3 o - # ,  then #1 e~.lJl~ 
We show next that the range of fit is contained in G (G is defined in 2.1). 

Let Ie.~ be of the form I=I(Oo). Then Oi(#)=~(Oo) for all #eRR, hence /~i(I) 
=/~1(0o) which is ml(cG ) if 0o=0;  if 0o =t=0 we have 

The real parts of both factors are larger than zero, so the product must be in 
G. 
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Any other maximal ideal I ~ 3  has the property 011~o-0, so 1~1(I)= 1 -2 (1 )  
in this case. If 0i  vanishes on gJl a we have 

01(#*~)=0x((#*n)si~g) for all h e N ,  

where (.)sing denotes the singular part of a measure. We also have 

LOi((#*~)sing)l < II(#*n)singLI TV for all n e N  

since 0~ is of norm 1, so we obtain from (3) for a suitable h e n  

I/~ (I)1" = 101(#*")[ < 1. 

This gives ]2(1)[< 1, so fl~(I)eG also holds for these ideals. Using the Wiener- 
L6vy-Gelfand Theorem now we see that logo ~ = ~) for some vegJ~~ Since 

logfit(O)=log(1-~(O))-log 1-1_--Z-i~ 

for all 040 ,  Proposition 1 identifies v as the difference of the harmonic 
renewal measures corresponding to the exponential distribution with parameter 
1 and # respectively. Since we can find to any DVF z a k e n  such that x -k 
=O(z(x)) ([5], p. 289), this together with the computation in Example 1 gives 
the assertion of the theorem in case of x ~  oo. The modifications necessary to 
obtain the x ~  - oo result should be obvious; replacing gJ~~ by ~/J~(z) through- 
out we obtain the corresponding O-results. 

2.4. Proof of Theorem 2. If g)~o is some subset of 9J~ let ~ll o denote the set of all 
Fourier transforms 11, #egJl 0. Define z: [0, oo)~[0,  oe) by z(x)=g((x,  oo)) for all 
x > 0 .  Let #1 be defined as in 2.3, F,~ is Z-integrable because of m2< oo. 

Lemma 1. 
z ~1 * (#1 - m l  ~o) ~J~(~). 

Proof. Let neN,  O<x=Xo<Xl<.. .<x=x+l be given. Then for any 
k~{1 . . . . .  n} we obtain on using partial integration 

(#l--m16o)*Zgl((Xk 1,Xk]) = ~ #I((Xk-I--Y, Xk--Y])Zgl(dy) 

+ ~ (~#l)((x~_~-y,x~-y])#~(dy)-~#~ x~ ~ - ~ , x ~ - ~  #1 ,oo 

Taking absolute values, summing over k and then taking suprema with respect 
to partitions of (x, x + 1] we get 

I'~#l*(l~-mlc3o)l((x,x+l])< ~ [l~[((x-y,x-y+l])ls 

-[- ~ '~- . , l[( (x--y ,x--yq-l~) l~l[(dy)+[~#l  [ ((2,2+1])1#11 ((~,o0)). 
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The first term is of order o(z(x)) since 1S#11 (IR)< c~ and 

sup I#11 ((x - y, x - y + 1 ]) = O( sup ~ (y)) = O('c (x)). 
y<=x/2 y>=x/2 

On ye  2-+ , 2 - + k + l  the integrand in the second term is bounded by 

]22#1] ( [ 2 - k - - 1 , 2 - k  + 1] ). This gives the bound 

212'#11 (IR) sup [#11 ([Y,Y-~ 1~]) 
y>x/2 

which is O(z(x)) again. 
Turning to the third term we note that both factors are of order O(zl(x/2)), 

oo 

where zl(x)= f ~(t)dt for all x>O. We have v(x)<mzx -2 which gives 
x 

(m2/z(x))l/2 c~ 
~l(x)<= ~ *(x)dt +m2 t-e dt 

X (?I'~2/'~(X)) 1/2 

< 2(m z ~(x)) 1/2, 

so rl(x/2)z=o(r(x)) which settles the last term. /// 

The proof of the following simple lemma is left to the reader. 

Lemma 2. Let #', #"EgJR be such that F# is 2-integrable and #'(~,)=0. Then 
Fu,,u,, is also 2-integrabIe. 

Now let v 2 denote the harmonic renewal measure of the exponential distri- 
bution with parameter 1, put v3=Vz-V h. From Sect. 2.3 we know that v3s92~ 
and that ~)B=~ofil where ~:G--+C, ~P(z)=logz. With a suitable qS:G--,C, 
analytic on G again, we have 

kU(z)-- 7J(mO+(z-mO 7-"(mi)+(z-ml) 2 oh(z) for all zeG. (5) 

Using Lemma 2 we see that Fv3 is 2-integrable, hence 

A 1 ~ A 
~ v3(O) =Z[ ~ #~(o) + z #l(o)(~,l(o) - too ~(~1(0)). (6) 

The Wiener-L6vy-Gelfand Theorem gives 45 ~ eg~ll(z), this together with Lem- 
ma 1 and (6) implies 

1 
Z Y3 --n~ 7 ~ #1C~(27) .  (7) 

On (0, oo) a density of this measure is f where 

f(X)=(V2--Vh)([X , 00))---~7 ~ oo))dt+~#((x ,  oo)), 

x + l  
and (7) means ~ l/(t)ldt=O(z(x)). 

x 



Harmonic Renewal Measures 401 

We have 
x + l  

If(x)l--< S If(t)ldt+ sup lf(t)-f(x)] 
x x < - t < - x + l  

x + l  

< ~ If(t)ldt+lv2--Vhl(Ux, x+l])+ l~[#11([x,x+l]). 
x grl l  

Using Theorem 1 on the middle term we obtain O(,(x))-behaviour for 
density itself, so 

the 

1 
% -  ~)(Ix, oo ) ) -~  z ~((x, co))= o(~(x)). 

m I 

We have to relate this quantity with the harmonic renewal function. The total 
mass of v 2 - v  h is ~)3(0), hence 

Using 

x 

5 ( 1 - e  t) t-1 dt-G(x)=logn h -(v2-vh)((x , c~)). 
0 

(see e.g. [16], p. 246) and 

we obtain 

1 

~=5 (1-e-') t-l  d t -  ~ e- ' t - l  dt 
0 i 

~ e-'t * dt=o(z(x)) 
x 

x 

( 1 - e - t )  t -ldt=logx+7+o(*(x)) 
0 

and the first assertion of the theorem follows. The second is a simple con- 
sequence of the first since #((x, oo))= o(Z #((x, oo))) which follows from 

x #((x, oo)) = O(x #((2x, co))), 

2 x  

x#((2x, m))<  J #((t, oo))dt<X#((x, oo)). 
x 

2.5. Proof of 7;heorem 3. Because of rn 2 < c~ we may apply s to Z # again, and 
because of rn 1 =0  we have 

fi(O) - 1 
ZZ/~(0)-  02 if 04=0, Z Z # ( 0 ) = - m 2 ( < 0 ) ;  

Z #((x, oo)) = o (v(x)) implies Z Z #eg)l~ 
Define p2=6o-#-ZZ#(~gJ~~ Then f,2(O)=m2~G, 

have 

fi2(O)=(1-ft(O)) (l + ; )  

while if 0 + 0  we 

which evidently is also in G. So /~2(I)~G for all maximal ideals I which are of 
the form I=I(Oo) for some 0o~lR, for all other maximal ideals the same 



402 R. Grtibel 

argument as in 2.3 applies. Also as in the proof of Theorem 1 we see that f4 
= log o/i 2 for some v4egJl~ using Proposition 1 and Example 2 it follows that 
- v  4 deviates from v h -  2 h only by a negligible term. 

2.6. Proof  of  Theorem 4. We proceed as in the proof of Theorem 2. Put z(x) 
=S # ( ( x ,  oo)) for all x > 0 ,  let #2 and v 4 be as in 2.5, F,2 is 2-integrable because 
of ~lxl3#(dx)< oo. We have 

A 1 A A 
r u  (0) = ~  x #2(0) + x # d 0 ) ( G ( 0 )  - m 0  e , ( G ( 0 ) )  

m 2 

with a suitable ~1, analytic on G. The same computations as in the proof of 
Lemma 1 give 

#2  * (#2  - - m 2  ~5o) ~93](~),  

so we obtain as in 2.4 
x + l  

If(t)l d t = O(z(x)) 
x 

1 
with f ( x ) =  v4((x, oo)) - - - # 2 ( ( x ,  oo)). Since 

m 2 

and 

1 
f ( x )  = v4((x, o0)) - - -  Z'Z" #((x, oo)) + O(z(x)) 

rn 2 

f ( t )  dt ([x, x + 1]) +m~ [#21 fix, x + x ! l  - f ( x )  <Iv4[ 1]) 

Theorem 3 yields 

1 
v,((x, ~ ) ) -  ----x x #((x, oo))= o(~ #((x, oo))). 

m 2 

By symmetry then also 

1 
V4(( -- 00, -- X)) - - ~  Z Z  #(( -- 00, -- X)) = O(Z#((  -- 00, -- X))). 

m 2 

We have v~=v 1 - v  h, where v 1 denotes the absolutely continuous measure with 
density ( 1 - e  -Ixl) Ix[-1, xelt..  

This gives 
x 

H(x) = 2 ~ (1 - e-t) t -  1 d t - v4(lR) + v4((x, Go)) + v4( ( - c~, - x ) )  
0 

1 
=21ogx  + 27 -1ogm2  + - - S N  #((x , oo)) 

m 2  

1 
+ - -  z ~  # ( ( -  oo, - x)) + o ( ~  # ( ( -  oo, - x))) + o ( ~  #((x, oo))), 

rn 2 
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the first assertion of the theorem. The second follows from Z # ( ( - o % - x ) )  
=o(ZZ#((-o%-x))) ,  Z#((x, oo))=o(ZZ#((x, oo))) which can be proved in the 
same way as the corresponding statement in the proof of Theorem 2. 

3. Concluding Remarks 

3.1. If (3) does not hold then v h is concentrated on a Lebesgue null set which 
implies 

1 
IVh--.~hI([X,X+I])>2h([X,X+I])>-- for all x > 0 ,  

x + l  

so in order to obtain (non-trivial) strong uniformity results on the asymptotic 
behaviour of harmonic renewal measures condition (3) is in some sense neces- 
sary (see also [1], 4.(d)). 

3.2. Our results relate the asymptotic behaviour of harmonic renewal measures 
v h to corresponding properties of the underlying distribution #. The method 
may also be used to obtain properties of # from similar ones of Vh, some 
arguments even simplify since the logarithm may be replaced by the exponen- 
tial function. 

3.3. Using suitable Banach algebras of absolutely convergent sequences of 
complex numbers we obtain analogues of our results for lattice distributions. 
The lattice case is easier to deal with, we can for example dispense with the use 
of generalized functions; also the results of [9] then become applicable. We 
will deal with harmonic renewal sequences in a separate paper. 

3.4. A problem interesting in its own right is to find the weakest possible 
assumptions for the estimates and limit relations above, e.g. to what extent can 
the class of DVFs be enlarged whilst keeping the implications in Theorem 1 in 
force? Within the framework of our method this leads to an analogous ques- 
tion concerning the Banach algebra results, we refer the reader to the work of 
Rogozin and Sgibnev EI4] for related information. 

3.5. Recently Maejima and Omey [12] extended the results of [1] to the two- 
sided case. Their proof is based on a result of Kalma [11] (see [12], p. 127) 
which gives an interesting simultaneous comparison of the asymptotic be- 
haviour as t ~ o o  of #*m((t,t+h]), meN, with that of v((t,t+h]), where v 

= ~ #*" denotes the ordinary renewal mesure. Due to the appearance of v 
n = 0  

this has - in contrast to our method - no direct analogue in the case of zero 
mean. 

3.6. As the above results should have shown the use of generalized functions 
and Banach algebra theory is an appropriate method for extending results 
from the one-sided to the general case in the context of harmonic renewal 
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theory.  A s o m e w h a t  s imi la r  s i t u a t i o n  arises in  d i s t r i b u t i o n  theory  where  resul ts  
r e l a t ing  a s y m p t o t i c  p rope r t i e s  of in f in i te ly  d iv is ib le  d i s t r i b u t i o n s  a n d  the i r  L6vy 
m e a s u r e s  are  of  interest ,  see [2]  a n d  1-10], Sect. 4.2. As a th i rd  exam ple  we 
m e n t i o n  the  pape r s  of  Ess6n I-4] a n d  R o g o z i n  [-13] dea l ing  wi th  (o rd inary)  
r enewa l  t heo ry  where  these tools  are  also used (at least  implici ty) .  Espec ia l ly  
the  Ess6n p a p e r  has  b e e n  of  grea t  in f luence  to the p resen t  work.  
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