Skip to main content
Log in

Electrical conductivity of aqueous sodium hydroxide solutions at high temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Electrical conductivities of dilute sodium hydroxide aqueous solutions have been determined at 75, 100 and 150°C at 1.6 MPa using a recently developed DC-measuring technique especially suited for the study of aqueous solutions above room temperature. The data were analyzed with modern theories to obtain the infinite dilution conductivity and the association constant at the three temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Fernández-Prini, inPhysical Chemistry of Organic Solvent Systems, A.K. Covington and T. Dickinson, eds., (Plenum Press, London, 1973), Chap. 5.

    Google Scholar 

  2. W. H. Lee and R.J. Wheaton,J. Chem. Soc. Faraday Trans. I 74, 743, 1456, (1978).

    Google Scholar 

  3. J. Quint and A. Viallard,J. Solution Chem. 7, 137, 525, 533 (1978).

    Google Scholar 

  4. H. Bianchi, H. R. Corti, and R. Fernández-Prini,J. Chem. Soc. Faraday Trans. I 83, 3027 (1987); H. Bianchi, H. R. Corti and R. Fernández-Prini,J. Solution Chem. 21, 1107 (1992).

    Google Scholar 

  5. A. A. Noyes, Carnegie Institute of Washington, Publication 63, Washington DC (1907).

  6. E.U. Franck,Z. Phys. Chem. N. F. 8, 192 (1956).

    Google Scholar 

  7. D. Pearson, C. S. Coperland, and S. W. Benson,J. Amer. Chem. Soc. 85, 1044, 1047 (1963).

    Google Scholar 

  8. A. S. Quist and W. L. Marshall,J. Phys. Chem. 72, 3122 (1968).

    Google Scholar 

  9. J.M. Wright, W. T. Lindsay Jr., and T. R. Druga,The Behavior of Electrolyte Solutions at Elevated Temperatures as Derived from Conductance Measurements, Technical Report WAPD-TM-204, (Bettis Atomic Power Laboratory, Pittsburgh, 1961).

    Google Scholar 

  10. H. Bianchi, Thesis, Universidad de Buenos Aires, 1991.

  11. H. E. Gunning and A. R. Gordon,J. Chem. Phys.,10, 126 (1942).

    Google Scholar 

  12. H. Bianchi, H. R. Corti, and R. Fernández-Prini,Rev. Sci. Instrum. 64, 1636 (1993).

    Google Scholar 

  13. K. N. Marsh and R. H. Stokes,Aust. J. Chem. 17, 740 (1964).

    Google Scholar 

  14. R. L. Mehan and F. W. Wiesinger,Mechanical Properties of Zircalloy. Technical Report KAPL-2110(1961).

  15. H. R. Corti, R. Fernández-Prini, and F. Svarc,J. Solution Chem. 19, 793 (1990).

    Google Scholar 

  16. G. S. Kell, J. S. Gallagher, and L. Haar,NBS Standard Reference Database 10, Steam Tables, Technical Report, (U.S. National Bureau of Standards, Engineering Laboratory, Gaithersburg, Maryland, 1985).

    Google Scholar 

  17. R. Fernández-Prini,Trans. Faraday Soc. 65, 3311 (1969).

    Google Scholar 

  18. M. Uematsu and E. U. Franck,J. Phys. Chem. Ref. Data 9, 1291 (1980).

    Google Scholar 

  19. E. Strong,J. Chem. Eng. Data 25, 104 (1980).

    Google Scholar 

  20. J. D. Frantz and W. L. Marshall,Am. J. Sci. 284, 651 (1984).

    Google Scholar 

  21. X. Chen, S. E. Gillespie, J. L. Oscarson and R. M. Izatt,J. Solution Chem. 21, 803 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi, H., Corti, H.R. & Fernández-Prini, R. Electrical conductivity of aqueous sodium hydroxide solutions at high temperatures. J Solution Chem 23, 1203–1212 (1994). https://doi.org/10.1007/BF00974030

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00974030

Key Words

Navigation