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Summary. Given  a (minimal)  classical  Di r ich le t  form on L 2 (E; #) we cons t ruc t  
the  a s soc ia t ed  diffusion process .  Here  E is a loca l ly  convex  t opo log i ca l  vec tor  
space and  # is a (not  necessar i ly  quas i - invar ian t )  p r o b a b i l i t y  measu re  on 
E. The  cons t ruc t i on  is ca r r i ed  ou t  unde r  cer ta in  a s sumpt ions  on  E a n d  
# which  can  be easi ly  verified in m a n y  examples .  In  par t i cu la r ,  we expl ic i t ly  
a p p l y  our  resul ts  to  ( t ime-zero  and  space- t ime)  q u a n t u m  fields (with or  wi th-  
ou t  cut-off). 
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O. Introduction 

In  this  p a p e r  we con t inue  ou r  s tudy  of  classical  Di r ich le t  forms on  t opo log i ca l  
vec tor  spaces  s t a r t ed  in [ A / R 6 1 ,  2] (to which  we also refer the r eade r  for the 
b a c k g r o u n d  l i terature) .  O u r  m a i n  objec t  here  is to  cons t ruc t  an  assoc ia ted  diffu- 
s ion process .  The  expos i t ion  is se l f -conta ined  and  includes  a review of  all cases 
s tud ied  so far (cf. [ A / H - K 2 M ] ,  [K] ) .  The  new results,  in pa r t i cu la r ,  imply  the  
existence of  the  diffusion process  in the  case of  two (and three) d imens iona l  
q u a n t u m  fields (with o r  w i thou t  cut-off, cf. below). Let  us briefly recal l  ou r  
f r amework .  

* Dedication: Raphael Hoegh-Krohn (1938-1988) was an initiator of the theory of Dirichlet forms 
over infinite dimensional spaces. He has been a continuous source of inspiration. We deeply mourn 
his departure and dedicate to him this work, as a small sign of our great gratitude 
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We study forms of the type 

Ou 3v 

on U(E;  #) where E is a locally convex Hausdorff topological vector space 
which is in addition Souslinean and # is a finite positive measure on its Borel 

sets ~(E). ff~-means partial derivative in the direction given by some k~E\{0}. 

The domain O(g) of (0.1) is C•(I1 a) if E = R  a and ~ - - ~ ,  i.e. the set of all 
(classes of) bounded smooth functions u depending on only finitely many coordi- 
nates if E is infinite dimensional. The sum in (0.1) is over an (at most) countable 

set Ko of k~E where Ko is such that g(u, u)< +0o for all ueo~C~ if E is 
infinite dimensional. Ko can e.g. be taken to be an orthonormal basis of some 
Hilbert space H, which is densely and continuously imbedded in E and which 
plays the role of a tangent space. The resulting form (0.1) is then independent 
of the special orthonormal basis Ko (cf. 1.9-1.12 below for details). In addition, 

c~u ~v 
one always has to assume that g is well-defined on L2(E; #), i.e. that - - =  

Ok Ok 
#-a.e. if u, v ~ C ~  with u = v #-a.e. (This is the case if e.g. supp# = E). 

We emphasize that as in [A/R61, 2] we do not assume # to be k-quasi- 
invariant for k~Ko (cf. 3.2 below) which was always done in the earlier literature. 
One advantage of this more general setting is that e.g., the case where E is 
replaced by some Borel subset can immediately be reduced to our situation. 
Furthermore, it can be very hard to prove quasi-invariance in examples, e.g., 
it is not known whether 3-dimensional quantum fields have this property. 

If the form (0.1) is closable it is quite easy to show that its closure is a 
Dirichlet form in the sense of IF], IS] (cf. 1.6 below) called a classical Dirichlet 
form in [A/R61]. In this case one can expect that as in the case E = R  a there 
is a probabilistic counterpart to such a Dirichlet form, i.e. there exists an associat- 
ed diffusion process. To explain this more precisely, we need some preparations. 

Suppose that (0.1) is closable and let (go, D(gO)) denote its closure (cf. 1.1 
below). Let A be the associated non-positive definite self-adjoint operator on 

LZ(E; #), i.e. D ( ] / ~ A ) = D ( g  ~ and g~ v ) = ( W ~ u , - - ~ ) L 2 ( ~ ; , ) ,  u, 
reD(g~ Let Tt = e tA, t >= O. Then (T~)(t> o ) is a symmetric contraction semigroup 
such that each Tt is Markovian, i.e. 0 __< Tt u__< 1 #-a.e. if 0_< u_< 1 #-a.e. (the latter 
is implied by the fact that normal contractions operate on (go, D(gO)), cf. 1.8 
below and [F]). We say that a diffusion process (f2, ~,~, (Xt)(tgo), (P~)(~E)) with 
state space E is associated with (go D(gO)) if for any bounded N(E)-measurable 
function u on E and each t_>-0 

(0.2) Ttu(z)= ~ u(Xt)dP ~ for #-a.e. z e E  

(of. 2.1). Clearly, p is then an invariant measure for (Xt)tt>=o). Obviously, for 
(0.2) to hold for some process (Xt)tt>=o) it is necessary that each Tt is Markovian. 
But for a rigorous existence proof for (Xt)tt>=o) much more than this is needed. 
In the case where the state space E is locally compact (i.e. dim E <  + oo in 
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our situation) the existence of a diffusion process satisfying (0.2) follows by 
a general construction due to M. Fukushima (see IF1] and IF, Sect. 6], [S] 
for detailed expositions). Unfortunately, this construction does not carry over 
to non-locally compact state spaces since e.g. it makes essential use of the one- 
point compactification and of the Riesz-Markov representation theorem for 
non-negative linear functionals on Co(E) (i.e. the continuous functions on E 
with compact support). Hence if E is infinite dimensional i.e. non-locally compact 
(note that Co(E ) = {0} in this case) we cannot apply the results of [F, Sect. 
6]. However, under certain conditions there is a method to reduce this existence 
problem for the associated diffusion process to the "locally compact case" via 
a suitable compactification (cf. [F 0], [F 2], [A/HK 2-4] and I-K] ). 

In this paper we show that this compactification method works for the 
classical Dirichlet form (go D(80)) under some general conditions on E, # which 
are easy to check in many examples including all measures occuring in two 
(and three, cf. 3.11 (ii)) dimensional quantum field theory. 

Using [F, Sect. 6] it is fairly easy to prove the existence of a diffusion 
process (Xt)(t>=o) satisfying (0.2) on some compactification /7 of E. The main 
problem then is to prove that E is an invariant set for (Xt).>=o) and that (Xt)tt~o) 
has continuous sample paths w.r.t, the topology on E (which is stronger than 
that on E). This procedure has already been described in [A/HK 2-4] and 
has been carried out in detail in [K] in the case where # is quasi-invariant 
and E is a Banach space (see also [F0]). Our method in this paper is an adapta- 
tion of that in I-K] without assuming quasi-invariance and particularly suitable 
for quantum fields. 

In the special case where E = 6e ' (~ 2) (i.e. the space of tempered distributions 
on ~2) and # is a cut-off space time P(~)2-quantum field (cf. 1.13 (iii) below) 
the existence of a diffusion process satisfying (0.2) has been claimed in [Bo/Ch/ 
Mi, Sect. 3]. But the corresponding proof in that paper is incomplete since 
it only refers to [-F, Sect. 6] which is not applicable as indicated above. Therefore, 
our results in this paper also give a justification of the corresponding parts 
in [Bo/Ch/Mi]. At this point we also want to mention that if # is some measure 
in quantum field theory, one might think that the set of "polynomials in the 
fields" (i.e. the set ~ defined in 1.10 (iii) below) is a more convenient domain 
for the form g defined by (0.1). But it turns out that this domain is so suitable 
for proving that the closure of g is a Dirichlet form i.e. that normal contractions 
operate on g (see 1.10 (iii) below for details). 

Though we are mainly interested in applications to quantum field theory 
we present our results in a general framework to illustrate their significance 
within the theory of infinite dimensional diffusions. We expect the methods 
to be applicable in many other situations, in particular also for non-symmetric 
Dirichlet forms. 

Let us shortly summarize the contents of the single sections of this paper. 
We recall that above we have always assumed that the form (0.1) is closable. 

This property is absolutely crucial for the whole theory of Dirichlet forms. 
In Section 1, we therefore summarize the main results of [A/R61]  where a 
necessary and sufficient condition for the closability of (the components of) 
the form (0.1) was proved. In addition we also describe the framework we work 
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in and present in detail the main examples, i.e. abstract Wiener spaces and 
the quantum fields already mentioned (cf. 1.13 below). 

In Sect. 2 we describe in general the compactification method to gain the 
existence of the diffusion process (Xt)(t__>o). This method is known to experts 
in the field. We have included this section for the convenience of the reader 
and in order to isolate the conditions (cf. (2.8)(2.11)) that an arbitrary (abstract) 
Dirichlet form (g, D(g)) on L2(E; #) must fulfill so that all relevant techniques 
work. The final existence result is summarized in Theorem 2.7. 

In Sect. 3 we apply the results of Sect. 1, 2 to the classical Dirichlet form 
(go, D(gO)). In part 3. a) we start with the case where E is a Banach space 
and recall the set of conditions (cf. (3.1)-(3.5) below) given in [K] that ensure 
the existence of an associated diffusion process if # is quasi-invariant. Since 
condition (3.4) is in general hard to check in applications, we give a sufficient 
criterion for (3.4) to hold (cf. proposition 3.4). In part 3. b) we consider the 
special case where E is a Hilbert space and show that (3.4) is then always 
fulfilled. It turns out that in this case Theorem 2.7 is applicable to prove the 
existence of the diffusion process without assuming quasi-invariance. The corre- 
sponding proof is given in detail in the appendix. In part 3. c) we show that 
the case where E is the dual of a nuclear space can be reduced to the Hilbert 
space case if e.g., # has finite (second) moments. Then in part 3. d) we apply 
the "conuclear case" to quantum fields. We also illustrate the significance of 
the tangent space H mentioned above which determines the Dirichlet form and 
hence the process (cf. 3.11 (i) below). 

Our existence results in Sect. 3 immediately generalize to the cases where 
the classical Dirichlet form (go, D (go)) is replaced by a Dirichlet form of "diffu- 
sion type" (cf. [K] and 1.12 (iv) and 3.0 below). It would be interesting to 
try an alternative construction of processes given a Dirichlet form on L2(E; 
#) using the Ray-Knight compactification (cf. [-Get]) and then trying to apply 
recent results by [St] to prove that E is an invariant set for the process. But 
so far, Theorem 2.7 seems to us more suitable for this problem, in particular 
w.r.t, regularity of sample paths. 

Our further interest in Dirichlet forms on topological vector spaces E is 
two-fold: firstly we want to study the associated potential theory on the infinite 
dimensional space E. On the one hand many results from the finite dimensional 
case obtained in IF] carry over to this situation; on the other hand since we 
now have an associated diffusion process we can apply the "probabilistic poten- 
tial theory" developed by Dynkin in [-Dy 1, 2] for fine Markov processes on 
standard Borel spaces. Secondly we are interested in the significance of the 
diffusion processes (X~)~_> o) constructed here for the stochastic quantization of 
quantum fields (cf. [J-L/Mi], [Mi], [-Pa/Wu], [-Bo/Ch/Mi], [D6] and also [A/ 
R62]). Crucial for this are ergodic properties of (X,)~t => o)- The results we have 
obtained in this direction will be published in a forthcoming paper. 

1. Framework and Summary of the Solution of the Closability Problem 

In this section we describe the framework we work in and give a summary 
of the main results of [A/R61].  For  proofs we refer to Sects. 1-3 in [A/R62].  
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Let (H, < ,  > )  be a real Hilbert space and II II " = ~ ,  > .  In the sequel 
we say that a pair (~, D(&)) is a form on H if D(g) is a linear subspace of 
H and ~: D ( g ) x D ( g ) ~ l R  is a non-negative symmetric bilinear form. Given 
a form (~, O(g)) on H and ~>0 ,  we set g~..=d~+ c~<, > ,  D(d~).'=D(d~ (d ~, D(g)) 
is called closed if the pre-Hilbert space (D(g), ga) is complete and closable 
if it has a closed extension, i.e. there exists a closed form (&, D(o~)) on H such 
that D ( g ) c  D (~) and ~ = g on D (g). Clearly, (&, D (g)) is closable if and only 
if the following condition is satisfied: 

' I fu ,  sD(E), n s N ,  such that u, ,~  ~o ' 0 in H and (u,)(,~) is 
(1.1) 

~-Cauchy (i.e. g(u. -urn, u. -u~.) ~ 0), then lim C(u., u.) =0. 
n ,  m oo n ~ oo 

1.1 Remark. (i) If a form (E, D(~)) is given by an operator  T on H with domain 
D(T), i.e. 

D(g)=D(T) and g(u,v)=(Tu, Tv> for u, veD(N), 

(•, D(g)) is closed or closable if and only if the linear operator  T on H with 
domain D(T) is closed or closable. Furthermore,  we recall that an operator  
T is closable if and only if its adjoint T* is densely defined. 

(ii) Let D(g) be the abstract completion of D(g) with respect to g l -  Let 
i be the natural continuous map from D(N) to H. (o ~, D(g)) is closable if and 
only if the map i is one to one. 

(iii) If (&, D(d~)) is closable it has a smallest closed extension (E, O(E)), called 
its closure (cf. [F, Sect. 1.1]). 

F rom now on we will study the case H.'=LZ(E; #) where E is a Hausdorff  
locally convex topological vector space over N equipped with its Borel o--field 
~(E)  and # is a (probability) measure on (E, ~(E)). Of course now <,  > is 
the usual inner product  on L2(E; y). For  notational convenience we will denote 
the #-class corresponding to a N (E)-measurable function u also by u if no confu- 
sion is possible. To have a nice measure theory on (E, N(E)) we assume that 
E is a Souslin space (in the sense of Bourbaki, i.e. E is the continuous image 
of a Polish space, cf. [-Sch]). Given a form (g, D(~)) on U(E; #) we call E 
its "state space" and we sometimes briefly say (g, D(g)) is a "form on E"  
(instead of "form on L2(E; #)"). 

In the sequel we denote the Borel o-field associated with a topological space 
X by N(X). Given two measurable spaces (Xi, ~i), (i = 1, 2), a ~ l /Nz-measurable  
map T: X1 ~ X 2  and a measure # on (X1, ~1) we denote the image measure 
under T on (X2, N2) by T(#). 

Let E' be the topological dual of E, k s E \ { 0 }  and let leE' such that l(k)= 1. 
Define 

rck (z).'=z--l(z) k, z~E. 

Let Eo..=rck(E), then E o as a closed subspace of E is also a Souslin space. For  
each z~E, z=x+sk, where x~Eo, seN., are uniquely determined. Since E, E o 
are Souslinean we can disintegrate /~ with respect to ~ :  E ~ Eo (cf. [-D/M, 
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III70] or JR, Proposition 1]), i.e., there exists a kernel Pk: E0 x NOR)~ [0, 1] 
such that for all u: E ~ IR, u bounded, ~ (E)-measurable 

(1.2) u(z) #(dz)= ~ S u(x+sk) pk(X, ds) Vk(dX) 
E Eo N. 

where Vk-'=rCk(#) and PR(', ds) is vk-a.e, uniquely determined. It is now easy 
to verify that (LZ(IR; pk(X, ds)), <,  >~)(~o) is a measurable field of Hilbert 
spaces over (Eo, N(Eo), Vk) (where, of course <,  >~ is the usual U-inner product 
with respect to the measure pk(X, ds)) and that 

@ 

(1.3) LZ(E; It)= J LZ(IR; pk(x, ds)) vk(dx) 

(cf. [Di, Chap. II, Sect. 13 and [A/R61, Sect. 1]). Here for ueI~(E; It) the 
@ 

corresponding field (u~)(~Eo) of vectors in ~ U ( N ;  pk(X, ds))Vk(dX) is given 
by u~,:=u(x +. k), xeEo. Let n e N  u {oe}. Define the linear space 

o~C~,.'={u:E ~IRI there exist lt, ..., l~eE' 
and f e  C~(N") such that u(z) = f ( / l  (z), ..., l,,,(z)), z eE} 

where C~(~") is the set of all n-times continuously differentiable functions on 
IR" such that all partial derivatives of up to order n are bounded. Let ~C~ 
denote the associated set of classes in L2(E; t~). Note that if suppi t+E,  two 
different elements in ~-C~ might belong to the same class in o~C~. Define for 
ue~C], the following G~tteaux-type derivative (in direction k) by 

(1.4) ~--- u ( z ) ' = d  u(z + s k) k z e E. 

If # has the property 

(1.5) ~k U=~-s #-a.e. if u, veo~C~ with u=v #-a.e., 

then ~-~ "respects #-classes" and therefore defines a linear operator on 

U(E; I~) with domain ~C~ ~ which we also denote by . In this case we define 
the corresponding form by 

(1.6) v) " J J - -  gk(U, = J~-U ~-V d#, u, veD(gk),=~C~. 

1.2 Remark. Since E is Souslinean, ~(E) is generated by all leE' (cf. [Bad, 
Expos6 n~ N~ CoroUaire]). Hence if ueU(E; #) such that S exp(il)ud#=O 
for all leE', it follows that u=0.  Consequently, since cos l, sin l e~C~ for leE', 
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~-'-'C~ is dense in LZ(E; #) (cf. [A/H-K4, Sect. 2]). In particular, if # satisfies 
(1.5), then (#"~, o~"~;o) is densely defined on LZ(E; #). 

Let ds denote Lebesgue measure on R. Given a N(N)-measurable function 
p: ~1--, IR+ consider the following condition which was introduced in [HaJ: 

(H) p = 0 ds-a.e, on P~\R(p) 

( t+e 1 where R(p),=~teg( ~ p-1 d s <  +oe forsomee>0 . 
t .  t - - ~  

(H) is a rather weak assumption. For instance, clearly every ~0R)-measur- 
ble function p : IR~IR + having the property that for ds-a.e, se{p>0}, 
ess inf{p(s')[s-e<s'<<_s+e}>O for some e>0, satisfies (H). In particular, (H) 
holds for any lower semicontinuous nonnegative function on IR. On the other 
hand, if C cIR, C closed, with empty interior and strict positive, finite Lebesgue 
measure, then (H) does not hold for p: IR ~]R+ defined by 

1, if seC, 
p(s):= 2_ n s - - a .  (b, _ a,,)2 ' if se]a.,b.[, 

where a,, b, elR, neN,  a,<b, such that N \ C =  0 ]a,, b,[, ]a,, b,[c~Ja,,, b,,[= 0 
n = l  

ifn:#m. Note that peLl(N, ds) and even p > 0  on IR, but I ( \R(p)=C.  
Now we are prepared to state the main result of [A/R61]. 

1.3 Theorem. (i) Assume that for vk-a.e, x e E  o, pk(X, ds)=pk(x, S) ds for some 
(l()-measurable function Pk (x,'): N ~ N + satisfying (H). Then the form 

@ 
(1.7) D(g~):={u =(ux)(x~eo)e ~ Lz0R; pi(x~ s) ds) Vk(dX)[for vk-a.e, xeEo, 

ux has an absolutely continuous (d s-) version u~"~ on R (Pk (x,. )) 

and ~-~u..=(d, ~ ]  e ~ L2(IR; pk(x,s)ds)vk(d~)}, 
\ ds/(~Eo) 

(1.8) gk(U,V):=S~U~-k vd#, U, veD(gk), 

0 
is closed, or equivalently the operator ~ (defined in (1.7)) with domain D(gk) 

is closed. Furthermore, (1.5) is satisfied and ~ is an extension of ~-gT-. In particular, 
the form (g~'~k, j "~o)  is closable. OK OK 

(ii) I f  # satisfies (1.5) and the form (gk, ~ C ~ )  is closable, then for vk-a.e. 
xeEo, pk(X, ds)=pk(X, S) ds for some ~)(~()-measurable function pk(X,'): ~--* ~ + 
satisfying (H). In particular, (gk, D(Ek)) defined by (1.7), (1.8) is a closed extension 
of (~,  ~"c;).  
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1.4. Remark. 1.3 in particular contains the case where E =N~ which was complete- 
ly solved by Rullk6tter/Sp6nemann extending a result by Hamza (see [Ru/Sp],  
[Sp], [Ha]  and also [F, Sect. 2.1]). In fact the proof of 1.3 is based on a 
"reduction" to the one-dimensional case by disintegrating # (cf. I-A/R6 1] for 
details). A slightly modified, but complete exposition of the proof for E = I R  
is included in Sect. 2 resp. the appendix of [A/R6 1]. 

1.5 Remark. (i) Under  the assumptions of 1.3 (i) or 1.3 (ii) we can conclude 

that for each heN,  gk with domain ~-;C~ is also well-defined as a form on 
L2(E; #) and that (gk, D(gk)) is a closed extension of (~kk, ~'Cg) which is therefore 
closable. 

(ii) Our assumptions in 1.3 (ii) do not involve 1 (or Eo). Hence, 1.3 is indepen- 
dent of the choice o f / ( o r  Eo) for a given keE. 

1.6 Definition. Let keE. k is called (#)-admissible if k = 0  or for vk-a.e, xeEo, 
pk(X, ds)= pk(X, s) ds for some ~(lR)-measurable function pk(X," ): IR ~ IR + 
satisfying (H) or equivalently (cf. 1.3) if (1.5) is satisfied and (gk, ~-C~) is closable 
for some (all) n e N u  ( +  oo}. 

1.7 Corollary. Let Ko be a finite or countable set of admissible elements in E. 
Let 

(1.9) D(g):={ue ~ D(gk)l Y', gk(U,U)< +OO} 
k~Ko k~Ko 

g(u,  v),= y,  g~(u, v), u, v e D (g), 
keKo 

and let (~, D(~)) be defined correspondingly with (~kk, ~'C~) replacing (gk, D(gk)). 
Then (g, D(g)) is a closed extension of (g, D(g)). 

Now let us recall the definition of a Dirichlet form on LE(E;/~). 

1.8 Definition, (i) A form (g, D(g)) on L2(E; g) is a Dirichlet form if it is closed, 
O(g) is dense in L2(E; #) and every normal contraction operates on (g, D(g)), 
i.e. given T: P , .~IR such that T(0)=0  and [T(x)--T(y)l<lx-y[ for all x, yMR 
then for every ueD(g), ToueD(g) and g(Tou, Tou)<g(u, u). 

(ii) The unique negative definite self adjoint operator A on L 2 (E; p) satisfying 
D ( ~ ) = D ( g )  and g(u, v)= ([/-S-Au, I/ZAv)L2(/~,,), u, reD(g), is called the 
generator of the Dirichlet form (g, D (g)). 

The fact that every normal contraction operates on (g, D(g)) is equivalent 
to the following property of A (cf. [Bou/Hir,  Th60r6me 1.1]): 
(Au, (u-1)  +)L2(e,.) < 0  for each ueD(A). 

1.9 Theorem. Let Ko be a finite or countable set of admissible elements in E 
such that 

(1.10) ~ [l(k)12< +o0 forall leE'. 
k~Ko 

Let(N, D(g)), (g, D(~)) be defined as in 1.7. Then D ( ~ ) = ~ ' ~  and both (g, D(g)) 
and the closure of (~, ~-'~o) are Dirichlet forms. 

1.10 Remark. (i) In accordance with the finite dimensional case we call the Di- 
richlet forms in 1.9 classical Dirichlet forms on E. 
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(ii) Note that (1.10) is only needed in Theorem 1.9 to assure that the forms 
(g, D(g)), (~, D(g)) are densely defined on LZ(E; #). 

(iii) In practice it often occurs that a closed densely defined form (g, D(do)) 
on U(E; #) is given, and its action is particularly simple and explicit on some 
core D i.e. a subspace of D(do) which is dense in D(do) w.r.t, do1 (cf. the latter 
case in 1.9 for example). To prove that (g, D(do)) is a Dirichlet form (i.e. every 
normal contraction operates on it) it is then sufficient to check that for any 

> 0 there exists a function ~ :  IR ~ [ -  e, 1 + e] such that ~ (t) = t for all t ~ [0, 1], 
O<~(t')-~b~(t)<=t'-t if t<t', ~ o u e D  whenever u~D, and do(~ou, ~ o u )  
=< d ~ u) (cf, IF, Theorem 2.1.1] ). This is, of course, satisfied for classical Dirichlet 

forms do with core D = ~ C ;  ~ . In examples from quantum field theory one might 
also think of taking the classes ~ induced by 

~--= {u: E ~IR[  u(z)= P(/1 (z),... ,lm(z)), z e E, licE ', 1 _~ i < m, 
p a polynomial in m variables} 

as a core D. But clearly then ~ o u r  if u ~ .  Therefore, such a core is not 
suitable for classical Dirichlet forms. However, in some cases one can prove 
that 4~,ou belongs to the closure of ~ w.r.t, dol if u ~ ,  which is, of course, 
sufficient. But more sophisticated methods are needed to prove this. Details 
on this can be found in [Po/R6]  (see also [A/Hi/P/R6/St]) .  ~u 

Given an admissible k in E and ueD(gk) we have defined -~-eL2(E;  #). 
Ou 
0k- can be considered as a #-stochastic partial derivative of u (w.r.t. k). Of course, 

one can also study the concept of a " to ta l"  #-stochastic derivative in the sense 
of G~teaux. To this end we need to introduce a suitable Hilbert space H that 
will play the role of a tangent space to E at each pont  (cf. [K]).  ((1.10) above 
can be considered as a first step in this direction). Then we are able to define 
"coordinate free" classical Dirichlet forms similar to those introduced in [K]  
in the case where E is a separable Banach space and # is quasi-invariant (cf. 
3.2 below). 

Suppose that there exists a real separable Hilbert space (H, < ,  > n) densely 
and continuously imbedded in E. Identifying H with its dual we obtain that 
E' is densely imbedded in H; in this sense 

(1.11) E' c H c E ,  

and < ,  > ~/restricted to E ' x  H coincides with the dualisation between E' and 
E. Suppose furthermore, that we can find a dense linear subspace K of (H, 
<,  > ~) consisting of admissible elements in E. 

Let (gk, D(gk)), k~K, be defined as in 1.3. Define the linear space 

(1.12) S:=~ue 0 D(dok)[ there exists a ~(E)/N(H)-  measurable function 
k k~K 

Ou 
Vu: E ~ H such that for each keK, (Vu(z), k)H = ~ ( z )  

for #-a.e. z~E and ~ (Vu, Vu)H d # <  + oo~. 
E ) 
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Clearly, Vu is (#-a.e.) unique and if K o c K  is an orthonormal basis of H and 
(g, D(8)) is defined by (1.9) then ScD(8) and for u, yes 

(1.13) 8(u, v)= ~(Vu, Vv)n d#. 

The following theorem corresponds to Theorem 1 in [K]. 

1.11 Theorem. Let H, K, S be as above and K o c K  an orthonormal basis of 
H. Let (g, D(8)), (~, D(~)) be defined as in 1.7 (depending on Ko). Then condition 
(1.10) holds and hence D ( ~ ) = ~ " ~ .  Furthermore, (8, S) is a closed extension 
of (~, f f  C~) and (8, S) is a Dirichlet form. 

1.12 Remark. (i) It is easy to check that for any u e J C ~  c S  and h~H 

(Vu(z),h)n= ff--~u(z+sh)s=o for #-a.e. zsE. 

(ii) It follows by 1.11 that the closure of (~, o&-~) only depends on H 
and K and not on the special orthonormal basis Ko in H. We denote this 

8 o closure by ( ,,M, D(8~ It will be in the centre of our consideration in Sect. 
3 below and we will study several examples. Therefore, we also express its #- 
dependence in the notation, but suppress the K-dependence since in many appli- 
cations K=E' or K--H. We have by 1.11 

c?u c~v 
(1.13) 8~ Vv)nd#= • I ~ - ~ - ~ d #  forall u, veD(8~ 

E kEKo 

~ u  
(where V is as in (1.12), ~-~ as in (1.7) and Ko is an orthonormal basis of 

H). Under some additional assumptions on # one shows ([A/K]) that (g, S) 
is maximal among the Dirichlet forms extending (g, ~"~;o) in some sense. Condi- 
tions for its equality with (E ~ u, D (B ~ ~)) are given in [A/K]. 

(iii) Note that a priori the action of g~o on D(g~ i.e. the closure of 
~ C ~  is only defined by a limiting procedure. But (1.13) gives the (explicit) 
action on elements in D (8 ~ ~) directly. This fact is very important for subsequent 
sections of this paper. 

(iv) Let 5r176 denote the set of bounded linear operators on H and let 
A: E ~ ~  be strongly measurable such that for some c>0, A(z)-cIdn 
is a positive definite symmetric operator for each zeE (cf. [K]). Then it follows 
by 1.11 and Fatou's lemma that the form 

8a(u, v):=~ (A(z) Vu(z), Vv(z))~ #(dz) 

D(Ea). '=gC ~ 

is closable on L2(E; #). We call its closure Dirichlet form of diffusion type (with 
coefficient A ). 
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1.13 Example. (i) (Abstract Wiener spaces; cf. [G], [Ma] and also [Ku] and 
the references therein). Assume that E is a separable Banach space and # a 
Gaussian (mean zero) measure on (E, ~(E)) such that supp # = E .  Then there 
exists a unique separable Hilbert space (H, < ,  > H) which is densely and contin- 
uously imbedded in E such that 

(1.14) ~ ll(z) 12(z)#(dz)=(ll,12)n for all l~,12EE ' 
E 

(cf. e.g. [Wa, Theorem 1.1] for details). Note here that H ~ E densely and contin- 
uously implies E"--, H densely and continuously, if we identify H with H' and 
E' is equipped with the norm topology. We identify E' with its image in H 
so that (1.14) makes sense. We then also have that 

l(k) = (l, k)n for all leE', keH. 

Now it follows immediately by [A/R61, 5.4] that each kEH is (#-)admissible. 
(ii) Let E:=Se'(IRd), deN,  i.e. the space of real tempered distributions on 

IRa, 5a(IR d) the associated test function space. 5~ (IR d) equipped with the o-(5 e', 5e) - 
topology is a Souslin space and E ' = 5 ~  e. Suppose that # is a Gaussian 
(mean zero) measure on (5% ~(Se')) such that (I,I)L2(~)-----0 implies I = 0  for 
all l~E'=Se. Let 2 d denote Lebesgue measure on IRa. Identifying felZ(IRd; 2 d) 
with the map 

Y~l~--~ ~ l(x)f(x)2a(dx) 
R a  

LZ(~d; 2 d) becomes naturally a subspace of 5 e' and in this sense 

(1.15) 5a c L2(~a; 2a) c 5 p' . 

Suppose that the inclusion 5 e c 5  e' is continuous if 5 a is equipped with the 
topology induced by <,  > L2(u ). Then it follows again by I-A/R6, 5.4] that each 
k c 5" is (#-)admissible. All assumptions on # made here hold if e.g. the covariance 
of # is given by 

(1.16) (11, 12)L2tu)=~S(--A +m2)-~(x--y)ll(X)12(y)2a(dx)2a(dy); 11,12eS~=E ', 

where c~, m > 0  and ( - A  +m2)-e(x) denotes the Green function of the operator 
- -A+m 2 on IR a. In the case ct--1 resp. e=�89 # is just the "(space-time) free 
field" resp. "time-zero free field" of mass m in Euclidean quantum field theory 
(cf. IN], [Si], [G1/J] and [R62, 3]). The case where 5 e' is replaced by ~ '  can 
be treated similarly. 

(iii) (Space-time quantum fields) Let E,=Sa'(IR 2) and let #* be the space-time 
J 

free field defined in (ii). Clearly for 11 . . . .  , ljeSP(~2), l~ licL2(Se'(~2); #~). Define 
i = l  

for n~N,  P("),=P(<-")GP (<="-a) with P(--<") being the closed linear span of the 
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J 
monomials 1F-[ 1/,j<n in L 2 ( c . ~ o ' ( ~ x 2 ) ;  ~ * ) .  N o w  if eel0,  1], heLI+"OR2; 2 z) and 

i=1 

n eN,  define" z":(h) to be the unique element in P(") such that 

:z":(h): 12 I //:d/z* =n[ ~ I]  ( ~ ( - A  +me) -~ (x-y,)l(y/) 22(dye))h(x)22(dx), 
S ~' i = 1  11- 2 i = 1  ~.2 

where : I~ li: is a certain polynomial in 11, ..., I, (see ['Si, p. 12] for the precise 
i = 1  

definition of the "Wick product""  ( I  l/: and [Si, Sect. V.1] for existence of 
i = 1  

" z":(h)). Clearly, for hi, h2~L1 + ' (~2;  22), c~, f le lL  

:z":(ehl +flh2)=~:zn:(hO+fl:z":(h2) /z*-a.e. 

Let u: I1 ~ IR be of the form 

2 N  

(1.17) u ( s ) = ~  a,s" with a z N > 0  , NE~NT 
n = 0  

o r  

(1.18) u(s)= I e ~s v(de) 

with v any bounded measure on (R, N(N~)) with support in ] - ~ / ~ ,  1 / ~ [ .  
We call (1.17) the "P(r and (1.18) the "exponential case". If u is as 
in (1.17) or (1.18) and leE'  = 5P(IR2). Define for A c I R  2, A bounded 

2 N  

(1.19) :UA:(Z).'= ~ a,:z":(1A), z~E 
?1=0 

resp. 

(1.20) : Ua:(z).'= ~ ~.I :Z":(1A) v(de), 
n = 0  

z~E, 

where 1A means  indicator function of A. It is easy to see that the sum in (1.20) 
converges in LZ(E; /~*). We have that exp(-:Ua:)eLP(E; /Z,) for all pc[-1, oe[- 
and even exp(-"UA:)~L ~176 (E; /Z*) in the exponential case. Hence the following 
probability measures (called space-time cut off quantum field) are well-defined 

(1.21) , exp(-- :UA:) 
/zA:= I e  C-i /z* 
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It has been proven that the weak limit 

lira #*=." #* 
A / ~ 2  

exists as a probability measure on E = ~ ' ( ~  2) (cf. [G1/J/Sp] for the polynomial 
case and [A/H-K1], [Z] for the exponential case; see also [A/H-K6], [G1/J], 
[-Si] and the references therein). Now it follows by [A/R62, 3.5] that each 
kc~(~-  2) with compact support (as an element in 5% cf. (1.15)) is #*-admissible. 
Note that [A/R62, Theorem 3.5] is applicable since #* is a Guerra/Rosen/ 
Simon-Gibbs state (see e.g. I-R61, 6.4-6.61 or [Fr/Si] resp. [Z] in the exponential 
case, see also [Gu/Ro/Si 1,21 and [F6], [Pr]). Note also that in [A/R62] it 
was proven that in fact #* provides us with an example of a "coordinate free" 
Dirichlet form as considered in Theorem 1.11 with H=L2(~2; 2 2) and K 
={kES~ compact} and that #* may be replaced by any Guerra/ 
Rosen/Simon-Gibbs state. 

(iv) (Time-zero quantum fields) Let E..=5#'(N) and let #o be the time zero 
free field defined in (ii). We know that 5#0R)cLZ(IR; 2 1 ) c Y ' ( ~ )  and that each 
k~5#(lR) is #o-admissible. Let H=LZ(IR; 21), k=5~ and (g~ H, D(g~ 
be the (minimal) classical Dirichlet form on E defined in 1.12. Let Ho be the as- 
sociated self-adjoint operator with domain D(Ho) on U(E; #o). For bed  +~(IR; 21), 
es]0, 11 and n~N, define :z":(h) in exactly the same way as in (iii) but with 

d2 \ -~  
-h-Tx~ +m 2) (x), xelR, replacing (-A+m2)-l(x), xeN. 2, and #0 replacing 

/ 

#*. Let for A c N ,  A bounded, "V a: be the element in Li(E; #o) now defined 
analogously to (1.19), (1.20) respectively (cf. [A/R61] and [A/H-K3] for more 
details). Fix A o N ,  A bounded, and consider V a as a multiplication operator 
on Lg(E; #o) with (maximal) domain D(VA). Let HA be the operator on 
L2(E; #) with domain D(HA)=D(Ho)c~D(VA) defined by 

Ha :=Ho + VA. 

It is known that H A is essentially self-adjoint on D(Ha), HA is lower bounded 
in the P(~b)2-case and positive in the exponential case and that the infimum 
of its spectrum is a simple isolated eigenvalue E a (cf. I-A/H-K3] and the refer- 
ences therein for details). Let f2 a be the eigenvector in LZ(E; #o) to E A with 
norm 1. One has that ~?A>0 #o-a.e. and we may assume that ~f2ZA d # o = l .  
The probability measure 

~a '=~2~" #o, 

is called the space cut-off P(~)2, resp. exponential quantum field. 
In the P(~)2-case from now on we only consider the case of weak coupling 

(i.e., coefficients a, of u in (1.17) are "sufficiently small"). It has been proven 
that the weak limit 

lim #a=." # 
A..~R 
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exists as a probability measure on E=SP ' (~)  for A = [ - L ,  L] as L--.oo (cf. 
[G1/J/S 1,21 resp. [ A / H - K l l ,  [Z]). # is called the weakly coupled P(~)2 resp. 
exponential time zero quantum field (Hoegh-Krohn model). It follows from [A/H- 
K3, Theorem 5.2] and I-A/R6 1, 4.61 that each keSC(N) is a #-admissible element 
in 5P' (~). 

1.14 Remark. (i) We have the same admissibility results for all "space-time cut- 
off" resp. "space cut-off" quantum fields defined in 1.13 (iii) resp. (iv) (cf. [A/R6 1, 
23). 

(ii) A weakly coupled P(~)2 resp. exponential time zero field can also be 
reconstructed from the corresponding space-time quantum field #*. Indeed, it 
is known that for each I~SP(~) 

exp(il(z))#(dz)= lim ~ exp(il*,(z*))#*(dz*) 
, ~ , ( ~ )  n--~ oo ~ ' , ( ~ 2 )  

where l* is a sequence in 5p(~2) converging to 6o| in the Sobolev space 
H-10R2 ) (cf. [G1/J/S 21, [Fr 2, 3] and [A/H-K 1] ). Here 6o is the Dirac measure 
on 111 with mass in 0. This explains the notion "time-zero quantum fields". 

(iii) Replacing u in (1.18) and (1.20) by a "trigonometric function" one can 
define the "trigonometric case" (cf. e.g. [-A/H-K 5]). As above one can obtain 
similar admissibility results. 

(iv) The case of space-time quantum fields with more general underlying 
Gaussian fields (i.e., superposition of free fields) studied e.g., by Haba (cf. [HI 
and also [Fr/I/L/Sil  ) and the case of three space-time dimensions will be studied 
in forthcoming papers. 

2. General Construction of  an Associated Diffusion Process 

In this section we will not use the linear structure of E. Therefore we only 
assume that E is a Souslin topological space and # a probability measure on 
(E, N(E)). Since we are not using any additional structure on E in this section 
we may assume without loss of generality that supp # = E. (Recall that supp # 
can be defined in the usual way since E as a Souslin space is Lindel6f, see 
[Sch, Proposition 3, p. 104]). In particular, there is a one to one correspondence 
between continuous functions on E and their #-classes in L 2 (E; #). 

Let (g, D (N)) be an arbitrary Dirichlet form on L a (E; #). Let A be its generator 
and let Tt:=e tA, t>0 .  Then (Tt)(~__>o) is a semigroup of symmetric contractions 
on U(E; p) such that each T~ is Markovian, i.e. 0 < T t u < l  #-a.e. if 0<u_<l  
#-a.e. The latter is implied by the fact that normal contractions operate on 
(g, D(N)) (of. 1.8 and [F] for details). For  simplicity we assume that leD(g) .  

2.1 Definition. A Markov process (~2, ~ ,  (Xt)(t>=o), (P~)(z~)) with state space 
E (cf. e.g., [Dy 1], [Ba]) is said to be associated to (g, D(g)) if for any u: E ~IR,  

(E)-measurable, bounded, and every t > 0, 

(2.1) (Ttu)(z)= ~ u(Xt)dP~ for #-a.e. zcE. 
g? 
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Of course, some Markov process associated with (g, D(g)) in the sense of 2.1 
will not be very useful unless we know some regularity properties of the sample 
paths. The aim of this section is to explain a general method to construct a 
Markov process associated to (g, D (g)) which is a diffusion, i.e., a Hunt  process 
having continuous sample paths P:almost  surely for each z~E (cf. e.g., IF, Sect. 
4.1]). The conditions we need are listed under (2.8)-(2.11) below. We will make 
essential use of the capacity given by (do, D (d~ Therefore, we recall its definition 
and some of its properties. 

For  U c E, U open, define 

(2.2) Cap (U),=inf{dol (u, u) lu~D (do), u > 1 on U/~-a.e.} 

(where as before dol (u, u)= do (u, u) + ~ u 2 d#) and for an arbitrary subset A c E  
define 

(2.3) Cap (A). '=inf{eap (U)[A c g ~ E, g open}. 

We note that Cap (A)=< 1 for any A ~ E since the constant function 1 is in D (do). 
It follows as in I-F, Sect. 3.1] that the set function Cap is a Choquet capacity, 
i.e., it has the following two properties 

(2.4) I fA ,  cE ,  neN,  are increasing then C a p ( U  A, )=sup  Cap(A,). 
n E N  n ~ N  

(2.5) If K,  c E, n eN ,  are compact and decreasing then 

Cap ( ~ K,) = inf Cap (K,). 
n e N  n e N  

As in the locally compact case we have the following "capacitability result" 
(which surprisingly has not been used so far in the theory of Dirichlet forms 
on non-locally compact spaces). 

2.2 Proposition. Let A c E, A Borel, then 

Cap(A) = sup {Cap(K) I K c A, K compact}. 

Proof By definition Cap is right-continuous in the sense of [B, Chap, IX, Sect. 
6, Def. 9]. Hence the assertion follows from [B, Chap. IX, Sect. 6. Th6or6me 
6 and Proposition 10]. []  

2.3 Remark. There is another important property of Cap, namely its subadditi- 
vity, i.e., 

(2.6) C a p ( U  A,)=< ~, Cap(A,) 
. ~ N  . = 1 

Its consequence 

(2.7) 

for A, cE ,  n~N. 

~ Cap(A,)< + oo =~Cap(lim sup A,)=0,  

i.e., the capacitary version of the "first Borel-Cantelli lemma" was used in an 
essential way in [F 2] to prove "quasi-everywhere statements" on Wiener space. 
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Now we are prepared to formulate the four conditions we need to construct 
the desired diffusion process. 

(2.8) There exist K,  c E ,  n s N ,  K,  compact, such that lira Cap(E\K,)---0. 
n~oo 

(2.9) There exists a countable set D of bounded continuous functions on 
E separating the points of E which is dense in D(8) w.r.t. 301. 

(2.10) g(u, v)=0 if u, reD(30), continuous, such that suppuc~suppv=0  
(where supp u = closure of {u =t= 0} w.r.t, the topology on E). 

(2.11) There exist f , :  E ~ I R ,  n~N,  generating the topology of E and (E, 
N(E)) is a standard Borel space (cf. [P, Def. 2.2, p. 133]). 

2.4 Remark. (i) Since every Souslin space is separable (cf. [Sch, Proposition 
0, p. 96] ), (2.11) is e.g., fulfilled if E is completely metrizable. 

(ii) We will use the following fact about standard Borel spaces in the proof 
of the main theorem of this subsection below: If (X 1, N1) is standard Borel 
and (X2, NE) a measurable space with ~2  countably generated then for any 
one to one ~l /~2-measurable  map ~0 we have that ~o(X1)~2 and its inverse 
qg--1, q) (X l) _..). X l  is ~ 2  ~ q~(X0/~l -measurable (cf. [P, Theorem 2.4, p. 135]). 

Condition (2.8) is crucial and not easy to check in applications. (2.10) and 
the first half of (2.11) are needed to prove the continuity of the sample paths. 
(2.9) is a regularity condition which is always fulfilled in the cases we are inter- 
ested in. This follows from proposition 2.6 below. First we need a lemma which 
we learnt from J. Brasche (private communication). 

2.5 Lemma. Let (g, D(30)) be any Dirichlet form on a separable Hilbert space 
H. Then the Hilbert space D(30) with inner product 3~ is separable. 

Proof Let A be the generator of (30, D(30)). Then an application of the spectral 
theorem to the operator - ~  on H (cf. e.g., [Re/Si, Theorem VIII.4]) proves 
the assertion. [] 

2.6 Proposition. Let E be as in Sect. 1 and let (30, D(30)) be a Dirichlet form 

on LZ(E; #) such that ~,&'~ is dense in D(g) w.r.t, g l .  Then (2.9) is satisfied 

for some D c @C~.  

Proof Since E is Souslinean it follows by [Sch, Corollary, p. 108] that LZ(E; #) 
is separable. Hence by 2.5 and by assumption we can find a countable dense 

set D in ~ C ~  ~ which is dense in D(g) w.r.t, gl- By the Hahn-Banach theorem 
E' separates the points of E, hence since E is Souslinean by [Sch, Proposition, 
p. 105] there exists a countable subset of E' separating the points of E. Hence 
(enlarging D if necessary) we may assume that D also separates the points of 
E. [] 

By (2.8)-(2.11) we can use a certain compactification method already 
described in [A/H-K 2-4] and in particular in [K] (see also [F0])  to reduce 
the construction of the diffusion process to the case where the state space is 
a locally compact separable metric space. The latter case was entirely solved 
by M. Fukushima (see IF, Chap. 6]). 

2.7 Theorem. Assume that (2.8)-(2.11) hold. Then there exists a diffusion process 
with state space E associated with (30, D(30)). 
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Proof We may assume that D (in (2.9)) is a ll~-algebra containing the constants. 
Let 13 be its closure with respect to uniform norm on E. By Gelfand's representa- 
tion theorem applied to the algebra/5 and (2.9) there exists a compact separable 
metric space/~ (namely the maximal ideal space of/3 equipped with the *weak 
topology) such that E is densely and continuously imbedded in E and the restric- 
tion to E gives rise to an isomorphism from C(E)(=set of all real continuous 
functions on E) to 13 (cf. e.g. [Ga, Chap. 1, Sect. 8]). By 2.4 (ii) the continuous 
imbedding from E to E is in fact bimeasurable from (E, ~(E)) to its image 
in/~ equipped with the trace a-field induced by ~(E). Hence we may consider 
E as a subset of E equipped with a stronger topology but such that its Borel 
a-field is just the trace of ~(E). In particular, we may view /~ as a measure 
on N(E) defining/~(A)=0 for AeM(E), A c E \ E ,  and we can identify LZ(E;/t) 
with LZ(E; #). The Dirichlet form (g, D(g)) becomes a Dirichlet form on L2(E; It) 
which is regular (i.e. D(g)c~C(E) is dense both in D(g) w.r.t, gl and in C(E) 
w.r.t, uniform norm on E) since DcD(g). Furthermore, if u, veD(g)c~C(E) 
such that {u + 0} c~ {v :4: 0} = 0 (where the closure is w.r.t, the metric topology 
on E), then g(u, v)=0 by (2.10). By [R60, Theorem 4.2] it follows that (g, D(g)) 
as a form on LZ(E; #) has the local property in the sense of IF]. Consequently, 
by IF, Chap. 6] there exists a diffusion process (f2, o~, (Xt)(t>=o), (P~)(~)) on 
E such that for every u:/~ ~ IR, ~ (E)-measurable, bounded, and every t > 0, 

(T~u)(z)= S u(Xt)dP~ for #-a.e. zeE. 

Therefore, the proof is complete by the following: 

Claim. There exists a measurable subset X of E such that #(X) = 1 and 

(2.12) X is an invariant set of the diffusion process (f2, ~-, (Xt)(~ o), (P~)(z~e)) 
and 

(2.13) P~({co: t~--~f,(X,(co)) is continuous on [0, oo[ for all neN})=  1 
for all zeX. 

(Note that because of (2.11), (2.13) implies the continuity of the sample paths 
w.r.t, the stronger topology on E, P~-a.s. for any zeX. The notion "invariant 
set" in (2.12)just means that the process will not leave the set X if it starts 
in X; cf. [F. Sect. 4.1] for the precise definition). 

Let Cap denote the capacity associated with (E, D (E)) on L 2 (E; #), i.e., Cap 
is analogously defined as Cap but with E replacing E. We note that since the 
topology on E is stronger than the metric topology on E we obviously have 
that Cap>Cap,  but Cap(U)=Cap(Ec~U) for any U c E ,  U open (in E). In 
particular, by (2.8) 

Cap(E\  U K.)  < lim C a p ( E \ K . )  = lim C a p ( E \ K . )  = 0, 
n~N n~N hen 

hence 

(2.14) Cap(E\E) =0. 
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Furthermore, for any n e N ,  f ,  [ K is continuous with respect to the metric topolo- 
gy inherited from E for any compact subset K of E. Hence by (2.8) each f ,  
is quasi-continuous on E (where "quasi"  is w.r.t. Cap; cf. IF, Sect. 3.1] for 
the relevant definitions). Now the claim follows by IF, Theorem 4.3.2 (i)], (2.14) 
and IF, Theorem 4.3.1]. []  

2.8 Remark. In fact one can show as in [K] that the two capacities Cap and 
Cap (cf. the preceding proof) coincide on E. 

3. Applications 

In this section we first consider the case where E is a Banach space and describe 
a general setting (due to S. Kusuoka,  cf. I-K]) in which (2.8)-(2.11) are always 
satisfied. Then we particularly study the case where E is a Hilbert space and 
subsequently where E is the dual space of a nuclear (countably Hilbert) space. 
Finally, we apply the latter to quantum fields. 

3.0 Remark. We emphasize that in the subsequent discussion the classical Dirich- 
let form (8 ~ H, D (go, n)) may always be replaced by a Dirichlet form of diffusion 
type as introduced in 1.12 (iv) if ~ I L A (z)[I ~e~(m # (d z)< + oe (cf. [K]). 

a) The Banach Space Case 

Consider the following setting introduced in [K] : 

(3.1) E is a separable real Banach space with norm II L[~ and dual E' and dualisa- 
tion E,< "," >~.  

(3.2) There exists a separable real Hilbert space (H, < ,  >n)  such that H c E  
densely and the inclusion map is compact. (Note that identifying H with 
its dual we have that E' is densely and continuously imbedded in H, i.e. 
E' ~ H c E  as in (1.11)). 

(3.3) # is a probability measure on (E, ~(E)). 
(3.4) There exists a sequence (P,)t,~) of projections on H having finite dimension- 

al range contained in E' (i.e. each P, is of the form ~ ( e j , ' ) n  ej, m e N ,  
j = l  

{ejl 1 <j < m} ~ E', an orthonormal system in (H, < ,  > n)) such that: 
(i) P x ( H ) ~ P z ( H ) c . . . ~ P , ( H ) c . . .  and P, converges strongly on H to 

Idn(=  identity on H) as n ~ ~ .  
(ii) IIz-P.zllE--,0, n- - .~ ,  in probability with respect to # where P, 

is the natural continuous extension of P, to E (i.e. P, is of the form 

~ E,<ej,'>Eej). 
j = l  

(iii) There exists a constant c > 0  such that for any zEE 

clizl[~<=supIlE'<l'z> Elll~,,=l ~ P~(H), II/ll~,= 1}. 
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(3.5) There exists a dense linear subspace K of (H, < ,  > n) consisting of #- 
admissible elements in E. 

3.1 Proposition. Assume (3.1)-(3.3), (3.5) and let o o (g~, n, D (g~, u)) be the correspond- 
ing (minimal) classical Dirichlet form as defined in 1.12 (with K as in (3.5)). Then 
conditions (2.9)-(2.11) are satisfied. 

Proof (2.9) is satisfied by 2.6 and (2.10) holds since E is a normal topological 
space and the special form (1.13) of o (g~,~r, D(g~ (2.11) is obvious since E 
is a complete separable metric space. [] 

go D(gO, To prove the existence of the diffusion process associated with ( u, H, n)) 
by Theorem 2.7 it remains to show (2.8). This was done in [K] under the 
assumption that # is k-quasi-invariant for any k ~K. We recall: 

3.2 Definition. For zoeE, let Z~o: E ~ E ,  z~o(z),=z+z o. Let keE.  p is called 
k-quasi invariant if Zsk(#) is absolutely continuous with respect to # for all 
selR. 

Hence we have the following theorem (cf. [K, Theorem 2]) which includes 
the cases studied in [A/H-K 4] : 

3.3 Theorem. Assume (3.1)-(3.5) and let o (g~,n, D( g~  n)) be as in 3.1. Assume in 
addition, 

(3.6) # is k-quasi-invariantfor any keK .  

Then conditions (2.8)-(2.11) are satisfied. Hence, there exists a diffusion process 
associated with (go n, D (go n)). 

In applications the technical condition (3.4) is hard to check (except when 
(E, II IPe) is a Hilbert space, cf. subsection b) below). Therefore, the following 
is useful. 

3.4 Proposition. Assume (3.1)-(3.3) and that in addition, E is reflexive and that 
there exists an orthonormal basis (ej)~j~) of H such that its linear span is dense 

in (E', II IPE,) (cf (3.2)) and ~ I/ejllE< + ~-  I f  furthermore, there exists a constant 
j = l  

c > 0  such that for all leE' 

(3.7) ~[E' < l, z>e l  #(dz)<  c II/IIR 

then (3.4) is satisfied. 

Proof Define for neN,  P. h:= ~ (ej, h) n ej, he l l .  Then 
j = l  

(3.8) (/~)(,~N) converges to Ide in L 1 (E; #; E). 
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Indeed, by (3.7) 

~llE,<ej, z>~e, llF#(dz)<c ~ Ilejll~ 
j = l  j = l  

which is finite by assumption. Hence (P,)(,~) converges in I2(E; #; E) to some 
limit F and (selecting a subsequence if necessary) for any leE' 

(3.9) lim ~,<l,P~z>~=E,<l,F(z)>E for #-a.e. zeE. 
n ~ o o  

On the other hand, for all leE', zeE, we have that 

~,<l,P,z>E=(l, j=l ~ E,<ej, z>~ej}~r=E, < i=1~ (l, ej}nej, z>~. 

But i (l, e j )n  e j--+ l, n--* 0% in H, hence by (3.6) (selecting a subsequence 
j = l  

if necessary) 

(3.10) lira ~,<l,P,z>~=l(z) for #--a.e. zeE. 
n - ~ o o  

By the separability of E' and the Hahn-Banach theorem (3.8) now follows from 
(3.9) and (3.10); hence (3.4) (i), (ii) hold. (3.4) (iii) is implied by the reflexivity 
of E. []  

b) The Hilbert space case 

The proof of the following proposition is standard, we include it for complete- 
ness. 

3.5 Proposition. Assume that E is a real separable Hilbert space with inner product 
<,  >~ and that (3.2), (3.3) hold. Then (3.4) holds. 
Proof. For z~E, the map h~--~(h,z)~ is continuous on H, hence (h,z)E 
= (h, Az)n for some Az~H. It is easy to check that A: E ~ H is linear, injective 
and continuous and that its restriction to H is non-negative, self-adjoint and 
compact. By the Riesz-Schauder theorem there exists an orthonormal basis 
(e,)(,~K) of H consisting of eigenvectors of A. Let 2,~]0, ~ ] ,  neN ,  be the corre- 
sponding eigenvalues. It is easy to see that the linear span of {e,[ heN}  is dense 

in (E', II I/~,) and that e(_-~/ is an orthonormal basis of (E, < ,  >~). Hence 
if \ V t,,/ ('~) 

P, h := i (ej, h) H ej for hell, 
j = l  

then (P,)(,~) satisfies (i)-(iii) in (3.4) (where in (3.4) (ii) we even have convergence 
for each zeE). []  

As a consequence we have: 
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3.6 Theorem. Assume that E is a real separable Hilbert space and that (3.2), 
(3.3) and (3.5) hold. Let (g~ O(g~ be the corresponding (minimal) classical 
Dirichlet form as defined in 1.12 (with K as in (3.5)). Then (2.8)-(2.11) are satisfied. 
Hence, there exists a diffusion process associated with (C ~ u, D (go, ~)). 

Note that 3.6 is not a special case of Theorem 3.3 since we have dropped 
the "quasi-invariance condition" (3.6). As we have already emphasized in the 
introduction, the reason why one should consider this more general situation 
is that without this assumption the whole theory is "localizable" in the sense 
that one can replace the state space E by some Bore1 subset. Furthermore, 
"quasi-invariance" seems to be very difficult to show for measures # in 3-dimen- 
sional quantum field theory. We give a complete proof of 3.6 in the Appendix 
based on a modification of the method in [K] and avoiding assumption (3.6). 

c) The Conuclear Case 

Suppose now that E is the dual space of a countably Hilbert space ~, i.e. 
(cf. e.g. [Ge/V, Chap. I] or [Hi, A.3]) �9 is topologised by countably many 
norms Ir II,, n>0 ,  such that it is complete (as a uniform space), where the 
norms are assumed to come from inner products < ,  > ,  and to be compatible, 
i.e., if a sequence in E converges to zero w.r.t. II II. and is Cauchy w.r.t, p[ It,, 
it also converges to zero w.r.t. Jr [I,, (for all n, m>0). Of course, we can assume 
that II JI., nzN,  are arranged in increasing order: 

rl rl0 lr III ... IF I1.  .... 

Consequently, if ~,  is the completion of ~b w.r.t. Ir 
and dense imbeddings 

�9 o ~ 1  ~ . . . ~ , ~ . . .  

JI, we have the continuous 

and that �9 = (] ~, .  Correspondingly, we have the continuous and dense imbed- 
n>__O 

dings for the dual spaces 

~ ; c ~  c . . . = ~ ' , = . . .  

and since every continuous linear functional on �9 is continuous w.r.t, some 
norm p]II, (see e.g. [Ge/V, Chap. I, Section 1.2]) it follows that 

(3.11) U e; .  
n~O 

If E---~' is equipped with the strong topology and ~" as well, then E ' =  ~ " =  q~ 
as topological vector spaces i.e. ~ is reflexive (cf. [Ge/V, Chap. I, Section 3.1 l). 
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Suppose now in addition, that 45 is nuclear, i.e. that for any m e n  there exists 
n > m such that the injection map T,,": ~ ,  ~ ~,, is nuclear i.e. has the form 

T2z= ~ 2~<z, ej>,~j, ze4~,, 
j = l  

where (ej)(j~N), (~j)(j~N) are orthonormal systems in {0n, ~m respectively, and 
oo 

2ie]0 , oo[ such that ~, 2 j<  + oo. Then 4~ is separable and if follows by [Sch, 
j = l  

Corollary 1, p. 115] that E is Lusinean (i.e. the continuous, one to one image 
of a polish space), hence Souslinean. 

In accordance with our earlier notation from now on we only use E, E' 
instead of 4~' resp. 4~. We have the following: 

3.7 Proposition. Let # be a probability measure on (E, ~(E)) and p c [ l ,  oo[ such 
that for any lee '  

]~,<l,z>Ef #(dz)< +oo. 
E 

Then the following holds. 
(i) There exists n o e N  and a constant c > 0  such that for all lee '  

1 

[~[~, < I, z>Ef#(dz)lP<=c [I 1 II,o. 

(ii) There exists neN(n  > no) such that #(~'n)= 1. 

Proof. (i): Define for M e N  
1 

qu(l):=-(~linf{[g,<l,z>el, M}[e #(dz)) p, lee'.  

Since E' is a Fr6chet space (hence a Baire space) it follows (cf. the proof of 
the uniform boundedness principle) that there exists ce]0,  oo[ and n o e N  such 
that for all M e N ,  lee' ,  qM(1)<c 11 l[I,o. Letting M tend to oo we obtain (i). 

(ii) now immediately follows by (a version of) Minlos' theorem (cf. e.g. [Hi, 
Theorem 3.1]). []  

3.8 Remark. Part (i) of 3.7 is a special case of a general theorem due to Dobrushin 
and Minlos; cf. [Do/Min,  Proposition 5]. 

Now we are prepared to formulate the main result of this subsection. 

3.9 Theorem. Suppose that: 
(i) # is a probability measure on (E, N(E)) such that 

(3.12) ~lE,<l,z>~l#(dz)< +oo foreach lee'.  

(ii) (H, < ,  > n) is a separable real Hilbert space such that H ~ E continuously 
and densely; hence if H is identified with its dual, 

(3.13) E' ~ H ~ E densely and continuously. 
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(iii) There exists a dense linear subspace K of (H, <, > H) consisting of p- 
admissible elements in E. 

Let (B~ D(6~~ be the corresponding (minimal) classical Dirichlet form 
as defined in 1.12 (with K as in (iii)). Then there exists a diffusion process associated 
with (go/~, D (E ~ H))- 

3.10 Remark. (i) Clearly, each ~'n, nEN, satisfies (ii) in 3.9. 
(ii) We note that below we will actually prove the following stronger state- 

ment: there exists n ~ N  such that q~', is an invariant set for the process with 
/~(~',)= 1 and the sample paths are continuous with respect to ]1 I]~. 

Proof of 3.9. Recall that ~b --- E' and cb' = E. Since E' ~ H continuously and dense- 
ly by (3.13), there exists n ~ N  such that ~ , I ~ H  continuously and densely. 
By (3.12) and 3.7 (ii) we have t h a t / t ( ~ ) =  1 for some n>n~. Since H is identified 
with its dual, it follows that 

(3.14) H c r continuously and densely. 

Since the inclusion maps q~, ~ ~, ,  and hence ~ ,  ~ H are nuclear, the imbedding 
t ~  (3.14) is nuclear, therefore compact. Since ~,  E continuously, it follows by 

2.4 (ii) that ~(~',)  is just the trace of ~ (E)  on ~',. Hence, we can identify 
LZ(E; #) with L2 (~',;/~) and therefore we can consider (g~ it, D(B~ as a Dirich- 

t let form on L2(~',; #). Since E = ~  ~ ,  densely, it is easy to see that the 
U (4',;/&classes given by 

{ u: ~', ~-~ IR I there exist 11, ..., 1,, e ~ , ,  f e  C~ ~ OR ~) such that 

u(z) =f(1 t (z) . . . .  ,1~ (z)), z~ r 

are contained in O (go n). Hence (go ~t, D (go, u)) is the (minimal) classical Dirichlet 
form on LZ(~',; #) given by H and K~Hr K as in assumption (iii). Now 
we can apply Theorem 3.6 with E =  ~', to complete the proof (cf. [F, Theorem 
4.1.33). []  

d) Application to quantum fields 

In this subsection let E, # be as in 1.13 (ii)-(iv), i.e., # is a (generalized) free 
field, a space-time quantum field or a time-zero quantum field and E = 5~'0R d) 
with d--- 1, 2 in cases (iv), (iii) resp. Clearly, 5P0Ra ) is a nuclear countably Hilbert 
space, i.e. 5e(~a)= r where r is as in subsection e) with (cf. e.g. [Hi, A.3, Example 
4]) 

� 9  o f ~ ( l R  a) w.r.t. IPlII,.'= ~ ~ (1 + Ixr2) "ll~"-')(x)12 2a(dx). 
Im_[<n~a 

Here _m=(ml,.. ma)~(2g,) a and l~m-'={ -0''1 O"d-I ., \CqX,~I...C~X~a]I. Note that ~o = 

L2 (lRa; 2a). It is well known that for all/z under consideration here, (i) in Theorem 
3.9 is fulfilled. This is obvious in case 1.13 (ii); for cases 1.13 (iii) resp. 1.13 
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(iv) see [G1/J/Spl, 2], [A/H-K1]  and [-G1/J], [Si]. As the Hilbert space H 
in 3.9 (ii) one can take e.g., H:=L20Re; 2e), then by 1.13 (ii)-(iv) also assumption 
3.9 (iii) is fulfilled. Therefore, by 3.9 there exists a diffusion process associated 
with the corresponding (minimal) Dirichlet form (go. u, D( g~ ~/)). We note that 
there are, of course, other Hilbert spaces/-/  satisfying 3.9 (ii). But one always 
has to check whether 3.9 (iii) is satisfied. This means on the basis of the admissi- 
bility results in 1.13 (ii)-(iv) that there must be "sufficiently many"  elements 
h in H c ~ '  OR d) which are of the form 

h(l) =ST(x)l(x) 2d(dx), le 5P0R d) 

for some f~S~(lRd). Observe, that this is not automatically fulfilled by 3.9 (ii) 
since the imbedding (3.13) is, in general, completely different from the imbedding 
(1.15). But by partial integration it is easy to check that for each ne]N, H:=O',  
satisfies both 3.9 (ii) and (iii). 

3.11 Remark. (i) We emphasize that the choice of the Hilbert space H which 
takes the role of the "tangent space" is crucial. Together with # it determines 
the Dirichlet form and hence the diffusion process. For example, if go is the 
time-zero free field and H = HS(Nd). i.e., the Sobolev space of order �89 the corre- 
sponding diffusion process is the ordinary Ornstein-Uhlenbeck process associat- 
ed with the abstract Wiener space (#o, H ~, B). Here B c 5 ~' (N d) is some Banach 
space supporting #o such that H ~ c B continuously and densely (cf. [G],  [Ma],  
[Wa] ). In general, B is the completion of H ~ with respect to some #0-measurable 
norm on H ~- (cf. [G],  [Ku] for details). In [R62]  it was proven that B can 
be taken to be a (subspace of a) "scaled" Sobolev space of negative order. 
On the other hand if one takes H=L2(Ne;  2d), the corresponding diffusion pro- 
cess is a different kind of Ornstein-Uhlenbeck process, namely the one associated 
with the free space-time quantum field #~ on 5 f ' (R  d+ 1) (cf. [R6 3] and I-A/H-K2, 
Sect. 4] ). 

(ii) Theorem 3.9 also applies to cut-off quantum fields (cf. 1.14 (i)) and, once 
the closability question is settled, to quantum fields over 3-dimensional space- 
time (cf. 1.14 (iv)). 

Appendix 

Proof of 3.6. Recall that by 3.5 condition (3.4) holds; hence by 3.1 and 2.7 
we only have to show (2.8). By 3.5 we know that (3.4) holds. 

Let A, e,, P,, n~N,  be as in the proof of 3.5 and P, as in (3.4) (ii). Let 
L ~ (H; E) be the set of bounded linear operators from H to E. 

Step 1. (cf. [K, Propositions 3.1, 3.2]) 
Since H is compactly imbedded in E and by (3.4), taking a subsequence if neces- 
sary we have that 

(A.1) (i) ]l Idn--  P, tl L~(n; ~)__< 2-"  
(ii) #{zeE I Ilz--P, zllE> 2-"} <2-". 
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We define q: E ~ N . +  by 

oo 2, lip,+ 1 z _ p ,  zll~) , zEE, q(z)=(~_.=o " - - - "  ~ 

where Po:=0. Then E0.'={q< + o0} is a normed linear subspace of E with norm 
q having the following properties: 

(A.2) (i) p(Eo)= 1 
(ii) (Eo, q) is a Hilbert space compactly imbedded in (E, [1 [[E) 

(iii) (H, [[ Ila) is continuously imbedded in (Eo, q). 

Indeed (A.2) (i) immediately follows by (A.1) (ii) and the Borel-Cantelli Lemma. 
(A.2) (iii) holds since by (A.1) (i) for any hel l  

q(h)= 2" [l(Id/~- P.)(P.+ ~ h 2-n IIP.+I h hlla. 
n n 

Furthermore, for heH we have that Pn 2 h =P, heE', consequently for zEE 

~,<P,2 h , z > ~ = E , <  (P,h,e~)Hej, z>E=(P,,h,P,z)z=e,<P,h,P,z>E. 
j = l  

Hence we have, due to the fact that the linear span of {e, ln~N} is dense in 
(E', [I IPE,), that for any m e n  

rl z tl~= sup {]E, </On 2 h, z>E] [neN, he l l  with [I P, h []E,= 1} 
n > m  

< sup lIP. z[]~. 
n > r n  

Consequently, if zeE o and m e N ,  

11 z -  Pm ZlrE < sup liP, z - P ,  Pm z []E= sup [[P,z-P,,zlle 
n > m  n > m  

<sup ~ Ir~+lZ-~Zlt~ <<- 2 -  q(z). 
n > m  j = m  j 

Consequently, (E o, q) is compactly imbedded in (E, [I [l~). The completeness 
of (E o, q) is now easy to see by Fatou's lemma. Thus (A.2) (ii) is proven. 

Step 2. Let Ks,={q<N}, N~N.  Then each Ks  is a bounded weakly compact 
subset of Eo, hence by (A.2) (ii), K s is compact in E. If we can show that 

(A.3) lim Cap(E\Ks) =0, 
N ~ o o  

(2.8) is fulfilled and the proof of the theorem is completed. 
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To show (A.3) fix N e N  and ~: l l - *  [0, 1] smooth and increasing such that 
2 

�9 ( t)=0 if t____(N+�88 2, ~ ( t )=  1 if t>(N+ 1) z and ~b'(t) < for all t e l l .  Let 
= ( N +  1) 

u(z),=~(q(z)2), zeE, 

where we set ~ ( +  oo).'=1. Then ueD(~~ 
- - 

Indeed, if q,,(z).-= 2" l lP ,+ lz -P .z l l  , meN,  zeE, and Um'.=~(q,,(Z)2), 

then u,,eo~C'-""b ~ , meN,  (u~)(,.~) converges in LE(E;/~) to u and by the following 
arguments we see that g~~ U,--Um) ~ 0 as n, m ~ oo: it is clear that 

for any ve~,~C~ and i eN,  (Vu, ei)H=~e..U (cf. 1.12 (i) and (1.4)). Therefore, 

by the chain rule and Minkowski's inequality we have on E for all n, m e n  

(A.4) 

, ~ / •  ~'~'~ ( ~ / ~  \~'~ 
<ldP'(q2")-~(q")lli~, l~eiq") ) +lcrp'(q2")[ i (~ei(q~--q:)) ) " 

Furthermore, for all z e E 

i = 1  

= 4 2"+J<P~+tz-"ff,.z,P,+lei-P,e~)E(Pj+lZ-Pjz, Pj+lei--Pjei) E 
i = 1  n,j=l  

= ~ 4  ~ 2z"(,P~+~z-"~,z,P,+tei--P, ei) 2 
i = 1  n = l  

(since for each ie N, P, + 1 ei - P, ei # 0 # Pj+ 1 e i -  Pj ei implies n =j) 

= 4  ~, 22" ~, ((P~+~--P,)z,A(P.+I-P,)e,)~ 
n = l  i = 1  

= 4  ~ 22"]](P.+,--P.)A(P~+~,-ff.)z]I 2 

<=4 22"][(P~+t-P~)A(P~+l-'P~)zIIEIk(P~+x-P~)zI[~ 
n = l  

< 4 II A Llse=(e,n)q~(z). 

Correspondingly, for all n, meN,  n>m, and each zeE 

/ 2 2 2 2 (A.6) (q, (z)--q,~(z)) <_41[ A I[~o~(E,m(q, (z)_qm(z)). 
i = 1 \  z l 
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(A.5), (A.6) imply that (Vu,(z))( ,~) is convergent in H for/~-a.e, z 6 E  since/~(Eo) 
= 1. But by the chain rule and (A.5) for all n 6 N  

(A.7) II Vu,, ][H =< ~,(q2). 2. [I A II~(E,m �9 q,, --< 4 ]1A IJ~w, m. 

Consequently, by the dominated convergence theorem g~ . - u , , ,  u,-Urn)--* O, 
n, m--* 0% and thus u e D ( g ~ ) .  

Furthermore, u = 1 on E \ K  N + 1, hence 

( 1 . 8 )  C a p  (E\KN + 1) < go H, 1 (U, U) = gO H (g, hi) -~ I u2 d~ .  

But also u = 0  on a neighbourhood of KN, therefore, Vu=O on Ku. Hence 
by (A.7) 

(A.9) g o ,  ,(u, u)=< (16 I]A [ [ . ~ ,  r~) + 1)p(E\Ku) ,  

since [u[ < 1. Now (A.3) follows from (A.8), (A.9) since #(Eo) = 1. []  

Acknowledgement. We would like to thank J. Brasche, S.Kusuoka and T. Lyons for stimulating 
discussions. We also thank the participants of the BiBoS-summer seminar where several talks were 
given on this topic, in particular E. Carlen, T. Hida, J. Potthoff and L. Streit. The second named 
author gave a series of lectures on this and related papers in the potential theory seminar in Bielefeld 
which led to fruitful discussions and improvements of this work. We would therefore like to thank 
the participants, in particular W. Hansen, H. Hneber, C. Preston, Ma Zhiming and J. Yan. 

References 

[11] 

[A/F/H-K/L] 

[ A /Hi/P /R 6 /St ] 

[A/H-K 1] 

[A/H-K2] 

[A/H-K 3] 

[A/H-K4] 

[A/H-K 5] 

[A/H-K 6] 

S. Albeverio: Some points of interaction between stochastic analysis and quantum 
theory. In: Christopeit, N., Helmes, K., Kohlman, M. (eds.) Stochastic differential 
systems. Proceedings, Bad Honnef 1985. (Lect. Notes Contr. Inf. Sci., vol. 18, pp. 
1-26) Berlin Heidelberg New York: Springer 1986 
Albeverio, S., Fenstad, J.E., Hoegh-Krohn, R., Lindstrom, T.: Nonstandard meth- 
ods in stochastic analysis and mathematical physics. New York London: Academic 
Press 1986 
Albeverio, S., Hida, T., Potthoff, J., R6ckner, M., Streit, L.: Dirichlet forms in 
terms of white noise analysis I + II. BiBoS-preprints (1989) 
Albeverio, S., Hoegh-Krohn, R.: The Wightman axioms and the mass gap for 
strong interactions of exponential type in two dimensional space-time. J. Funct. 
Anal. 16, 39-82 (1974) 
Albeverio, S., Hoegh-Krohn, R.: Quasi-invariant measures, symmetric diffusion 
processes and quantum fields. In: Les m6thodes math6matiques de la th6orie quan- 
tique des champs, Colloques Internationaux du C.N.R.S., no. 248, Marseille, 23-27 
juin 1975, C.N.R.S., 1976 
Albeverio, S., Hoegh-Krohn, R.: Dirichlet forms and diffusion processes on rigged 
Hilbert spaces. Z. Wahrscheinlichkeitstheor. Verw. Geb. 40, 1-57 (1977) 
Albeverio, S., Hoegh-Krohn, R.: Hunt processes and analytic potential theory 
on rigged Hilbert spaces. Ann. Inst. Henri Poincar6, 8, 269-291 (1977) 
Albeverio, S., Hoegh-Krohn, R.: Uniqueness and the global Markov property 
for Euclidean fields. The case of trigonometric interactions. Commun. Math. Phys. 
68, 95-128 (1979) 
Albeverio, S., Hoegh-Krohn, R.: Diffusion fields, quantum fields, and fields with 



432 S. Albeverio and M. RSckner 

[A/K] 

[A/R5 i ]  

[A/R52] 

[Bad] 

[Ba] 

[Bo/Ch/Mi] 

[Bou/Hi] 

[B] 
[D/M] 

[Di] 

[Do/Min] 

[DS] 

[Dyl ]  

[Dy2] 

[Dy3] 

[F6] 

[Fr 1] 

[Fr2] 

[Fr/I/L/Si] 

[Fr/Si] 

[F0] 

[F 1] 

[F] 

[F2] 

[Ga] 
[Ge/V] 

values in Lie groups. In: Pinsky, M.A. (ed.) Stochastic analysis and applications. 
New York: Marcel Dekker 1984 
Albeverio, S., Kusuoka, S.: Maximality of infinite dimensional Diriehlet forms 
and Hoegh-Krohn's model of quantum fields. Kyoto-Bochum Preprint (1988), to 
appear in Mere. Volume for R. Hoegh-Krohn 
Albeverio, S., R6ckner, M.: Classical Dirichlet forms on topological vector spaces 
- closability and a Cameron-Martin formula. J. Funct. Anal. (1989) 
Albeverio, S., RSckner, M.: Dirichlet forms, quantum fields and stochastic quanti- 
zation. In: Elworthy, R.D., Zambrini, J.C. (eds.) Stochastic analysis, path integra- 
tion and dynamics. (Pitman Res. Notes, vol. 200, pp. 1-21) Harlow: Longman 1989 
Badrikian, A.: S~minaire sur les fonctions al6atoires lin6aires et les mesures cylin- 
driques. (Lect. Notes Math., vol. 139) Berlin Heidelberg New York: Springer 1970 
Bauer, H.: Wahrscheinlichkeitstheorie und Grundzfige der Magtheorie. Berlin New 
York: de Gruyter 1978 
Borkar, V.S., Chari, R.T., Mitter, S.K.: Stochastic quantization of field theory 
in finite and infinite volume. J. Funct. Anal. 81, 184~206 (1988) 
Bouleau, N., Hirsch, F.: Formes de Dirichlet g6n6rales et densit6 des variables 
al6atoires r6elles sur l'espace de Wiener. J. Funct. Anal. 69, 229-259 (1986) 
Bourbaki, N.: Topologie g6n6rale, Chapitres 5/t 10. Paris: Hermann 1974 
Dellacherie, C., Meyer, P.A.: Probabilities and potential. Amsterdam New York 
Oxford: North-Holland 1978 
Dixmier, J.: Les alg~bres d'opbrateurs dans l'espace hilbertien. Paris: Gauthier- 
Villars 1969 
Dobrushin, R.I., Minlos, R.A.: The moments and polynomials of a generalized 
random field. Theor. Probab. Appl. 23, 686-699 (1978) 
DSring, C.R.: Nonlinear parabolic stochastic differential equations with additive 
coloured noise on ]Ra x N.+: a regulated stochastic quantization. Commun. Math. 
Phys. 109, 537-561 (1987) 
Dynkin, E.B.: Markov processes vols. I and II. Berlin Heidelberg New York: 
Springer 1965 
Dynkin, E.B.: Green's and Dirichlet spaces associated with fine Markov processes. 
J. Funct. Anal. 47, 381-418 (1982) 
Dynkin, E.B.: Green's and Dirichlet spaces for a symmetric Markov transition 
function. (Preprint 1982) 
FSllmer, H.: Phase transition and Martin boundary. S6minaire de probabilit6s 
IX, Strasbourg. (Lect. Notes Math., vol. 465) Berlin Heidelberg New York: Springer 
1975 
FrShlich, J.: Schwinger functions and their generating functionals, I. Helv. Phys. 
Acta 47, 265-306 (1974) 
Fr6hlich, J.: Schwinger functions and their generating functionals, II. Markovian 
and generalized path space measures on 5 ~ Adv. Math. 23, 119-180 (1977) 
FrShlich, J., Israel, R., Lieb, E., Simon, B.: Phase transitions and reflection positi- 
vity. I. General theory and long-range lattice models. Commun. Math. Phys. 62, 
1-34 (1978) 
FrShlich, J., Simon, B.: Pure states for general P(~)z-theories: construction, regular- 
ity and variational equality. Ann. Math. 105, 493-526 (1977) 
Fukushima, M.: Regular representations of Dirichlet forms. Trans. Amer. Math. 
Soc. 155, 455-473 (1971) 
Fukushima, M. : Dirichlet spaces and strong Markov processes. Trans. Amer. Math. 
Soc. 162, 185-224 (1971) 
Fukushima, M.: Dirichlet forms and Markov processes. Amsterdam Oxford New 
York. North-Holland 1980 
Fukushima, M.: Basic properties of Brownian motion and a capacity on the Wiener 
space. J. Math. Soc. Japan 36, 161 175 (1984) 
Gamelin, T.W.: Uniform algebras. Englewood Cliffs: Prentice Hall 1969 
Gelfand, I.M., Vilenkin, N.J.: Generalized functions, vol. 4. Some applications of 
harmonic analysis. New York: Academic Press 1964 



Dirichlet Forms and Infinite Dimensional Diffusions 433 

[Get] 

[G1/J 1] 

[G1/J] 

[GI/J/S 1] 

[G1/J/S2] 

[G] 

[Gu/Ro/Si 1] 

[Gu/Ro/Si2] 

[HI 

[Ha] 

[Hi] 
[J-L/Mi] 

[Ku] 

[K] 

[Ma] 

[Mi] 

[N] 
[Pa/Wu] 

[P] 

[Po/R6] 

[Pr] 

[Re/Si] 

[RJ 

[R60] 

[R61] 

[R62] 

[R63] 

Getoor, R.K.: Markov processes: Ray processes and right processes. (Lect, Notes 
Math., vol. 440) Berlin Heidelberg New York: Springer 1975 
Glimm, J., Jaffe, A.: Entropy principle for vertex functions in quantum field models. 
Ann. Inst. Henri Poincar~ 21, 1-26 (1974) 
Glimm, J., Jaffe, A.: Quantum physics: A functional integral point of view. New 
York Heidelberg Berlin: Springer 1981 
Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupled 
P(~)2 model and other applications of high temperature expansions. In: Velo, 
G., Wightman, A. (eds.) Constructive quantum field theory. Berlin Heidelberg New 
York: Springer 1973 

Glimm, J., Jaffe, A., Spencer, T.: The Wightman axioms and particle structure 
in the P(q02 quantum field model. Ann. Math. 100, 585-632 (1974) 
Gross, L.: Abstract Wiener spaces. Proc. 5th Berkeley Symp. Math. Stat. Prob. 
2, 31-42 (1965) 
Guerra, F., Rosen, J., Simon, B.: The P(~)2 Euclidean quantum field theory as 
classical statistical mechanics. Ann. Math. 101, 111-259 (1975) 
Guerra, F., Rosen, J., Simon, B.: Boundary conditions in the P(~)2 Euclidean 
field theory. Ann. Inst. Henri Poincar6 15, 231-334 (1976) 
Haba, Z.: Some non-Markovian Osterwalder-Schrader fields, Ann. Inst. Henri 
Poincar6, Sect. A (N.S.) 32, 185-201 (1980) 
Hamza, M.M.: D6termination des formes de Diriehlet sur N.". Th~se 3eme cycle, 
Orsay (1975) 
Hida, T.: Brownian motion. Berlin Heidelberg New York: Springer 1980 
Jona-Lasinio, P., Mitter, P.K.: On the stochastic quantization of field theory. 
Commun. Math. Phys. 101, 409-436 (1985) 
Kuo, H.: Gaussian measures in Banach spaces. (Lect. Notes Math., vol. 463, pp. 
1-224) Berlin Heidelberg New York: Springer 1975 
Kusuoka, S.: Dirichlet forms and diffusion processes on Banach space. J. Fac. 
Science Univ. Tokyo, Sec. 1A 29, 79-95 (1982) 
Malliavin, P.: Stochastic calculus of variation and hypoelliptic operators. Proc. 
of the International Symposium on Stochastic Differential Equations, Kyoto 1976, 
Tokyo 1978 

Mitter, P.K.: Stochastic approach to Euclidean field theory (Stochastic Quantiza- 
tion). In: Abad, J., Asorey, M., Cruz, A. (eds.) New perspectives in quantum field 
theories. Singapore: World Scientific 1986 

Nelson, E.: The free Markov field. J. Funct. Anal. 12, 221-227 (1973) 
Parisi, G., Wu, Y.S.: Perturbation theory without gauge fixing. Sei. Sin. 24, 483-496 
(1981) 
Parthasathy, K.R.: Probability measures on metric spaces. New York London: 
Academic Press 1967 
Potthoff, J., R6ckner, M.: On the contraction property of Dirichlet forms on infinite 
dimensional space. Preprint, Edinburgh, 1989, to appear in J. Funct. Anal. 
Preston, C.: Random fields. (Lect. Notes Math., vol. 534) Berlin Heidelberg New 
York: Springer 1976 
Reed, M., Simon, B.: Methods of modern mathematical physics. I. Functional 
analysis. New York London: Academic Press 1972 
Ripley, B.D.: The disintegration of invariant measures. Math. Proc. Camb. Phil. 
Soc. 79, 337-341 (1976) 
R6ckner, M.: Generalized Markov fields and Dirichlet forms. Acta Appl. Math. 
3, 285-311 (1985) 
R6ckner, M.: Specifications and Martin boundaries for P(~)2-random fields. 
Commun. Math. Phys. 106, 105-135 (1986) 
R6ekner, M.: Traces of harmonic functions and a new path space for the free 
quantum field. J. Funct. Anal. 79, 211-249 (1988) 
R6ckner, M.: On the transition function of the infinite dimensional Ornstein-Uhlen- 
beck process given by the free quantum field. In: Kr/tl, J., Luke,, J., Netoka, 
I., Veselp, J. (eds.) Potential theory. New York London: Plenum Press 1988 



434 

[R6/W] 

[Ru/Sp] 

[Sch] 

Is] 

[Si] 

[Sp] 
ESt] 

ET] 

EWa] 

[z] 

S. Albeverio and M. R6ckner 

R6ckner, M., Wielens, N.: Dirichlet forms - closability and change of speed mea- 
sure. In: Albeverio, S. (ed.) Infinite dimensional analysis and stochastic processes. 
Boston London Melbourne: Pitman 1985 
Rullk6tter, K., SpSnemann, U.: Dirichletformen und Diffusionsprozesse. Diplom- 
arbeit, Bielefeld (1983) 
Schwartz, L.: Radon measures on arbitrary topological spacas and cylindrical 
measures. London: Oxford University Press 1973 
Silverstein, M.L.: Symmetric Markov processes. (Lect. Notes Math., vol. 426) Berlin 
Heidelberg New York: Springer 1974 
Simon, B.: The P(~)2 Euclidean (quantum) field theory. Princeton: Princeton Uni- 
versity Press 1974 
Sp6nemann, U.: PhD thesis, Bielefeld 1989 
Steffens, J.: Excessive measures and the existence of right semigroups and processes. 
Preprint 
Takesaki, M.: Theory of operator algebras I. New York Heidelberg Berlin: Sprin- 
ger 1979 
Watanabe, S.: Lectures on stochastic differential equations and Malliavin calculus. 
Berlin Heidelberg New York Tokyo: Springer 1984 
Zegarlinski, B.: Uniqueness and the global Markov property for Euclidean fields: 
The case of general exponential interaction. Commun. Math. Phys. 96, 195-221 
(1984) 

Received December 2, 1988; in revised form March 22, 1989 

Note added in proof 

It follows as in [A/H-K3] (Sect. 3) that the diffusion process X t defined in 3 d (for quantum fields) 
satisfies a stochastic differential equation of the type dX~=,g(Xt)dt+dW~ in the weak sense, where 
the drift coefficient /~ is the "osmotic velocity" given by the measure # (cfr. [A/H-K3]). Details 
will be discussed in a forthcoming paper. 


