
Probab. Th. Rel. Fields 83, 355-389 (1989) Probability 
Theory Related Fields 

�9 Springer-Verlag 1989 

Wiener-Hopf Factorisation of Brownian Motion 

Paul McGill 
Department of Mathematics, University of California, Irvine, CA 92717, USA 

Summary. We study how Brownian motion behaves under time change by 
a fluctuating additive functional A,  in particular letting �9 be the first passage 
time of At to zero we compute P_~[B, edy] explicitly in certain cases. The 
calculation is not an easy one, our method uses the D6sir6 Andr6 relation 
for the overshoot of a L6vy process and depends on some elliptic function 
identities. This paper only considers the one boundary case where At is 
increasing (resp. decreasing) on the positive (resp. negative) half line. 

The description 'Wiener-Hopf' is sometimes used in probability to denote the 
decomposition of a random walk into its ascending and descending ladder point 
processes. In the context of a L6vy process Xt this has to do with decomposing 
Xt as the sum of its maximum J(t and the reflection process J~t-Xt.  Originally 
these laws were computed by exploiting the Wiener-Hopf technique for solving 
an integral equation but Feller comments [10] p. 389 'the connections are not 
so close as is usually made to appear'. Nowadays the preference is to formulate 
such questions in terms of the Spitzer-Rogozin-Fristedt theory [3]. This 
describes how )(t can be time-changed to get a new L6vy process Yt and even 
gives an expression, called Spitzer's formula, for the exponent of Y~ in terms 
of the law of X ,  This general area is known as fluctuation theory and it is 
reputed to have considerable practical importance. 

In this paper we consider the single boundary Wiener-Hopf factorisation 
problem for real Brownian motion Bt. Suppose L(a, t) is a bicontinuous version 
of Bt local time normalised so that for every bounded Borel function f we 
have 

t 

f(Bs) ds= ~ f(a)L(a, t)da, 
0 

the occupation density formula. Let m=m + - m -  be a signed measure on R 
with m + a positive measure and m- a positive Radon measure, supported on 
the positive and negative axes respectively. We write At= ~L(a, t)m(da) and 
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we define z =inf{t >0: At=0}. Then the problem (proposed by Williams et al. 
[15, 16, 22], but see also [19]) is the explicit computation of the kernel 

H(x, dy)=P_~[B~edy; r <  +ov] (x,y>O). 

There is an obvious way of doing this, which is to write Xt= Ant with t h the 
right continuous version L-1(0, ")t so that Xt is a L6vy process. We see below 
that the problem of finding the kernel II(x, dy) is closely related to computing 
the law of the overshoot of zero by Xt, or equivalently computing the overshoot 
of zero for X't. This gives the connection with fluctuation theory and would 
be the end of the story were it not for the computational difficulties. The fact 
is that explicit computation of the overshoot law for a L6vy process is often 
extremely difficult and using X't doesn't make things any easier, in particular 
an approach using Spitzer's formula seems to be out of the question. On the 
other hand there exist examples where one can compute Fl(x, dy) directly but 
where the corresponding overshoot law is not known explicitly. This note was 
partly motivated by a desire to understand why. 

Our method goes back to basics. Instead of trying to compute the overshoot 
directly we will remark that it satisfies an integral equation, and then we use 
this to derive a system of Eqs. (o, t) containing H(x, dy). One of these equations 
is of Wiener-Hopf type and it can be solved directly if the original problem 
has scaling properties (this is our canonical case). The purpose of this note 
is to develop another method of solution which exploits the behaviour of (o, ?) 
under certain substitutions and which leads to several explicit formulae for 
the kernel I-l(x, dy). Previous work on the explicit calculation of H(x, dy) is 
mainly due to Baker [1, 2]. His methods involved doing some complicated 
contour integrations, but the snag was that these were somewhat unmotivated. 
In our work we have tried to be more systematic, and in particular we have 
sought to clarify the probabilistic structure of the problem before going on 
to investigate the analytical methods needed to solve it. But in view of the 
considerable technical difficulties encountered we have not attempted to tackle 
the general case. Our aim has been to identify the simplest examples and to 
deal with them comprehensively. 

The main results of this paper are to be found in sections three and four 
below though the material in the second section is maybe not as familiar as 
it should be. In the first section where we derive our basic system of Eqs. 
(o, t) for H(x, dy) the approach is fairly straightforward. But though the equa- 
tions are well-known the methods for solving them are not. So we begin by 
showing how to solve (o,'~) in the 'canonical case' where m+(da)=da and 
m-(da) = b 2 da, essentially adapting Ray's method [21] to compute the overshoot 
for an asymmetric stable process [4, 7]. Our proof is expressed probabilistically 
since this seems to give some extra insight and is in any case important for 
other applications. 

Section three contains the essential novelty of this research and is where 
we do most of the work. There we give details of a substitution method, the 
idea being to show how one can transform our convolution equation (o) by 
scale change into a form which is suitable for the application of Ray's technique. 
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The relevant change of variable is computed by inverting the integral transform 
(t") induced from m +, its calculation being simplest when (t) defines a Fourier 
transform or a Fourier series. Our procedure only works when the function 
concerned satisfies a certain identify, explained at 3.1 below, while the condition 
P [ z <  + oo] is also crucial when we come to justifying the application of Ray's 
technique. 

The final section puts this machinery to work on a variety of examples, 
mainly gleaned from [2]. In each case we find that El(x, dy) is a conformal 
image of the canonical answer obtained in section two and, while we determine 
our substitution analytically, there is nevertheless a clear geometric relationship 
with the original process Bt. Some of our computations depend on properties 
of Jacobi's elliptic functions. These no longer form part of every mathematician's 
toolkit so we have included an appendix summarising their relevant properties. 
We also found it necessary to do a couple of elliptic contour integrals. 

Some of the results obtained here are surprising. For example the geometric 
link between our original Brownian motion B t and the conformal function used 
to obtain II(x, dy) was quite unexpected. It strongly suggests that in the context 
of this problem we should think of Bt as a real Brownian motion when below 
zero, and as a purely imaginary process when Bt is positive. See [18] for more 
on this particular theme. But the main advantage of the geometric analogy 
is that it allows us to guess the answer before doing the calculation. To put 
this in perspective just recall the computational difficulties encountered in [-16], 
or indeed when trying to find the overshoot law for a L6vy process [4]. We 
should also mention that we have no theoretical explanation for what's going 
on here, just rules of thumb which come from examining the explicit formulae. 
It seems that a better understanding depends on being able to find other explicit- 
ly computable examples. We are looking in particular for a method which dis- 
penses with the restrictive condition 3.1. 

The method developed here, together with some of the results, had already 
been announced in [17]. 

w 1. General Results 

Throughout this paper we take B t to be a real Brownian motion with B o --- --x 
<0  and we define the additive functional At= SL(a, t)m(da) as explained in 
the introduction, L(a, t) is the B t local time. Write T = i n f { t > 0 :  Bt=0} so that 
by the strong Markov property A r is independent of BtoO r and let qt be a 
right continuous inverse of the local time at zero. Then the following result 
is well-known. 

Lemma 1.1. Let f be the unique bounded solution of the distributional equation 

d 
dm f ' ( x )+2 i  z f ( x ) = 0  

normalised by f (O) = 1, the derivative f '  being discontinuous at zero. Then Xt = A,~ 
is a Ldvy process, started at the point Ar  <0, with fourier exponent given by 

r (z) = �89 If ' (0  + ) - f ' ( 0  - ) ]  = �89 Af'(O). 
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Proof By the generalised Ito formula, if z is real, the process f (Bt)exp {iz A t 
- ~ (z)/40, t)} is a local martingale in the Bt filtration. But it is uniformly bounded 
up to time r/t so doing the time-change t ~ t  we still have a martingale. Since 
B , , -  0 then E [e ~zx'] = e ~'(~)~ as required. 

The Lbvy process Xt is of bounded variation so its L6vy measure v satisfies 
~([xb/x 1)v(dx)< +co and we can write its Fourier exponent as ~k(z)= ~(e i~  
- 1)v(dx). Moreover  we find that 

f ' ( 0 + ) = 2  S(e i ~ -  1) v(dx). 
o 

This remark will be used below and in fact we mainly consider the case where 
v is absolutely continuous. 

Definition. Write m (da) ~ l al e da, a ~ 0 if 

d m  
lim Lal - ~ -  
a,o da 

exists and is non-zero. 
The next result is well-known, but we have no explicit reference. 

Lemma 1.2. l f  m+ (da),,~da, aJ, O then v(da)~a-3/2 da, aJ, O. 

Proof We start by computing estimates for 

oo ao 

(1-e-~)v(dx)=z ~ e-~Xv(x, +oo)dx 
o o 

( z>O)  

exploiting the fact that we can explicitly compute the extreme cases. Let us 
choose positive constants c 2 < c 2 and e such that dm+/da ~ [c~, c 2] when 0 < a < e. 

(a) Suppose we deal with the truncated measure c~ lto.~]da. Here, arguing 
as in 1.1, we must solve f " = 2 z f  subject to the boundary conditions f ( 0 ) =  1 
and f ' ( e ) = 0  and then compute f ' ( 0 + ) .  This yields the under-estimate 

ca ] / ~  tanh c1 [ / /~  ~. 

(b) Next we augment the measure to c~ l to , , lda+8,  where 8~ denotes an 
infinite point mass located are the point e. Solving the same equation subject 
to the boundary conditions f (0 ) - -1  and f(~)--0 gives our over-estimate 

c21 /~  coth c21//-2z e. 
As z T ~ each of these expressions behaves like c i V ~  so a Tauberian theorem 

[103 p. 443 gives us the required asymptotic behaviour of v near zero. 
The equalisation time -c=inf{t>0:  At=0)  is a Bt stopping time while the 

time of subsequent return to zero, namely -c + To 0r, corresponds in the qt time 
scale to U=in f{ t :  X t > 0  ). The random variable X v is called the overshoot of 
level zero for the process Xt. Finding its law when Xo is fixed is a celebrated 
problem [-33. However in the case at hand we have a randomised starting point 
A T < 0  and this seems to make things easier. Nevertheless we will not attempt 
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to compute the law of the overshoot itself, instead we derive a system of equa- 
tions whose solution will give us the kernel El(x, dy) directly. 

The first step is to derive an integral equation for the distribution of Xv .  
For this we need to establish some notation. Let us write to(z) to denote the 
Laplace exponent of X t defined at least on the imaginary axis by the equation 
E[e-Z(x~-xo)]=e -'~(~)t. Also we introduce the function ( I ) , t ( Z , X ) : E _ x [ E A ,  r 

[e-XVe-~X~]],  its complementary function ~ ( z , x ) = E _ ~  EA~ e-~te-~X~d , 
L LO J J  

and we write our initial condition as Y(z, x)=E_~[e-~A~]. Note that all these 
expressions exist, at least for z imaginary, by a majorisation argument. To derive 
an equation linking them recall that if f is a bounded continously differentiable 
function then by Ito's formula the process 

t 

e -  z t f ( X t ) - -  ~ e -  as ds ~ [ f ( X  s + y ) -  f(Xs) ] v (dy) + 2 i e - '~s f (xs )  ds 
0 0 

(2>0) 

is a uniformly bounded (purely discontinuous) martingale. Taking f ( x ) = e  -~x, 
stopping at the time t =  U, and taking the expectation, first in Xt and then 
in At ,  we get 

�9 ~(z, x) = r(z, x ) -  [,~ + ~(z)] %(z, x) (o) 

an equation which holds (at least) when z is purely imaginary. This is known 
as the equation of D6sir6 Andr6. It seems it can only rarely be solved to give 
E [e-~x~:] explicitly. 

We now connect this to the problem of computing El(x, dy). Notice that 
by definition of z we have X v = A r o O ~ ,  SO using the strong Markov property 
of B t at time z gives 

q~a(z, x)=E--x[e--ZL(O'Oe-ZAT~ Z< + ~ ]  

=E_x[Y(Z, - -BOE_x[e -ZL(~  z <  + ~ ]  

and hence from the definition of H we get 

oo 

4) 4 (z, x) = S El(x, dy) E_  ~, [e - ~L(o, ~)l B~ = y] Y(z, -- y). 
0 

(t) 

Everything done so far is well-known. What  is new is our claim that, under 
certain conditions, one can solve the system of Eqs. (e, t) for El(x, dy). Our 
starting point is the following observation which was implicit in [21]. 

Remark 1.4. The above system has the following structure. 
(1) The unknown function ~z (resp. ~ )  is bounded analytic on the right 

(resp. left) half plane. 
(2) For x > 0 the given function Y(., x) is bounded analytic on the left half 

plane and can be computed by solving a differential equation. 
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(3) We can write ~c(z)= ~ + (z)+ ~c_ (z) where 

~+(z)= �89  ~ c _ ( - z ) = - � 8 9  (z>0). 

This means the input data for (o, t), namely Ic and ~c, are completely determined 
once we,know the function l'(z, x). 

This resembles the situation in the theory of Wiener-Hopf integral equations 
(see [-6, 20] for example) but there are two complications. The first is that there 
need not be any open strip of validity for (o), since the equation is only guaran- 
teed to hold on the imaginary axis. The second, and apparently more fundamen- 
tal, difficulty is that the given data (namely ~" and x) are not analytic in the 
entire plane. Such behaviour appears to be new, or at least not well documented, 
in the context of the Wiener-Hopf method. In any case the standard technique 
of using factorisation and the Liouville theorem (see [-6]) does not work here, 
nor will the method of [,,14]. 

Solving the D6sir6 Andr6 equation (o) on its own would appear to be a 
very difficult problem, in fact the only non-trivial solution we were able to 
find in the literature was [,21] which deals with the case where Xt is a symmetric 
stable process. But in the present investigation we shall concentrate on solving 
(o, t) for El(x, dy). This problem seems to be more tractable than finding the 
overshoot law, and while the reason for this is rather difficult to pin down 
we think it is connected with having a randomised starting point A t =  Xo <0. 
In fact we essentially work with (Ar,A T o 0~) and so, interpreting this as a double 
transform of the overshoot law, one can make an analogy with computing 

t 

the law of ~ l(Bs<0)ds by using a suitable double integral transform as in [-13] 
p. 57. o 

w 2. Solving a Canonical System 

In this section we show how to solve the system 

�9 ~ (z, x) = r(z, x ) -  [#~ + ~ (z)] ~ (z, x), 

oo 

~/'~(z, x)= ~ H(x, dy) E_~[e -~L(~ ~)IB~=y] lC(z, - y )  
0 

(,) 

(t) 

for El(x, dy) in the particular case m+(da)=da, m-(da)=62da. The method we 
use is essentially due to Daniel Ray [21]. 

Suppose for the moment we concentrate on the Eq. (0) which we know 
holds at least on the imaginary axis. Recall that ~'(z, x) and to(z) are the given 
functions here, while all we know about ~z(z, x) and 7~z(z, x) to begin with 
is that they have the analyticity properties prescribed at 1.4. From this informa- 
tion we want to find calculate ~o(Z, x). Ray's method is to use (o) to extend 
the analytic function z--+ ~z(z, x) from the right half plane to the complex plane 
cut along the negative real line. But since Y(z, x), ~(z,  x) and •_(z) are already 
defined on the left half plane this just involves extending the (known) function 
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~c+ (z), something we can do by inspection. We will see in the examples of section 
four that the function ~c+ cannot  be extended analytically to the entire plane, 
it is either meromorphic or else it has a branch point at zero. 

In the present situation K+(z)= �89  so it has a branch point at zero and 
we can assume that ~ + (z) is defined on the complex plane cut along the negative 
real axis. However we can exploit the discontinuity of ~c+ along the branch 
cut to get a solution of (o) as follows. The idea is to multiply (o) by an integrating 
factor I(z) which also has a branch cut along the negative real axis, where 
it satisfies the cancellation condition I(rei~)lc(rei~)=--I(re-i~)lc(re-i~). Now 
suppose we apply the Cauchy theorem to the function z~I(z)O~(z, x), integra- 
ting along the contour {z=Rei~ - n  <O<n} w{z=eei~ - 7 ~ < 0 < n }  w { -  y: e 
< y <  oo}, coming in and going out again on either side of the branch cut to 
avoid the singularity at zero. If I(z) can be chosen so that as R1"oo and e~0 
the integrals along the circles vanish then we can make the unknown function 

cancel as 2 ~ 0 thereby leaving an expression for 4~o in terms of the integrating 
factor I(z) and the given function r. This is the method of [21]. 

Our solution follows Ray's idea but with two minor modifications. The first 
is that we will use martingale stopping instead of Cauchy's theorem, since this 
formulation is useful and suggestive for our examples. Also we find it convenient 
to work entirely on the right half plane. Hence we replace z by z2/2 in our 
system of Eqs. (e, t) and again this change should be thought of as being more 
than just cosmetic (see [18]). 

Since we assume that m+(da)=da, m-(da)=62da the given data in (e, t) 
become 

r(-zZ/2)=e-Z~x; ~:+(zZ/2)=kz; ~_(--zZ/2)=�89 (Z>0) 

and our system of equations can be written as 

O;. (z2/2, x) = )'(z2/2, x) - [2 + K_ (z2/2) + l z ]  ~ (z2/2, x), 
09  

Oz (z2/2, x) = ~ E_ x [e - ;.L(0, ~)IB ~ = y] e - zy H(x, dy). 
0 

However we cannot go ahead and solve this for Oo(Z, x) as it stands, we will 
need to deploy some extra information in the role of a boundary condition 
for the system. This point is not emphasised in [21] but will be extremely 
important  for us here. When applying Ray's method one needs to know (as 
indicated above) that )cl[t~(--wZ/2, X)--+O when w is real and 2~0. We will see 
how in ourocontext this,;c!epends on knowing that U <  + oe (or equivalently 
z <  + oo). Of course one can;cquote the relevant L6vy process criterion [-3] for 
this but it is easier and more convenient to provide the following direct proof. 

Lemma 2.1. I f  m + (da)=da, m-(da)=c~2 da then U< + o~ almost surely. 

Proof Suppose that 0 < 2 < z .  If we define, for 7 + =  2[ /2~-2)  and 7- 
= ~/2(z 62 + 2) the function 

f(x) = 7+ 
(x < O) 
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then the process f(Bt) e-Z'e ~A* is a uniformly bounded martingale up to time 
z. By martingale stopping we get 

E_ x If(B,) e-  z,] = f ( _  x). 

Letting 2+0 gives E_x[f(B~); z <  + o o ] = f ( - - x )  so by taking z+0 we obtain 
l = P [ z <  + o o ] = P [ U <  + oo] as required. 

The first step in solving for / /  is to introduce the asymmetry parameter 

P = 2  c~  16~(0, 1) (in the standard theory of integral equations [201 with ana- 

lytic coefficients the parameter 1 - p  corresponds to the index and is an integer). 
The idea is that p is determined modulo an integer by cancellation conditions 
while uniqueness comes from the need to comply with integrability conditions 
at zero and infinity. 

Theorem 2.2. I f  m+(da)=da, m-(da)=6Zda then the explicit solution of ( t ,  t) 
is given by 

1 . rcp [6x~P dy z 
II(x, dy) = 7 sm T k-Y-) y2 + (ax)2 

with p = 2 cot-  16. 
7r 

Proof It is more convenient not to use the explicit form of ~ in the proof. 
Consider the function z--* ~(z2/2,  x), defined on the right half plane by 

oO 

~ (2:2/2, X) = S e-  ~y E _ :, [e - xL~o, ~)l B~ = y] Fl(x, dy). 
o 

This is an analytic function bounded by one on the right half plane, while 

by analytic continuation from the lines Arg z = _+~- using (e) we find that on 

the imaginary axis z = i w we have 

r ( -  w2/2, x) = ~'( - wZ/2, x) - [2 + �89 6 I wl + �89 i w] ~ ( -  wZ/2, x). 

Let us define U~(z, X)=Zl-PfP:~(Z2/2, X) taking the branch of z 1-~ which is real 
on the positive real axis. Then if Z~ is a complex Brownian motion the process 
Ux(Z,, x) is a conformal local martingale. However if Z o > 0  and ~ is the hitting 
time of the imaginary axis we know the hitting distribution is 

1 Zo dy 
P[Zr = 7r, yZ + Z2 

Now t--*[U~(Z,^ ~, x)l is a submartingale and is therefore uniformly integrable 
by the estimate E [Uz(Z~, x)] <EEIZr < + oo since p~(O, 1). Therefore apply- 
ing the Doob stopping theorem at time ~ to the martingale U~(zZJ6x, x) with 
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z>0  and Zo=fX and using the above relation to substitute for ~z on the 
imaginary axis we get 

U~(z,x)=l ;{zy~l-Pei~(i_p) fxdy 
o \fix/ y~+( fx )  ~ 

)1 
+--  

n _ o~ y2 + (fx)2 

1 zly[ .1 zy] 

�9 2 

Adding the integrals and using the definition of p we find there is a cancellation 
in the coefficient of ~ and so 

7~ s l n ~ -  o;(ZY]l-P\fx] ~ - -  2, Y2-t-(fX) 2 

~ 2 . p ~  (Zy~ I-p 
o \ fx]  y2 +(fx)2. 

However for w > 0 we have the uniform estimate 

2%.(-w2/2, x)=E-x EAr 2 S e-XteW~X~/2d 
k 0 -I-I 

U <=E-x[EAT[dC~oe-~tdt]]=E-x[EAT[1--e-~V]]. 
Using the previous lemma we can apply the dominated convergence theorem 
as 2~0 to see that 2~(-w2/2, x)--*0. And since 0 < p < l  we can let 250 in 
the above formula to get, again by the dominated convergence theorem, the 
solution 

Uo,z, x ) = 2 s i n  ~ ~ {zY] 1-p Y(-(2@x) 2, x) fx dy 
g \fix/ y~+(f~)~" 

But we know from ($), again because r < + o% that 

Uo(z , x)=z x-p ~o(Z2/2, x)--z I-p ;El(x, dy) e -~y. 
0 

Comparing this with the previous expression, substituting F(-z2/2, x)=e -~x 
gives us what we want. 
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Remark. The argument used here is easier than the one used by Ray [-21] since 
we know to begin with that our function z--+ ~.(z2/2, x) is uniformly bounded 
on the right half plane. This means we can dispense with quoting the Phragmen- 
Lindel6f theorem [23]. 

The reasoning in the above proof does not depend on the explicit form 
of le(z, x) for x < 0. In fact if we examine the argument more closely we find 
it is important to have m+(da)=da and rc_(-w2/2)=161w[,  but we only need 
minimal assumptions on the functions )"and ~ .  It transpires that the following 
generalisation provides just what we need in order to deal with the examples 
of section four. 

Suppose we consider the modified system 

�9 ~(z2/2, x) = [F(zZ/2, x)--  2~(zZ/2, x ) -  [�89 + ~c_ (z2/2)3 %.(z2/2, x), (,) 

09 

~,~(z2/2, X)= 5 E_x[e-ZL(~ e-=Y I I (x ,  dy) (>~a) 
o 

where the first relation holds at least on the imaginary axis and K_ (-w2/2) 
= �89 Iwl. Then the reasoning used in the above proof yields the following result. 

Corollary 2.3. Assume that w ~ 1~(--w2/2, x) and W --r ~ (-- wZ /2, X) are bounded 
even functions of the real variable w, while 2 ~ ( - w 2 / 2 ,  x)--.0 as 250. Then the 
solution of (, ,  ~,<) satisfies 

2 p~z 
Go + (z2/2, x) = ~ sin -~- 

when z > O. 

6 x d y  ~(~XX)I-P~'(--(~X)2'X)y2..I_(~)X)2 

We shall refer to this later on as the canonical case. It will be needed in 
connection with the change of variable idea to be developed in the next section. 

The result stated in our theorem has already been derived in [2] by using 
much different methods. See also [22]. Moreover, it is not hard to see that 
the above approach will also work when we have 

m+(da)=laVda; m-(da)=62+~[at ~da (7> - 1 )  

in which case the underlying L6vy process Xt is asymmetric stable of order 
c~=1/(2+y). However we have restricted ourselves to the case ~=�89 for two 
reasons; firstly in order to simplify the exposition, and also because this more 
general situation does not lend itself so easily to realising explicit answers for 
H(x, dy). 

w 3. Change of Variable 

The essence of our solution to the Wiener-Hopf problem for Brownian motion 
is the substitution procedure described in detail below. The starting point for 
this investigation was to note that the solution obtained in [16] (by a series 
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of complicated calculations but see also [2]) could be written as the conformal 
rcz 

image of the answer at 2.2 under the analytic function z ~ s i n  ~ . We wanted 

to relate this observation to the structure of the corresponding integral equations 
in the hope of obtaining further solutions by the same method. What we found 
was that under suitable conditions there is a scale change which puts the system 
(o,-~) into our canonical form (*, ~.~). The substitution depends, as we shall 
see, on the properties of the function )~(z, x) and in particular on comparing 
its behaviour on either side of zero, the boundary point. 

We begin with the following observation, which is both crucial for our argu- 
ment and interesting in its own right. Suppose f is an odd function, defined 
and analytic on a symmetric interval I containing the origin. Then we want 
a condition under which we have the identity 

d [ f'(O) ~ (vl~u) 
h(y~) dyl ,~ \-f(y~_y~)) = [ h(u) du do ._ 

I 
(1) 

where hof=h, I = f ( I ) ,  u=f(yO, v=f(y2) , and where h is an arbitrary even 
function, the integrals being wrt y~ and u respectively. Obviously this condition 
restricts the function f quite severely. 

To write (1) in a more convenient form let us introduce the function G 
defined by 

G' if(0) 

G f 

so our identity can be written as 

h(ya) dy, dy 2 log IG(y2 - Yl)I = S h(u)  d, dv log Iv-ul.  
1 [ 

Then remembering that h is even we obtain the following simple test. 

Lemma 3.1. Suppose G is an analytic function in a neighbourhood of zero such 
that for some function f 

G(y2 + YO f(Y2)+ f(Yl) 
G(yx-ya) f(Y2)-f(YO 

for pairs (Yl, Y2). Then f complies with the requirement (1). 

Proof Putting Y2 = 0 we find that G is odd, so f is odd as well. Next we show 
our condition implies G'/G =f'(O)/f But this follows if we take logarithms and 
differentiate in Ya at Yl =0.  It is now clear, by reversing the argument given 
before, that f satisfies (1). 

Later on (in the final section) we will see several examples of such functions 
f, each one giving rise to a solution of the system (e, t)- But for now we want 
to examine (o, ?) in more detail. Our dilemma is that the general case is very 
difficult to deal with. For  example, in the cases we can compute explicitly the 
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function z---~Er[e -~AT] defines an integral transform on the negative real axis 
but we have no idea of how to prove this when m+(da) is arbitrary. So we 
will specialise, looking only at those cases where m+(da) is Lebesgue measure, 
or Lebesgue measure on an interval [0, l], or where m + (da) is given by Lebesgue 
measure plus an infinite point mass. In this section the measure m-(da) is 
required to satisfy a regularity condition at zero, and we assume that the gap 
diffusion on ( -  m, 0] with speed measure m- is persistent. 

In the case m+(da)=da we have already seen that Ey[e -zAT] = e  - v ~ r  and 
so when we run z to the negative real axis we end up dealing with a Fourier 
transform. We claim this is the simplest case and we will examine it in detail 
in subsection I. The cases m+(da)=dalto,q and m+(da)=da+Sl, where 6t is 
an infinite point mass at l, are also not too difficult since we get respectively 
a Fourier  cosine series and a Fourier sine series. These are discussed in subsec- 
tions II and III. 

I. m+(da)=da; m-(da)~da, aT0. 

The system (e, t) can now be written as 

�9 ~ (z2/2, x) = r(zZ/2, x ) -  [2 + �89 + x_ (z2/2)] ~(zZ/2) 

�9 ~ (z2/2, x) -- ~ e -  zr E_ x [e - ,~.L(0, Q I B~ = y] H(x, dy). 
0 

As already noted in the proof  of Theorem 2.1, the function z---~(Z2/2, X) is 
defined everywhere on the right hand half plane. Our observation is that (~) 
is well-defined on the imaginary axis, namely we have 

~ e  E_ x [e r = y] II(x, dy) ~ ~ W ~ 2L(O,  

0 

= F(--w2/2, x)--[2+�89 ~( - -w2/2 ,  x). 

Given this, it seems sensible to do the inverse Fourier transform of w ~ c _  
(-w2/2). This should give us some idea of the special functions which arise 
when solving for H(x, dy). Note however that we must use generalised Fourier 
transforms [11] here because the function W--~K_(--W2/2) is the Fourier trans- 
form of a tempered distribution. 

Lemma 3.2. Let Iz be the distribution defined by the relation 

1 ~ e_iWy#(dy). x _ ( - w 2 / 2 ) =  2n 
--Ct) 

Then there is a function f which satisfies the following conditions. 
(a) If  ~ is a test function whose support avoids zero then 

~b(y)/.t(dy) = - ~ q~(y)f-2(y)f,(y) dy. 
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(b) f is odd, f (oe)= 0% and f increases no faster then exponentially. 
(c) f is non-negative, increasing, and infinitely differentiable on R +. 
(d) We have f (y)  ~ y, y $ O. 

In the terminology of the theory of distributions [11] 1If is said to be a 
regularisation of/~. 

Proof We can actually give a formula for f in terms of the L6vy measure 
v of X~ = A,~. Let us define 

1 ~ y 
=re ~ d u ~ e - Y 2 / 2 " v ( - o o ,  - u ]  

f(Y) o ~2reu 3 

where we recall ([13] p. 217) that v is absolutely continuous. By Lemma 1.2 
v(du) ~ lu[-3/2 du as u'~0 so the integral converges when y + 0. Property (c) and 
the first part of (b) are now obvious. To get the second part of (b) we use 
the dominated convergence theorem, while for the third assertion we use the 
monotone dependence of f on v and then, since v(du)~ lu]-3/2 du, u T 0, we can 
compare it with the case where m-(da)= l(_p, o)da. That the growth is at most 
exponential now follows from the computation of f in the first example of 
section four. Next, substituting a = u y-2  we obtain 

1 = ~ z !  d a  1 -1"2a 
f(Y) - 2 ~ e  / v ( - -o%--ay2]  (y>O) 

and since lim y v ( -  0% - a  y2] :t: 0 property (d) follows by applying the dominated 
y{O 

convergence theorem. To check (a) note that 

dy ~ v ( - o e , - u ]  ~ s i n w y  Y -e-Y2/ZUdy sin wy f ~ = ~  du ~ V 2gu3 
- - o ~  0 - -  

where we justify the change in order of integration by noting that 
y(2rcu3) -1/2 e -y2/zu is decreasing (which allows us to write the second integral 
as a sum of positive terms). But now, this is the imaginary part of the following 
Fourier transform (using (d) to interpret the real part as a Cauchy principal 
value integral) 

; e_iWy dy oo 
- - ~ ~ v ( - o o , - u ] d u  ~ e -i~r Y e-y2/2"dy. 

- o~ f ( Y )  o - o~ 2 ] / 2 ~  

Integrating by parts this can be rewritten as 

o~ 

iwrc ~ v(-- 0% --u] e-W2"/Zdu= 2rci 
o "gO 

o 2~i 
(1 -- e w2"/2 t v (du) = - -  tc _ ( - w2/21. 
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By definition of the distributional derivative this gives 

~ e-"~Y dy(f~y)) = -2rc~c-(-w2/2) 
- o o  

which by the uniqueness result for Fourier transforms of distributions is precisely 
what we mean by (a). 

Recall now the explicit evaluation [11] p. 359 

2n e ,wy -o~ 2n -oo Y 

where we take the Cauchy principal value of the integral. In view of the results 
of the previous section this suggests the following tactic. First invert the Fourier 
transform in (#) ,  then do the change of variable v = f (y )  in the resulting convolu- 
tion equation, and finally solve the scale-changed equation by (the standard 
procedure of) taking its Fourier transform. 

Now as a general method this is inadequate. The objection comes at the 
last step where if the Fourier transform is to be successful we need to again 
have a convolution equation, and change of variable will usually destroy the 
convolution from the original expression. But look at what we want here: we 
begin with the convolution of two measures p ,  t/, where # is even (but unknown) 
and f(t/) (dy) = y -  2 dy, and we ask that the image measure f ( # ,  i/) be represent- 
able in the form f i , f (q)  (so we want our scale change to preserve the convolution 
structure). It turns out that there are non-trivial examples where this is possible. 
We will see below how condition 3.1 provides just what we need. 

So let us look more carefully at what we propose. Suppose ffl(x, dr) is the 
kernel obtained from II(x, dy) under the substitution v =f(y) .  Then we write 

oo 

~ ~(zZ/2, x)= ~ e-~VE_x[e-ZLm,O[B~=f-l(v)]H(x,  dv) (z>0) 
0 

which by analytic continuation defines the function ~a(z2/2,x) on the right 
half plane. Doing the same with the functions ~ ,  Fwe obtain ~ ,  r,, and more- 
over we observe that these functions will still have the analyticity properties 
listed at Remark 1.4. 

All this is reasonably straightforward. However inversion and change of 
variable for the product 

w ~ [�89 i w + x_ ( -  w2/2)] ~ ( -  w2/2, x) 

is somewhat more difficult. The term w ~�89 w inverts to give minus one half 
the distributional derivative of the Dirae mass at zero, this being a tempered 
distribution, while the inversion of w ~ c _ ( - w 2 / 2 )  is described at 3.2. So let 
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us look at the inversion of w---+tP~(-wZ/2, x) as a Fourier transform. Recall 
from the definition (in section one) that 

~ ( z , x ) = E _ ~  e-)~*e-~X*d = _  e -z~ e - ; ' tP_~[Xtedk ,  t < U ] d t .  
t-O 0 

Hence ~ ( - W 2 / 2 ,  X) can be written as 

Io; ; E - x  e-~sE[eiWe(-xs)]ds = ~ E[e  iwzk] e-'~'tP_:c[Xt~ - d k ,  t<  U]d t  
0 0 

where ~ 2  is an independent normal random variable with variance 0 -2, which 
means that the Fourier transform inverts to give us 

h(y) dy = dy ~ ~ e-ya/2~ ~ e -  zt p_~ [Xt~  _ dk, t < U] dr, 
o ]/2zck o 

in particular the law is absolutely continuous with an even density which is 
infinitely differentiable and of rapid decrease (it is easy to see that Xu = 0 occurs 
with probability zero here). Consequently we have no difficulty in defining the 
convolution and if we invert the product  

[�89 i w + ~_ ( -- w2/2)] ~ (-- w2/2, x) 

then assuming f satisfies the conditions at 3.1 we find an expression of the 
form 

�89 d y 2 - 2 3  - ~  ,2 

- o o  

where Col=f ' (0) .  Because the rhs is again a convolution it follows that its 
Fourier transform is given by 

[�89189 ~.(--w2/2, x), 

denoting by ~ ( - w 2 / 2 ,  x) the Fourier transform of the even function h-(notice 
how this exists and is bounded since h =  h o f -1  is also infinitely differentiable 
and of rapid decrease). The outcome is that under the scale change by f our 
Eq. (~) transforms to 

~ ( - w2/2, x) = Y( - w2/2, x) - 2 ~ ( - w2/2, x) - [�89 i w + �89 Co ]w I] ~ ( - w2/2, x). 

This resembles the situation at 2.3, so we now summarise the net effect of our 
change of variable as follows. 



370 P. McGill 

Theorem 3.3. Suppose that f (constructed at 3.2) satisfies the hypotheses of 3.1. 
Then substituting v =f (y )  puts the system ( ~ ) into the form 

~(z2/2, x)= 7F(z2/2, x)- -2  ~(z2/2, x ) -  [�89 + ~_ (z2/2)] ~(z2/2, x), (*) 

~,t (Z2/2, X) = ; E _ x [-e - xL(o, ~)[B~ = f -  1 (v)] e - ~ / 1  (x, dy) (~<) 
o 

with ~(-W2/2)= �89 I W I/f'(O) when w is real. Moreover if z < + co then this satisfies 
the conditions at 2.3 and the solution is given by 

~0 (Z2/2, X)= 5 e-*r FI(x, dy) 

where p = 2 t an -  a f'(0). 
7Z 

Proof. The only point remaining is to see that 2 ~ ( - w Z / 2 ,  x)--+O as 2+0. But 
scale-change does not  affect the behaviour in 2 so this holds provided the same 
is true for 2 ~ ( - w 2 / 2 ,  x), which we deduce exactly as in the proof  of Theorem 
2.2 using the finiteness of z. 

II. m+(da)=da lto,l F m-(da)~da,  a't O 

Here the situation is slightly more complicated since we are working with a 
Fourier cosine series rather than with the Fourier transform. However the rele- 
vant inversion formulae can again be found in [11]. Substituting our data for 
this case we find the system (e, ~) now becomes 

�9 a (z2/2, x) = 1~(z2/2, x) -- [2 + K_ (z2/2) + �89 tanh z l] ~(z2/2),  

�9 ~(z2/2, x) = i c o s h ( l -  y) z E_x [e - ~/~to,,)lB~ = y] H(x, dy). 
cosh 1 z o 

(~) 

We observe that the second equation above defines a meromorphic function 
on the right half plane, and that on the imaginary axis it gives us 

i cos(l--y) E_x[e_ZL(o,~)lB=y ]H(x,dy) w 

o cos l w 

= ~'( - w2/2 ,  x) - -  [2  + to_ ( - -  w2/2)  - �89 w tan  w l] 7'~ ( - -  w2/2 ,  x). 

Putting w = n ~/l gives the Fourier cosine coefficients for these and we will use 
this observation to reduce (~) to our standard form. 

Lemma 3.2'. Let # be the distribution supported on ( - l ,  l) which is defined by 
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1 l 
J-~ ~-l e-iWy#(dY)=~-(-w2/2)" 

Then there is a function f which satisfies the following conditions. 
(a) I f  (~ is a test function whose support avoids zero then 

(a (y) #(dy)= - [. e)(y)f-2 (y) f,(y) dy. 

(b) f is odd, f(l) = + 0% and f increases no faster than a multiple of tan rcy 
2l 

(c) f is non-negative, increasing, and infinitely differentiable on (0, l). 
(d) We have f(y) ~ y, y $ O. 

Proof This follows the pattern mapped out for Lemma 3.1, the main difference 
being that the functions are now less familiar while the estimates are more 
difficult to come by. We begin by noting that a formal argument leads to the 
expression in terms of the L6vy measure v of Xt to wit 

f(Y) 2 lo  ~yO 3 q v ( - o % - u ) d u  

where 03 is one of Jacobi's theta functions and log q = log q(u )=-  ~2 u/21 z. Our 
first task is to verify that the integral converges. Using the Fourier series of 

cx) 

[9] p. 355, 03(zlq)= 1 +2  ~ q"2cosn~z, we see that convergence at infinity pres- 
n = l  

ents no problem if y =~ 0. To examine the convergence at zero we can use Jacobi's 
imaginary transformation [9] p. 370 

z /i ~ z2\ 03(~ ; -+)=( - iv ) l /2expk- -~)O3(z ;  z) 

where 03 (z; z) = 03 (z[e i~) is the standard alternative notation for theta functions. 
Moreover the same estimates work for all the derivatives of 03 so we find that 
1/f is odd, infinitely differentiable, and vanishes at ___ I. To investigate the singu- 
larity at zero we again use Jacobi's imaginary transformation and since we 
know the limiting behaviour of v (from Lemma 1.2) this allows us to check 
that lira yf(y) + O. That f is non-negative and increasing on (0, l) follows from 

y $ O  

the product representation [9], p. 357 (16) 

oo 

03(z, q)=q0 IF] (1 + 2 q  2"-1 cos ~ z + q  4"-2) 
n = l  

with qo = f i  (1 _q2.). It remains to verify that 1/f  has the correct Fourier series 
n = l  

but this is just a computation starting from the definition of #(dy). 
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We can now run through the same procedure as before, namely we treat 
the Eq. (~) as the Fourier cosine transform of a convolution equation. The idea 
is to invert, to do the substitution v=f(y) ,  and then to solve by taking the 
Fourier transform. There are some points of difference with the previous case, 
such as the fact that 

~,t COScoslw(1 - y) w tl (dy) = �89 w tan w I 

identifies t/ as one half the distributional derivative of the Dirac mass at zero. 
But otherwise the argument is straightforward and leads to the following result. 

Theorem 3.3'. Let f be defined as in 3.2', and suppose it satisfies the hypotheses 
of 3.1. Then the above substitution puts the system (~) into the canonical form 

~a (z2/2, x) = ~'(z2/2, x ) -  2 ~(z2/2,  X)-- [�89 +/~_ (z2/2)] }P~ (z2/2, X), (*) 

~x (z2/2, x) = ~ E _ x [e - ~L(o, ~)IB~ = f  - 1 (v)] e - z, ffl(x, dr) ( ~ )  
o 

with ~_(-w2/2)=�89 when w is real, and the system can be solved as 
at 2.3. 

III. m + (da)=da lto, z l+~ ; m- (da),,~ da, a ~ O 

Here ~ represents an infinite point mass at l, so we can suppose that our 
Brownian motion has an absorbing boundary there. Notice that now the mea- 
sure m + is not Radon, something which is quite natural from our probabilistic 
point of view. Then by substituting our data we find the system (o, ]-) becomes 

�9 z (z2/2, x) = Y(z2/2, x) - [2 + K_ (z2/2) + �89 coth z l] ~(zZ/2), 

~,~(Z2/2, X) --= i s inh ( l -  y) z E_~ [e_ ~Lto,~llB~ = y ]  II(x, dy). 
sinh I z o 

(b) 

Again we observe that the first equation extends ~z(z2/2, x) as a meromorphic 
function to the imaginary axis, where (b) gives us the relation 

i sin (I-- y) w 
sin I w o 

E _  ~ [ e -  ~L(o, ~)IB~ = y ]  n(x, dy) 

= Y ( -  w2/2, x ) -  [2 + x_ ( -  w2/2) + �89 cot w l] !Pa(- wZ/2, x). 

Putting w, = 0, nil, where 0. = n + 1, we have the coefficients for a Fourier expan- 
ny  

sion in terms of the functions c o s ~ - 0 , .  These are the eigenfunctions of the 
l 
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Laplacian on ( - l , / )  when the boundary conditions are absorbing, and we want 
to invert the transform as before again looking to reduce (~) to the form (,, ~,<). 
The change of variable is computed from the following. 

Lemma 3.2". Let I~ be the distribution supported on ( - l ,  l) and defined by the 
equation 

1 z 
2~ ~-i e-iWY #(dY)=~c-(-w2/2)" 

Then there is a function f which satisfies the following conditions. 
(a) I f  0 is a test function whose support avoids zero then 

c) (y) p (dy) = - ~ (o (y) f -  2 (y) f,(y) dy. 

(b) 1If is odd and its derivative vanishes at I. 
(c) f is non-negative, increasing, and infinitely differentiable on (0, 1). 
(d) We have f(y) ~ y, y $ O. 

Proof This is very much like the previous argument, the essential difference 
being that we use Jacobi's function 02 in place of 03. A formal argument leads 
to the expression 

f ( y ) -  2Io ~yO 2 q v ( - o o , - u ] d u  

Go 
where v is the L6vy measure of X, and 02(z[q)=2~q("+~)2cos(2n+ 1)nz with 

7~2U 1 
log q=logq(u)= 2F"  It is clear from this representation that (b) above is 

true, and verifying the other properties is a matter of routine, though we need 
to use Jacobi's imaginary transformation 

z {ircz2\ 04('~;--1)=(--i'c)1/2 exp~---~} 02(Z ; q2). 

We omit the details. 
We now want to do a substitution and transform this to the canonical 

setup. But, unlike the previous cases, we have f(l) < + c~ here and this provides 
an extra complication. Suppose we normalise by f( / )= 1, invert our Eq. (e) 
according the recipe just indicated, and do the substitution v=f(y). Then we 
obtain, assuming f satisfies the condition 3.1, an equation of the type 

E_ x [e- ~.L(O, ~)IB~ = f -  l(v)] ffI(x, dr) 

= ' ( x ,  dv)-2h(v)dv+ XK'(v)dv+-~ i d~(v@u)E(u)du 
-1  

where we take v~(-1 ,  1) and we know that ~ and h-are even in the variable 
v. Extending h, ~ and Er to the entire line by truncation and extending the 
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convolution in the obvious way, we modify Z(x, dr) to ensure that the equation 
remains valid for ]v I> 1. Then this extension corresponds to our canonical case 
and so we get the following. Notice how z < + m is automatic here. 

Theorem 3.3". Suppose the function f satisfies condition at 3.1. Then the above 
substitution puts the system (b) into the canonical form 

~ (z2/2, x )=  ?(z2/2, x ) - 2  ~(zZ/2, x ) -  [�89 + ~_ (z2/2)] ~(z2/2, x), (*) 

~ (z2/2, x) = S E _ x [e -  ~L(0, ~)[B~ = f -  l(v)] e- ~ Fl(x, dr) (><) 
0 

with ~_(-w2/2)=�89 when w is real. In this case we have H(x, dy) 
= Px[B~sdy; y < l] = 1(~< 1)/7(x, dr) with v =f(y) and f(l)= 1. 

Thus we have a technique for solving (e, ?) when m+(da) takes one of the 
three forms listed above, namely we use the above substitution to transform 
it to our canonical form (,, ~<) and then quote 2.3. It seems there are other 
situations where the same general idea applies though we will not look at them 
here. The difficulty is that one cannot expect much in the way of explicit formu- 
lae. 

Remarks. (1) Differentiability of the function 1If depends on the measures m + (da) 
and m-(da) having the same behaviour close to zero. See [17] for more informa- 
tion on this point. 

(2) In principle one can compute f by using the formulae given in the proofs. 
However, since v is not known to begin with it is often easier to find f by 
direct inversion of the appropriate transform. 

(3) The above formulae for f lead to some interesting identities involving 
special functions. Even in the simple cases considered below the L6vy measures 
can have (e.g.) theta function densities. 

(4) The condition at 3.1 suffices for the examples we consider below but 
is nevertheless extremely restrictive. We were unable to formulate a suitable 
alternative. 

Finally we should say something about  the importance of our boundary 
condition, the requirement that P [~ < + ~ ]  : 1. Recall that to apply our method 
in any of the three cases studied above we not only have to compute the change 
of variable v=f(y), but we also must check that f satisfies 3.1 and that z <  + 
(this last is automatic if m+(da)=da+Sz). The reason we are restricted to the 
case ~ < + ~ is because the method of solution for the canonical case needs 
this. In order to deal with other boundary conditions we need other examples 
with different methods of solution. The guiding principle is that we can use 
our substitution to transform only between problems with the same boundary 
conditions. 

w 4. Some Explicit Calculations 

In this section we apply the method of Sect. 3 to our four examples. In each 
case we set up the Eqs. (e, t), we invert the appropriate transform to find the 
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function f, do the substitution, and then solve the resulting equation by taking 
the Fourier transform. In each case we need to verify the boundary condition, 
which means showing that z < + oo holds almost surely. Remember: the canoni- 
cal example at 2.3 is the only one we can solve directly, for all the other cases 
we must detour via our substitution procedure. 

We begin by recalling the problem solved in section two, where we had 
the input data 

Y(-z,x)=e-WZ~x; ~c_(-z)=�89 (z>0) 

for our system (o, $). There we found the explicit expression 

1 . rcp [6x\P dy 2 
II(x, dy) = 7 sm ~ -  ~ y ]  (6x) 2 + y2 

with p = 2 c o t - ~ 6 .  As already pointed out this answer is not new but it is 

useful since it provides us with a model for the solutions derived below. 

Example 1. Suppose that 

m+(da)=da; m_(da)=c~2 da lt_v, ol 

where p > 0. This is essentially the case considered in [16], but see also [1]. 
The first thing to check is that z < + oo. But note that if 

fcosh ~0 (p + y) if y < 0 
f~ if y > 0  

where 0 may be any positive number, then the process f (B 0 d ~ is a uniformly 
bounded martingale up to time z. Then if we apply the Doob stopping theorem 
at time ~ this gives E-x[fo(BO; z< + oo]=fo(-X), recalling from [3] that the 
real-valued L6vy process X~=A,~ (notation at 1.1) either oscillates or drifts to 
infinity. So letting 0 $ 0 shows that P_x [-c < + oo] = 1 as required. 

In order to solve the (o, t) note that we are in the situation of 3.I with 
the data (see [13], p. 29) 

cos (p- x) 3 ~/~. 
lr(z'x)= cos 6 p ~ z z  ' tc_(z)=-- �89 (z>0) 

when xe(0, -p) .  Explicitly, this means 

�9 ~ (z2/2, x) = 1~(z2/2, x ) -  [ 2 -  �89 6 z tan 6 p z + �89 z] %.(z2/2), 

oo 

q~(z2/2, x)= ~ e -zy E_x[e-ZL~~ y] n(x, dy) 
0 
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and we can apply the results of 3.2 and 3.3. Using the formula in [8] p. 33 
(28) 

1--tanh@cos(wy)dy=-21og tanh rc~_ 
- c o y  

we compute our change of variable as 

f (y)  = ~  sinh ; ; .  

Next using [-8] p. 31 (12) we have 

Y(-w2/2, x) = 1  ; e -i~" 
6p -oo 

1 ~ e _ i w y  

7~ -oo 

cosh ~ Y  sin n_fx 
2,~p 2p dy 
~y  ~x  

cosh ~-p - cos P 

�9 ~ x . / . .  ~y '~  sln ~ ) 
sinh 2 z c y  + sin2 n x 

26p 2p 

If we make the change of variable v = 2 p  sinh rcy ~ p -  then if(0)= 1/6 and by direct 

D �9 7 ~ X  
computat ion we get log ~F(-w2/2, x ) = -  [wl 2-2-~ sin Moreover  it is easy to 

7~ 

check (directly or else see Appendix) that the function G(x)= tanh(x/2) satisfies 
the condition of 3.1. This means that we can apply Theorem 3.3 and so reduce 
the system to canonical form by means of the eonformal mapping z 

2p . ~z 
- -  sxn . Thus we read off the answer from Theorem 2.3 as 

/ . ~ x  \ ~  

2@ 
2 

where p = - - c o t - 1 6  and this completes the solution. 
7"C 

This result is not new. The case 6 = 1 was treated (with difficulty) in [16], 
while the above expression first appeared in [1] though the methods used there 
were quite different. See also [18-1. 

2p . zcz 
It is no accident that the analytic function z--,--zc s m ~ p  is involved in 

the answer. In fact one can find ~ as follows. Note that the conformal mapping 
2p . zcz 

takes the strip {x+iy: O<x<6p} to the left half plane, with 
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the boundary points bp+iy going onto the interval (-2rc, +oo). Now let Xt 

be a reflecting Brownian motion on ( - 0 %  6p] and denoting by r its hitting 
time of zero we use the definition of At to get 

Y( - z2/2, x) = E _~ [e ~A~/z ] =Eo~ [e - ~ r = E ~  [e i~p~] 

if fit is an independent Brownian motion. This identifies Y(- z2/2, x) as the Fourier 
transform in z of the hitting distribution on the imaginary axis for the process 
W,=Xt+ifit started at bx. It remains only to compute this law. But W~ is a 
complex Brownian motion until it hits the line 6p + iy, so by Paul L6vy's theorem 

Z t =  s i n ~  is a time-changed complex Brownian motion up to when it 

hits the interval ( ~ ,  + oo), from which it is reflected vertically. However w e e p  

only sample Zt on the imaginary axis so by the strong Markov property it 

is immaterial whether the process reflects along ( ~ ,  + o o ) o r  not. Thus in 

2p ~zz 
the change of variable z - ~ - -  sin n ~ p  we get the hitting distribution for complex 

Brownian motion itself and this explains the appearance of the conformal image 
of the Cauchy law when we invert Y( -  w2/2, x). 

Example 2. Here we take 

m+(da)=da+3t; m-(da)=~52da. 

Since ~ is an infinite Dirac mass at the point l we see z is bounded by Bt 
the hitting time of l, and is hence finite almost surely. Also the input data 
for (e, ?) are 

~'(--Z2/2, X) = e - ~ x ;  ]e(--Z2/2, X)= sinh z(l--x) (z>0)  
sinh z I 

using [13] p. 29 for the second one and so (e, I") becomes 

cbx(--z2/2, x)=  ]P(--z2/2, x)-- [2 + �89 cot z l+16z] ~(--z2/2 ,  x), 

sinh z ( I -  y) 
~(z2/2'x)= ~H(x'dy)E-x[e-~'L~~176 sinh z l 

o 

when z is real. We saw in 3.III how to solve this for H(x, dy); take z=iw, 
rc 

0,=n+7,1 and then w=fO, to find that the above determines a Fourier series 

in cos ffff 0,. We invert the first equation wrt this transform. 
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US 

l 

Starting with Ywe notice that since ~ C O S  2 O n ~ dy= 1/2, the inversion gives 
0 

oo 

rc6x( n[) 
2 sinh ~ -  d sin 

n (~X -z--2 n y . n sinh 2 - ~ -  + ~m ~ -  

Coming to the inversion of ~_ (-W2/2)= �89 6[W[ we first look at the 

~cos  ~Y nY 0 , ~ - = � 8 9  cot 41 
n = O  n 

using [12], p. 38 to do the sum. This we can differentiate to get the distributional 
equality 

sin 0 , ~ = � 8 8  ny  
,=o 21 " 

In order to determine our substitution What we need is the formal sum 

l ,=o I I = ~  cosec 

2l . , n y But as one can easily check (see Appendix) which gives us f(y) = ~ stun ~ - .  

the function G(x)=tan(x/2) verifies 3.1 while z <  + m is automatic so we can 
now apply 3.2' and 3.3' to reduce the system to our canonical form (,, ~a). 
Hence the solution is given by the conformal image of 2.2 using the function 

nz  
t-~ s i n ~  and the final answer is therefore 

sinh n6x 1 p ny np _ - 2 - i -  d (sin2 2 f )  

Fl(x, dy)= s i n ~ -  \ sin ny  n6x ny (Y</) 
- ~  sinh2 ~ -  + sin2 2 1 

2 
where p = - -  cot-  1 6. 

r~ 
For 6 = 1 this example was treated in [1] from the perspective of a two 

boundary problem but it seems that the connection with absorbing Brownian 
motion was overlooked. Our result is new. 

This completes the proof but again there is a probabilistic explanation as 
to why the inversion procedure applied to ]('(-w2/2, x) gives us a conformal 
image of the Cauchy law. Suppose we take 144,=X~+ i fit where Xt is a real 
Brownian motion and fit is an independent Brownian motion having absorbing 
barriers at _+ I. Let ~ represent the hitting time of zero by the process X, and 
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consider t ~ e  -~~ where On is defined as above. Then this is a conformal 
martingale and since it is purely imaginary on the lines 3 z =  ___ l it follows 
by the Cauchy-Riemann equations (see [,181 for more detail) that Mt 
=9l[,e -~~ is a bounded martingale up to time ~. By the Doob theorem 
this gives us 

i O, rcy cos ~ - -  P~x [, I/Vr ~ i d y] = e-'~ 
- l  

which identifies Pox[,Wceidy] as the distribution we want. To compute this 

let us consider the conformal mapping z--* sinh ~ which takes the strip {x + i y: 

- 1 < y < l} to the left half plane, the boundaries x + i I going onto the intervals 
(i, + i v )  and ( -  i v ,  - i) respectively. But, since Wt is a complex Brownian motion 

until it hits the boundary x +_i l, then by Paul L6vy's theorem Zt = sinh 2 ~  

is a time-changed complex Brownian motion up to when it hits the intervals 

(i, iv ) ,  ( - i v ,  - i ) .  Thus in the change of variable z ~ sinh ~ we get the hitting 

distribution on the imaginary axis for complex Brownian motion killed when 
it hits these intervals. Hence the law we seek is the conformal image of the 
truncated Cauchy distribution by this function, precisely what was computed 
above. 

Example 3. In this case we have 

m+(da)=dal[o, ll; m-(da)=c52dal[_p,o] (l_>OZp). 

This example is much more difficult than the first two, since the solution requires 
some familiarity with elliptic functions. The standard references are [-5, 9, 24], 
but see also the Appendix for a summary of the relevant facts. 

For  the solution our first step is to check v<  + v .  Let us consider the 
L6vy process Xt = A~t whose Laplace exponent is given by 

 r I/ -�89 tan 

It follows that Xt has exponential moments, so if 1>62p the strong law of 
large numbers applies to show that l imXt = + v so we have v < + v almost 
surely. If 62p= l we have the same conclusion from the law of the iterated 
logarithm. 

The data for the system (e, "~) are 

r(z, x)= cos [,(p- x) d 1 ~ ] .  
C O S [ p 6 l / ~ z ] '  tc-(z)= - - � 8 9  tan p f ] / ~  
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so we need to solve the equations 

�9 ~ (z2/2, x) - 
cos z 6 ( p -  x) 

cos z tip 
[-2+ �89 tanh z 1-�89 tan 6pz] ~g~ (Z2/2, X); 

t co sh z ( l  - y )  
�9 z(z2/2, x) = ~ n ( x ,  dy) E_~ [e -  xL(o, r162 = y] 

cosh z l o 

This is the situation covered by 3.II, which means we substitute z~--*iw with 
nrc 

w > 0, write w = - ~ - ,  and look to sum the resulting Fourier series. The inversion 

of each term now gives Jacobi elliptic functions and the reader may wish to 
consult the Appendix since we assume a familiarity with their basic properties. 
First we try inverting the term to_ (zZ/2)= - �89  6 tan 6p z which gives us the series 

1 ~ ~ fro nrcz ,Spzcn 
7 0 L' ~ -  cos ~ - -  tanh l 

To evaluate this we use the formula (proved in the Appendix) 

K 7~nU 
c o s ~ - l o g l S n u l d u =  K tanh nrcK' 

- K  n 2 K  

A 

Here Sn is Jacobi's elliptic function with imaginary quarter period K' =2p6 

and real quarter period K = I. Differentiating Sn by using [9] p. 343, gives us 
our change of variable 

Sn 
f =  

6 Cn Dn 

As in previous examples we now consider the unique conformal extension of 
f, initially considered to be defined on ( - i  l, il), to a suitable rectangle in the 
right half plane. Using Jacobi's imaginary transformation the function we want 
turns out to be 

sn z cn z 
Z --'4" - -  

6 dnz  

where (see Appendix) lower case notation means these are functions of comple- 
mentary modulus, the real and imaginary quarter periods being interchanged. 

However by analogy with the previous examples we expect that f should 
have periods p 6, 1. That  this is in fact the case one can check directly using 
the formulae of [9], p. 350. Moreover  the above expression for f can be simplified 
as follows using [9], p. 341. First of all remark that all Jacobi's elliptic functions 

have the same poles so that f has zeros at the zeros of Sn and the poles of 

Cn, namely 2 m l + 4 n i 6 p  and 2ml+(4n+2)i f ip .  On the other hand the poles 
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A A 

of f are located at the zeros of Cn Dn these being (2m + 1) l+4ni6p and (2m 
+l)l+(4n+2)i6p. Next we introduce sn, Jacobi's elliptic function of real 
quarter period 6p and imaginary quarter period l, which we find has zeros 
at 2m6p+2nil  and poles at 2m6+(2n+l)i l .  Since all poles and zeros are 
simple it follows from Jacobi's imaginary transformation that 

A A 

snz  cnz  1 
z---) 

A 

dn z sn z 

is an elliptic function with neither zeros nor  poles in the complex plane. Therefore 
by the Liouville theorem it is constant, and again invoking Jacobi's imaginary 
transformation we identify f as a multiple of 

a n  z 
Z " " 1 "  - -  

Cn z" 

We will verify in the Appendix that this function satisfies the condition of 3.1. 
The final part of the computat ion is to see that our answer is the conformal 

image of 2.2 by the function z~snz .  For  this we compute the function 
~'(-we~2, x) by finding the image by sn z of the rectangle with corners +_i l, 
i l l + p 6 .  But it suffices to determine the image of the boundary and we see 
that ( -  i l, i l) is mapped onto the imaginary axis while the other boundary points 
go to the positive real axis. In fact we find from [9], p. 351, that if k is the 
(elliptic) modulus of sn then 

sn(p6+il)=k-1; s n p 6 = l  

(recall that 0 < k <  1). Thus we are in a similar situation to before; namely the 
distribution we seek can be realised as the hitting distribution on the imaginary 
axis for complex Brown• motion with reflecting boundaries on the other sides 
of the rectangle whose corners are • i l, • i l + p 6. But because the image motion 
under z--* sn z is a time-changed Brown• motion with vertical reflection along 
the real axis one can use the strong Markov property to see that F( -w2/2 ,  x) 
inverts to give us the conformal image of the Cauchy law. So after doing the 
substitution we get 

log ~'(-w2/2, x )=  - I w l  sn ~x 

(if the reader is unhappy with this argument then a direct computation can 
be found in the Appendix where of course the answer is the same!). So we 
have everything in place for the solution: v <  +0% the function f satisfies 3.1, 
and F is the Fourier transform of the conformal image of the Cauchy law 
by sn z. The answer is therefore 

B(x, dy)=ls in  np {X~p dY 2 
2 \Y]  X 2+ y2 

with X = s n  6x, Y= - i  sn iy. 
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This result was announced in [17] (omitting the restriction l>g)Zp) and to 
our knowledge the solution is new. A related problem appears in [2]. 

Example 4. Consider 

m + (da)=da +St; 

In this case we must solve 

m- (da) = (~2 da 1 t_ p, ol. 

~ (z2/2, x )=  
cos z 6 (p - x) 

cos z b p 
~- [2 + �89 z coth z l -  �89 6 z tan 6 z p] ~ (zZ/2, x), 

oo 

�9 ~ (zZ/2, x)= ~ H(x, dy) E_x [e-~z(o, ~)IB~ = y] 
0 

sinh z ( l -  y) 

sinh z I 

and we are in the setting of 3.111; so we take z = n iO,/l, where 0, = (n + �89 and 
do the inversion of the resulting series. From the inversion of to_ we get 
1 ~ 6~ roy np~ 

,=~o 0. tanh 0, so if we integrate in y and use the formula 7=-Tc~ 
(see Appendix) 

1 ~ sinTZU dnUdu  1 ~K'  
2n ~ - 0 ,  snu =~-tanh ~ 0, 

- K  

then we find that 

~ . ny  
--1 ,=o/-" sin T 0. tanh 0, 

np6 6 D n y  

l n Sny 

where these are Jacobi elliptic functions with imaginary quarter period K ' =  6 p, 
and real quarter period I. Using Jacobi's imaginary transformation on this gives 
U S  

sn z 
Z ---~ - -  

dn z 

as the required conformal mapping. To complete our argument we need to 
verify the following. First we must check that our mapping satisfies 3.1; this 
is not so trivial and we refer to the Appendix. Next we want to see that 
Y(-zZ/2, x) is the Fourier transform of the image by sn/dn of the Cauchy law; 
this follows either by a conformal mapping argument as before, or else by direct 
computation starting from the Fourier series (see the Appendix for more 
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details on this). Finally we know that in this case r < + oo is automatic and 
so we obtain the answer 

. rcp [X'v ~ dY  z 
Fl(x, dy) = sin ~ -  [~7/] (y < l) X 2 yz  \ r /  + 

with the notation 

sn 6 x Sny  
X =  ; Y -  

dn fix Dn y" 

This result appears to be new though, as for the previous example, it is related 
to the 'factorisation on a circle' problem considered in [2]. 

Remarks. (1) These last two examples respectively generalise the first two as 
can be seen by using the degenerate forms of Jacobi functions when the periods 
tend to infinity. Thus if l l" + oo in example 3 then we recover example 1, while 
taking p T + oo in example 4 gives example 2. Doing both we obtain the answer 
at 2.2. 

(2) Given the difficulty of doing these computations it seems sensible to 
list what corroborative evidence we have. The first example has been computed 
in [2] and a special case was treated in [16]. Moreover  we have checked it 
by using a conformal martingale construction similar to the eigenvalue method 
of [2]. The second example is new but a special case appears in [2] and we 
have again checked the answer by another argument (see [18]). For  the two 
examples involving elliptic functions we currently have no other proof. 

(3) The case m+(da)=l(o.t)da, m-(da)=b2da was considered in [17] but 
the answer there is incorrect, the error coming since the condition z <  + oo 
is not satisfied. However we have since managed to calculate H(x, dy) by using 
the information, suggested by the method of 3.II, that the relevant change of 

rcz 
variable is z ~ tanh ~ f .  In fact the solution is 

~_ . 7zy 1 -p TCCSX 7zy SlO  taoh  (tan ) 
u(x, dy) = ~ sin ~ -  V - -  ~ - x  

tan ~ + t a n h  2l \ " s i n h  ~ f -  2 zcy 2 zcfix 

Details of the calculation are to be found in [18]. 
(4) The condition at 3.1 is rather intriguing. One would expect it to be 

well-known but I was unable to find any reference in the literature. However 
several people have suggested the possibility of characterising all such functions 
and I managed to do so. It turns out that the only functions which satisfy 
3.1 are essentially (i.e. up to rotations) of the form sn or sn/dn, although we 
can now take the period parallelogram to be skew instead of just rectangular 
as in our examples and we also allow degenerate behaviour. The proof, which 
uses only elementary complex variable theory, has been written up separately, 

(5) It would be interesting to find a better probabilistic justification for the 
conformal mappings used here. In the context of [18] their oceurence is somehow 
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'obvious' ,  but here we lack a probabilistic interpretation for the equation at 
2.3. 

(6) I want to thank David Williams and Neil Baker for introducing me 
to these problems and for convincing me that explicit computations were indeed 
possible. In particular they conjectured that the solution of example 3 would 
involve Jacobi elliptic functions. 

(7) The hypothesis of 3.1 was omitted from [17] so the main theorem there 
is false. I am indebted to Ph. Biane, and to at least one of the referees of 
a previous version of this paper, for pointing out my error. 
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Appendix 

Elliptic functions have so many properties that we should mention the ones 
used in this paper. In fact we are only concerned with the elliptic functions 
of Jacobi, which we write as sn, cn, and dn, these being biperiodic functions 
on the complex plane. They all have simple poles and zeros, two of each in 
any fundamental region, and we only discuss the case where the period parallelo- 
gram is a rectangle. It is standard to denote by K (resp. K') the real (resp. 
imaginary) quarter period of the family, the individual periodicities being speci- 
fied in terms of these [24], p. 504. The usual way of defining sn is as the inverse 
of the function 

1 
z o 1/tl-w) l-k2w)dw 

provided the path from 0 to z avoids branch points of the integrand. The parame- 
ter 0 < k < 1 is known as the modulus of sn z = sn(z, k), and we denote the elliptic 

function of complementary modulus sn(z, l ~ - k  2) by upper case notation Snz. 
We can define functions Cn and Dn, related by the same rule to cn and dn, 
and it can be shown [5], p. 394 that K'  is the real quarter period for the functions 
of complementary modulus while K is their imaginary quarter period. It is 
not entirely surprising then that from [9], p. 344 we get 

Sn z 1 Dn z 
- - "  - - "  dn (i z) - . sn(i z) = i Cn z '  cn(i z) = Cn z '  Cn z 

These formulae are known collectively as Jacobi's imaginary transformation 
for elliptic functions. 

Another  well known property is the degenerate behaviour of Jacobi elliptic 
functions when the periods tend to infinity [9], p. 354. This can be summarised 
as follows where we determine the constants using the expansion [9], p. 344 
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(11) for small values of z. When the real quarter  period K is infinite and the 
imaginary quarter  period K '  finite we have 

2 K '  ~ z  ~ z  ~ z  
sn z = tanh =-==-__.; cn z = sech ===v_..; dn z =sech  ~----7- 

2 K '  2 

Conversely when the real quarter  period K is finite with imaginary quarter  
period K '  infinite the degenerate forms are 

2 K  . ~ z  ~zz 
sn z = rc sin ~-K-; cn z = cos ~-~-; dn z = 1. 

These are extremely useful for checking algebraic identities. 
Next  we have a look at the formula 

k 7~nx 
I c o s - ~ - l o g [ s n x [  d x =  - K t a n h  nz~K' 

-K n 2 K  

(the case n =  1 appears  in the Mathematical  Tripos of 1902). To prove this 
consider the contour  integral 

1 f dn z cn z ei~nz/1, ; d z  
2rci ~ snz  

where F is the rectangular contour  with corners ___ K, __ K + ioo. But using [9], 
p. 350 and Jacobi 's  imaginary t ransformation 

dn cn (i y + K) = - (k') 2 i Sny  Cn y 
sn - Dn y 

so if we apply the residue theorem then the integrals along the infinite lines 
cancel. Using integration by parts and sn(_+K)= _+ 1 we see the contribution 
along the real axis gives us 

1 ~ dnxcnXe i ,~ ,X / rdx  = n ~ nrcx 
- - -  cos - ~ -  log [sn[ x dx. 

2rci - r  s n x  2 K  -K 

It remains to calculate the residues at the poles of the integrand inside F. Some 
of these occur at the zeros of sn, which by [24], p. 504, are the points 2m i K '  
and where we know that cn (2 m i K') = d n  (2 m i K')  = (--  1)". The residues for these 
are therefore e -2m"'~K'/K, with half this for the contribution from the origin. 
The other singularities of the integrand occur at the poles ( 2 m +  1)iK'  of cn, 
because the poles of dn cancel with those of sn, and we compute the residues 
here to be - - e  -(2"+t)n~K'/K by using [9], p. 341. That 's  all that 's needed to 
verify our claim. 
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By doing a similar argument one can prove that 

K rex d n x  n K '  
sin ~ -  0, sn x dx = n tanh ~ -  0, (0, = n + �89 

- K  

The contour  for this calculation is the same as before and we use the integrand 

with the information that 

r•dn z ei~O.~/K dz 
s n  g 

d n  - - ( i  y+_K)= +_k' Cn y, 
s n  

which gives us the cancellation of the infinite integrals and calculating the resi- 
dues as before. Notice how the poles are now just at those zeros of sn z which 
lie inside F, namely the points 2 m iK'. 

We also promised to do the direct computat ion of Y(-w2/2,  x) in the case 
of examples 3 and 4 above. For  example 3 we begin with the kernel 

+ cos  cos  iI cos 

However if we write cosh n rc 6 ( p -  x) 
l 

cos - 7 -  as the real part  of cos (i 6 [p 

- x] + y) then we have the real part of 

1 [ ~  ~ 2q n cosn~_~(ic~[p_x]+y)]dy 
~- + 1+q2 ,  

n = l  

where q = e -"~p/t. From [12], p. 911, this is the real part of 1 Dn(i 6 [ p - x ]  + y) 
provided p < + oo. But by [-93, p. 350, this is just rc 

7r . Cn 1-- 91[- ,~n  (Y-i6x)ldY 

which we can write, using Jacobi's imaginary transformation and the addition 
formula for sn, as 

191[  ~ ] 1 9 t  [ (1-k2sn26xsn2iy)dy ] 
1r sn(6 iy) sn f xcn i ydn i y - cn6xdn ,Sx sn i y  

1 s n b x c n i y d n i y [ 1 - k  2snz6xsnziy] dy 
7r sn 2 6 x cn 2 i y dn 2 i y - cn 2 6 x dn 2 6 x sn 2 i y 

1 sn6xcniydniydy  i sn6xd(sniy) 
zr sn26x-sn2iy rc sn26x-sn2iy 

as required. 



Wiener-Hopf Factorisation of Brownian Motion 387 

The computat ion for example 4 is much the same. We have to sum iI sinh~ cos 0n  yl 
= o sinh 0, rc 6p  

1 

dy. 

rc6(p--x) cos 0, zry However if we write sinh 0, l ~ -  as the imaginary part of 
7~ 

sin O./-(i 6 [p--  x] + y) then we obtain 

~[~_ 2q "+~ zc )] 
z5 ~ l _ q 2 , +  1 s i n O , ~ ( i 6 [ p - - x ] + y  dy. 

n = 0  

k' 
But from [12] p. 911 this is the imaginary part of - -  Sn(i 6 [ p -  x] + y) and using 

re 
the addition formulae for elliptic functions we obtain 

-ik' CnyDnySni6(p-x) _--i[CnyDnySni6x] 
rc 1 - ( k ' ) 2 S n 2 y S n 2 i 6 ( p - x )  rc [-Sn2n2/6x+x+Sn~-y] 

Using Jacobi's imaginary transformation this comes out to be 

1 [ s n 6 x c n h x d ( S n y )  ] 

as we claimed above. 
Finally we come to the problem of verifying the condition at 3.1. Recall 

that this is 

G(yl + Y2) f (Yz)+ f(Yt) 
G (Yl -- Y2) - f(Y2) - f(Yl)  

and we need to verify it for the functions f encountered above, namely sin z, 
sinh z, sn z and sn z/dn z. Because the first two are degenerate cases of the third 
and fourth respectively we only have to check our condition on these, and 
replacing z ~  i z it suffices by Jacobi's imaginary transformation to check 3.1 
only for the functions Sn z/Cn z and sn z/dn z. Recall again our convention that 

Sn z is the Jacobi elliptic function with the same imaginary period as Sn z but 
whose real period is doubled. 

Case I. Suppose f = S n / C n .  In this case, by using the alternative expression 
(see example 4.3) 

A 

Snz  
f ( z )=  A A 

C n z D n z  

we see immediately that G = Sn. Condition 3.1 now follows by using the addition 

formula for Sn. 



388 P. McGill 

Case2. Consider f = s n / d n .  In this case we know [-12] p. 630 that G 
= V(1 - c n )  (1 + cn)-1 but the verifying 3.1 is not so easy. If we use the convention 
that sn y~ = s~ etc. then we need to check the identity 

1 - - c n ( y 2 + Y l )  1 + c n ( y 2 - - y l )  = s{__d2 +s  2 dl~ 2 
1 + c n ( y 2 + y a )  1 - - c n ( y z - - y l )  \ S l  dz--s2dl]" 

F o r  this  e x p a n d  c n ( y  2 q-Y1) b y  u s i n g  the  a d d i t i o n  f o r m u l a  [-9] p. 344  w h e r e u p o n  
the  lhs  g ives  us  

(1 - -  k 2 s21 s2 2 + s~ s 2 d,  d2) 2 - Cl 2 c 2 

(1 --  k 2 s 2 s 2 -  s l  s2 d ,  d2) 2 -  c 2 c 2" 

Expanding, using the identities d~ = 1 -  k 2 s 2, c 2 = 1-s~  2, we find that the top 
line comes out to be 

2 2 2 2 (S 1 d 2 q- s 2 d I d- 2 s  1 dl $2 d2) (1 - k 2 s 2 s22), 

so by symmetry the result is clear. 

Remark. The period parallelogram is rectangular if and only if the elliptic modu- 
lus k~(0, 1), and we have restricted ourselves to this case since it suffices for 
the examples considered above. However, when checking the condition 3.1 we 
only needed the addition formulae for elliptic functions and these are true in 
full generality. Thus we have found a pair of one parameter families of functions 
satisfying 3.1 where the parameter k 2 takes its values in the complex plane 
cut along ( - o %  0) and (1, + oo) (see [5] p. 390 for the full story on this). But 
we were unable to find Brownian motion examples giving rise to elliptic functions 
with a skew period parallelogram. 
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