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Summary.  Brownian mot ion may be characterized as a process which, when 
composed with minimal parabolic functions, gives martingales. This note 
explores the extent to which this is true in general. For  the diffusion associat- 
ed with the Kohn  Laplacian on the Heisenberg group it is shown to be 
false. 

Introduction 

In [13] it was shown that for Brownian mot ion on a non-compact  symmetric 
space X the minimal solutions u of the heat equation associated with the Lap-  
lace-Beltrami operator  determine martingales which characterize the process. 
More explicitly, if a process (Xt)t>=o on X is such that u(Xt, t) is always a 
martingale of expectation one whenever u is a minimal solution, then (Xt)t>_o 
on IRe is a Brownian mot ion started from the origin if the processes 
(exp { - I lyl[ 2 (t/2) + (y, Xt)})t >__ 0, Y ~Na, are all martingales of expectation one. 

This raises the question as to when this type of result is valid. In this article, 
while no general answer is given, several examples are discussed for which it 
holds and one where it does not. 

It is shown for a reasonable elliptic operator  L defined on an open set 
U in R d that for a minimal solution u of the equation Lu+u~=O on U x I R ,  
the process u(Xt, t) is a martingale if and only if u has no zeros (here (Xt)t>_o 
is the associated diffusion killed when it hits the boundary). In the case of 
Brownian motion on ]R d • (0, ~ )  killed when it hits 0 it is shown that the corre- 
sponding minimal solutions without zeros on Rd • (0, ~ )  x R characterize the 
process in the above sense. 

This also suggests a similar characterization of reflecting Brownian mot ion 
on IRa• [0, ~ ) .  These characterizations also hold for a simple r andom walk 
on ~d. 

In the case of the non-compact  symmetric space X a minimal solution of 
the heat equation factors as a product  of a non-negative eigenfunction and 
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an exponential in t. As is known [5], this is false for the Ornstein-Uhlenbeck 
process on R e. However, it is still true that the minimal solutions characterize 
the process in the same way (Theorem 5.1). 

The article concludes with a counterexample. Let IH" denote the Heisenberg 
group ~2"x IR and let L denote the Kohn  Laplacian on I-I". The minimal solu- 
tions of the equation Lu + ut = 0 are determined. As they are of the form eCtf(g), 
where L f =  c f  and f > 0 is minimal, this amounts to determining the functions 
f It is shown that they depend only on II2" and are the minimal eigenfunctions 
for the equation A f = c f  on IE", where A is the usual Laplacian. As a result, 
the resulting martingales cannot characterize the associated diffusion. This has 
nothing to do with the fact that L is degenerate. It still happens if L is replaced 
by L + ~ ~2/~t2. 

Consequently, it looks as though the fact that in euclidean coordinates 
L+ e 2 ~2/~t2 is not uniformly elliptic is the reason for the failure of the theorem. 
However, a recent result of Alexopoulos [1] also suggests that it is due to 
the nilpotence of the group IH". It is an open question as to whether the theorem 
is valid for reasonable uniformly elliptic operators on Ra. 

1. Martingales and Minimal Parabolic Functions: A Problem 

First some well known facts about solutions of parabolic equations are recalled. 
Consider the parabolic operator  L*= L + O/~?t defined on functions u e E  2' I(U), 
U any open set c R e x ]R, by 

L~u= 2 ~ aij(x,t)DiDju+ ~bi(x,t)Diu+ut, where Di=O/Ox i. 
i , j = l  i = 1  

For  simplicity's sake assume the coefficients to be bounded Lipschitz and 
the matrix (a,j) to be uniformly elliptic. 

Definition 1.1. A box B in U is a set of the form B =  D x (a, b), where D is 
an open ball. The parabolic boundary of B, denoted by Q'B, is D x {b}u 
aD x [a, b]. The lower boundary of B is D x {a}. 

It is well known (cf. Freedman [6]) that the first boundary value problem 
for any box B has a unique solution which is non-negative when the boundary 
value is >0.  In other words to any continuous function q~ on the parabolic 
boundary there is a unique continuous extension u=u4, to the box for which 
L~u=O. 

Therefore, to each y~B there is a probability measure/~r on the parabolic 
boundary such that uo(y)= S qSd/zr. This "harmonic  measure" is the exit law 
for the box of the continuous Markov process with generator L ~ started at 
y. 

If yE U let B(y) be the family of boxes in U for which y is in the lower 
boundary. 
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Proposition 1.2. A continuous function f on U is in c~2, I(U ) and satisfies L # u=O 
if and only if  for  all y E U  and all boxes B in B(y) that are ~ U, f ( y ) =  S f dp~, 
where py is the harmonic measure for  B associated with y e B .  

Proof  Fix a box B = D x (a, b) and let u be the solution of L e u  = 0 on B with 
boundary  value r  Consider g = f - u  on B. Let y = ( x ,  t ) eB  and choose 
an increasing sequence of boxes B , = D ,  x (b,, t) with D = U D, and b, ~" b. Then 
g(y)=  S g d p , , y =  ~gd#y since the exit law for D, converges weakly to that of 
D. Hence, g (y) = 0. 

Now assume that U= O • (a, c), 0 a domain c ] R  d. Consider the diffusion 
associated with L # killed when it first leaves U (cf. [123 for the diffusion on 
IRa). For  any y = (x, t) let E tx' 0 denote expectation with respect to this diffusion 
started from y =(x,  t). The random position of the diffusing particle at time 
t will be denoted by (Xt,  t). Let (~s),<s<c be an appropr ia te  filtration on the 
underlying probabil i ty space (f2, ~, P). 

Corollary 1.3. Assume that u ~ 0 and that L e u = 0 on O • (a, c). Let  a < b < c and 
define v (x, t) = u (x, t) for  b <= t < c and = E ~x' t) [u (Xb, b)] for  a < t < b. Then L ~ v = O. 

Proof  To begin with v is continuous. Further, for any box B in B(y), y = ( x ,  t) 
that is c O  • the Strong Markov  property implies that E(X'~ T)] 
= v(y), where T is the first exit time from B. 

Theorem 1.4. Assume u>_O and that L # u = O  on 0 • (a, c). Let  u be a minimal 
solution (i.e., i f  O<v<_u and v is a solution then v=2u) .  Let  a< to<C.  Define 
the process M = (Mr)to <=t <~, where Mt  = u (X  t, t). Then, for any x o ~ O, M is a 
p(~o,to)_martingal e with non-zero expectation if and only if  u has no zeros. 

Proof  Assume that u has no zeros. Since u is minimal, it follows from the 
previous corollary that for any s < t, a < to < S < t < c, u(Xs,  s)= E(X~'S) u(Xt ,  t). 
By the Markov  property this is E (~~176 [u (Xt,  t) [ q~]. 

Proposit ion 1.2 implies that if u vanishes at y~ = (x~, t 0 then u vanishes on 
O • [fi, c). As a result, Mt = 0 for fi < t < c. 

N o w  assume that  the coefficients a~j and b~ do not depend on t. 

Problem 1.5. Let (Xt) be a continuous Markov  process on X. Let u > 0 be a 
minimal solution of L # u = 0 on X • (a, c) without zeros and let a < b < c. Denote 
by M ( u )  the process (Mt)o=<t<~ where Mt=u(Xt,  t). Is (Xt) equivalent to the diffu- 
sion on X with generator L, started from Xo, if  M is a martingale with expectation 
u(x  o, b ) for  all minimal u? 

When X = R " ,  (a, c)=]R and b = 0  the answer is affirmative for Brownian 
motion as was pointed out in the introduction. If  X is a non-compact  symmetric 
space and L is the Laplace-Beltrami operator  the answer is again affirmative 
[~3j. 

In what follows it will be shown that for Brownian motions on IR + and 
for Ornstein-Uhlenbeck processes the answer is affirmative. 

However,  for invariant diffusions on the Heisenberg group the answer is 
negative. The reason for this seems to be due to a lack of uniform ellipticity 
and/or  the nilpotence of the group. 

All processes will be defined on a probabil i ty space (~, ~, P) equipped with 
an increasing filtration (~)t  ~= o. 
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2. Brownian Mot ion  on IRd x N. + Killed at Zero  

A list of the minimal solutions of the heat equation AuW2ut=O on IRa x iR + 
is given in [10] (see Corollary 3.5): 

(1) To each Y e l l  d x ~ +  there corresponds the zero-free function 

K(Y; u, t)= {exp-II Yll 2 t/2} {exp (u, Y) - e x p  (u, Y)}, 

where Y=(y, - a )  if Y=(y,  a) with ysiRa. If u=(x' ,  x) then 

K(Y; u, t)= {exp-[[y]12 (t/2) + (x', y)} { e x p - a  2 t/2} 2 sinh a x. 

(2) Furthermore, to each yeN.  a , there corresponds the zero-free function 

K(y; u, t ) = x  exp{ -Ilyll 2 (t/2) + (x', y)}. 

Remark 2.1. Note that K(y; u, t) is the derivative in a at a = 0  of K(Y; u, t) 
= {exp - II Y tl 2 (t/2) + (x', y)} { e x p  - a 2 t/2} 2 sinh a x. Therefore if K(Y; Ut, t) is a 
martingale for all Y= (y, a), where Ut = (X't, Xt), the fact sinh 2y = 2 sinh y cosh y 
implies that {exp-  II Y II 2 (t/2) + ( x ; ,  y)} • {exp-  a 2 t/2} Xt  cosh a Xt e L ~. Since 
sinh a x/a <= x cosh a x it follows that (O/Oa) (K(y, a; U,, t))la = 0 is also a martingale. 
Consequently, the functions in the second list produce martingales whenever 
those in the first list do so. 

The analogue in this context of the key Proposition 3.4 in [13] is the following 
result. 

Proposit ion 2.1. Let u=(x ' , x )  denote a generic point of I l f lxN.  +. There is a 
unique probability #t on IRa x ]R + such that, for all y~lR ~ and a>O, 

~ e x p ( x ' , y )  s inh(ax)#t (du)=exp{(x 'o ,y )+(ny] t2+a2) t /2}s inh(axo) .  (*) 

Further, this probability is the law of Brownian motion on IRd X [ l  + at time t 
when started from x o and killed when it hits x = O. 

Proof. To each probability v on l l d x  IR + there corresponds a unique signed 
measure ~ on IR d x 1t such that (i) t/ agrees with v on lRe x IR + and (ii) t/ is 
" o d d "  i.e. J , i / =  - t / w h e r e  J(x', x)=(x' ,  - x ) .  

Let z(y, a)=  ~exp(x',  y)sinh(ax)v(du).  Then z can be extended analytically 
to 112" x IE. Hence, for all z e C and (e  IE ", if v satisfies (.), 

exp (x', ~) sinh(z x) v (du) = exp {(x; ,  {) + ([] ~ It 2 + z 2) t/2} sinh (a Xo), 

where ( x ' , ( ) =  x'i~i and [l~ll2= ~ ( 2 .  As a result, the Fourier transform of 
i = 1  i = 1  

the signed measure q is exp {i <xb, y)  - ([L Y II 2 + a 2) t /2)  sin(a x). 
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Since for killed Brownian motion (Bt)t>=o, K(Y;B t ,  t)={exp-[lyl l2(t /2) 
+ (b't, y)} {exp - a 2 t/2} 2 sinh a bt is a martingale, where B t = (b't, bt)~]R d x N.+, 
it follows that the law #t of Bt satisfies (,). 

As a fairly immediate corollary of this characterization of probabilities one 
has 

Proposition 2.2. Let (Xt)t>=o be a process on TR d x ~  +, where Xt=(x't, xt). It  is 
equivalent to Brownian motion B=(Bt)t>=o started from Xo=(X'o,Xo) and killed 
when xt first equals zero if  and only if, for all a > 0  and y6]R d, the process M a'y 

a , y  t = ( M r ) t  >= o, where M~] "y = { e x p -  ]1Yll 2 (t/Z) + (xt,  y)} { e x p -  a 2 t/Z} 2 sinh a x,, is 
a martingale of  expectation {exp ( x ; ,  y)} 2 sinh a x o. 

Proof To begin with, it follows from the martingale condition that the distribu- 
tion of Xt is the same as that of Br 

To determine the finite-dimensional joint distributions let 0 < t(1) < t(2) 
< . . .  < t (k) = s < t and let v be the joint distribution of 
(Xo, X~I), X~(2), ..., Xs, Xt). Denote by ~(v, du) a conditional distribution of v 
given v, where (v, u) e {NJ x Ill + }d x {R e x IR + }. The martingale condition implies 
that for v = v(co)-- (Xo,  Xt(1), Xt(2), . . . ,  Xs), 

S re(v, du) exp (x',  y> sinh (a x) = exp {(IJyll z + a 2) ( t -  s)/2} exp { (X; ,  y )  sinh(a Xs) 

P-a.s. From Proposition 2.1 it follows that P-a.s., for v=(Xo,  Xt(1), Xt(2) . . . .  , Xs), 
~(v, du) is the law of killed Brownian motion at time t - s  started from Xs(CO). 
Since v(dv, du)=#(dv)Tc(v, du) this implies that one may compute the finite- 
dimensional distributions by induction. 

Remark 2.3. The proof  of Proposition 2.1 uses the well-known fact that two 
probabilities v and v' agree on ]R d x N+ if and only if, for all ye lR d and a > 0 ,  

exp ( x', i y ) sin (a x) v (d u) = ~ exp < x', i y ) sin (ax) v'(d u). 

Using this fact, one may determine the finite-dimensional joint distributions 
without using regular conditional probabilities (the following argument was 
pointed out to the author  by C.S. Herz). Let 0< t (1 )< t (2 ) ,  ... < t ( k ) = s < t  and 
let f/, l<_i<_k and fsE~~ x lR+). Define ~ f d v = E [  l-[ fi(Xt(i))f(Xt)] and 

l < i < k  

define S fdv '  to be the corresponding integral for killed Brownian motion B. 
Now ~ f d v  and ~fdv '  may be computed by first conditioning on ~s and then 
integrating. Doing this with f (u )= exp (x' ,  i y ) s in (a  x) and using the martingale 
property reduces the computation of ~ f d v  and of ~fdv '  to an expectation of 
functions of Xt(~), l<_i<k. By an obvious induction on k these expectations 
coincide and so v = v'. 

3. Reflected Brownian Motion on IR d x [0, + ~ )  

Let v be a fixed vector of length one in R e+l with Vd+ 1 >0.  There is a unique 
linear R: IRa + 1 __, NJ + 1 which leaves IR d = ~ x {0} ~ IR d + 1 pointwise fixed and 
maps v to - v  transformation (the reflection of R a+ i in R d along v). 
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An obliquely reflected Brownian motion on ]Rex [0, oo) may be obtained 
by starting a Brownian motion on IR e+l at a point Xo whose d +  1-st co-ordinate 
is > 0  and mapping it onto ]Rex [0, oo) by S, where S(x )=x  if the d + l - s t  
co-ordinate of x is _>_0 and S(x)= R(x) otherwise. In the case of killed Brownian 
motion the solutions of the heat equation that are of interest are those that 
are " o d d "  with respect to the normal reflection. By analogy, here one considers 
those solutions u that are "even"  i.e. u (x, t )= u (R (x) t) for all x e]R d + 1. The impor- 
tant ones are again minimal: namely the functions 

k(y; x, t )= {exp-Llyll2 t/2} { e x p ( y , x ) + e x p ( t R ( y ) , x ) } ,  for ye]Ra x [0, oo). 

A probability v on ]RdX(0, +oO) determines a unique measure on IR e+l 
that is invariant under reflection along v. Consequently, v is determined by 
the transform ~(y) = S {exp ( i  y, x )  + exp ( i  x R (y), x)} v (dx), y e N  e + 1. 

Given this information it is not hard to copy the proof of Proposition 2.2 
to get a proof  for 

Proposition 3.1. Let (Xt)t>=o be a process on ]Re x [0, + oo). Assume that, for each 
t > 0, P({Xt e]Re}) ___ 0. Then the following are equivalent: 

(1) the process is equivalent to Brownian motion started from Xo and reflected 
obliquely at IR e x {0} by the vector v; 

(2) for all y e n  e x [0, oo), the processes 

( {exp -  II y ll 2 t/R} {exp (y, Xt)  + exp (tR (y), Xt)})t >__ o 

are all martingales of expectation {exp (y, Xo) + exp (~R (y), Xo)}. 

Remark 3.2. The condition that the process at any time t is not on the boundary 
ensures that the joint distributions are carried by the product  of copies of ]Rd 
X (0, + oO) and as a result all the measures involved can be determined by 

their transforms. 

4. Remarks on Simple Random Walks 

The above simple computations for Brownian motion raise the obvious question 
as to whether they can be carried out for random walks. In the case of simple 
random walks on 2g d it is relatively straightforward to compute the minimal 
solutions of the associated space-time walk on 7/. d § 1. As in the Brownian motion 
case they give rise to martingales which characterize the original walk. Details 
are given in [-1] for this and more general random walks. Killing and reflection 
at 2g d- 1 x {0} can be handled as in Sect. 3. 

5. A Characterization of the Ornstein-Uhlenbeck Process 

Consider the generator L u (x) = A u (x)-- (x ,  Vu (x)) of the Ornstein-Uhlenbeck 
process on ]Re. Using a scaling in x by ] /~ and the computations in [5] the 
minimal solutions of the equation Lu+ut=O on ]Rex ]R are easily computed. 
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One may also simply calculate by Martin's method starting from the formula 
for the fundamental solution G(x, t; y, s)=Pt_s(x, y) if s <  t and = 0  otherwise, 
where 

Pt(x, y )=  [1/2~(1 - e - 2 t ) ]  el2 exp { ( -  1/2(1 --e-2t)) Ire-'x +yll2}. 

They are the functions K ( y ; x , t ) = e x p { - ( e 2 t - 1 ) l l y l l 2 + ] / / 2 d ( y , x ) } ,  where 
y~iRa. 

Since they have no zeros, by Theorem 1.5 they give rise to martingales 
when composed with the space-time process corresponding to the Ornstein- 
Uhlenbeck process. As a consequence so does every non-negative solution of 
Lu+u~=O on IRa• These martingales characterize the process as stated 
below. 

Theorem 5.1. Let X=(Xt)t>=o be a process on ]Ra and let 

M~= K(y; Xt, t )=exp { --(e 2 t -  l) [lyll 2 + ~/2et (y, X t )  }. 

The process X is equivalent to an Ornstein-Uhlenbeck process started from x o 6iRa 
if and only if, for all yEIR a, the process M y= (M~)t>o is a martingale with expecta- 

tion exp ~f2 (y, Xo). 

Proof It remains to show that if the processes M r are all martingales, then 
X is as stated. 

To begin with, if yt= e t Xt, the process (Yt)t>=o has independent increments 
since E[exP{V~(y ,  y t -ys ) } l~]=exp{p jyN2(e2 t -e2S)}  if s<t .  Hence, X is a 
Markov process. 

The value of the expectation of the martingale implies that the Laplace 
transform of Yt is E [exp (u, Yt)] = exp {(e 2 t -  1) ]l U II 2/2 + (U, X0) }. It is then a rou- 
tine calculation to show that the distribution of X, is Pdxo, x) dx. 

Remark 5.2. Replacing the generator L by L +, where L + u (x)= A u (x) + (x,  Vu (x)), 
the space-time process associated with L + O/Ot is obtained from the Ornstein- 
Uhlenbeck process by conditioning by h (x, t) = exp { ( -  dt/2) + H x IF 2}. The mini- 
mal functions are then of the form hK(y;  ). Given a process for which they 
give rise to martingales one may recognize it as a diffusion with generator 
L + by "uncondit ioning" with the aid of the martingale determined by h (i.e. 
for y =0) and observing that with the resulting change of probability one is 
then looking at a diffusion with generator L. 

6. Brownian Motion on the Heisenberg Group 

Let ~-I" = C" x IR denote the Heisenberg group, where (z, t). (w, s) = (z + w, t + s 
+ 21 m z w-). It is an easy computation to show that the vector fields 

Xk=a/OXkq-2Ykt~/Ot and Yk=O/6~yk--2XkO/Ot 
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are left invariant and satisfy [Xk,  Yk] = -- 4 T =  -- 40/Ot, for 1 --< k-< n. The opera- 

tor A k = ~ [X~ + Yk 2] is called the Kohn Laplacian. It is a sub-elliptic operator 
k = l  

on ~-I n and because the vector fields Xk and Yk, 1 <--k <-n, satisfy H6rmander's 
condition it behaves in many respects as though it were elliptic. In particular, 
one may carry out the usual arguments of potential theory with it (cf. [3]). 
This second order operator and the related operators Ak,~ = Ak + e T 2, ~ >0, are 
all left invariant on IH n and it is reasonable to expect that all the standard 
properties of classical potential theory on N" should carry over to them. 

It will now be shown that in one respect this is false, namely there are 
not enough solutions of the associated parabolic equations for the corresponding 
martingales to characterize the diffusions. What  happens is that in each case 
a non-negative global solution u of the parabolic equation depends only on 
zell2 n and the time variable. In other words, A k , , u + u t = O  and u > 0  implies 
that u = v o n ,  where ~: II;" x ~ x IR~II2 n x IR is the projection n(z, s, t) =(z, t) and 
A v + 4 v t = O .  

To begin with assume e = 0. The sheaf of solutions of the equation Ak u + u t = 0 
satisfies Doob's axioms of abstract potential theory (cf. [2]). This means roughly 
that the potential theory associated with the heat equation on N" applies here. 
In particular, Moser's form of the Harnack Inequality is valid as will now be 
shown. 

Proposition 6.1 (Harnack's Inequality). Let  h>O be a solution of  the equation 
Aku + ut = O. Let  compact K ~ {(g, t) l t > to}. There is a constant C(K, (go, to)) such 
that 

h (g, t)_<_ C h (go, to) for all (g, t) e K. 

Proof  In view of Satz 1.4.4 of [2], it will suffice to show that {(g, t)[t>>_ to} 
is the smallest absorbing set containing (go, to). This is so if for a non-negative 
hyperharmonic function u on ~-Inx N (hyperharmonic wrt Ak+O/&,  cf. [2] or 
[4]) (go, to)=lim(gn, tn) and u(g,, t , )< oo implies that u <  oo on {(g, t ) l t>to} .  
Since u is lower-semicontinuous and u(g, t)> ~ P,(g, dg')u(g', t+  e) this result fol- 
lows from the fact that the support of the measure P~(g, dg') is IH" for any 
gelH n and e>0,  cf. [7]. 

By group invariance it is clear that the constant in the Harnack Inequality 
is independent under translations of the "space" variable g. As a result, it follows 
as in [9] that if u > 0  is a minimal global solution of AkU+U,=O, then u(g, t) 
= f ( g ) e  -~t, where f is a minimal solution of A k h = 2 h  on ~-I". Non-negative 
solutions of this equation will be shown to depend only on zelI;". 

Proposition 6.2. Let  f be a minimal solution of  A k h = 2 h on ~I". I f  g = (z, t) e ([2" x JR, 
then f(g) = (o (z) = e 2 ~ e < ~ ,  b), where I] b ][ = 1. 

Proof  Let a =  (0, a)elR c l12"x IR. If gear I", then a . g  = g.  a and so by Harnack's 
Inequality f (a .g )<_C(a) f (g )  for all g. Since h ( g ) = f ( a - g )  satisfies A k h = 2 h ,  it 
follows from minimality that f ( a . g ) = C ( a ) f ( g )  for all g and so f ( z , t )  
= C(t) f ( z ,  0). Since f ( z ,  a + t ) = f ( a .  (z, t)) = C(a) f ( z ,  t) = C(a) C(t) f ( z ,  0), it follows 
that C(t)= e at. Hence, f ( z ,  t )= e A~ c~(z). 
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If A+0 ,  then by averaging over U(n) there is a non-negative solution h 
of A k h = 2 h such that h (z, t) = e "4t ~b (llzH). Since ~ is radial, 

and so 
Akh(Z, t)=ea~ (A~(Hzll)+ 4 A 2 IIzll ~ ~(llzll)) 

O"(r) + ( n -  1) 0,(r ) = 4 { 2 -  A 2 r 2} ~ (r). (*) 
r 

It follows from this that, for r>=ro, one may assume that ((z)=O(llzH) is 
superharmonic and decreasing in r. 

If n = 1 this implies that ~ is a constant for large r, which contradicts (.). 
If n > 2 then it follows from (*) that for all r > ro 

~b (r) = ~ 4 {2 - A 2 s 2} s ~9 (s) ds. (**) 
r 

One sees this by considering, for each r>ro, the superharmonic function ((z) 
equal to O(r) if Hztl = s  and equal to ~,(s) if r <  ][zll =s. The formula (.) gives 
the density for the measure that determines the potential part z of ~. Hence, 

cO 

z(r) = z(0) = ~ 4 { 2 - A  2 s 2} s O(s) ds. Since the harmonic part of ( is a constant, 
r 

it follows that ( =  z. As a result of (**). 

- ~ ' ( r ) = 4 { 2 - A Z r 2 } r O ( r ) ,  andso  ~,(r)=Be 4~;'r2/z-A2r4/4}. 

Substitution of this value in (,) leads to a contradiction and so A = 0 unless 
~--0. 

The explicit form of ~b is well-known (cf. [8]). 

Theorem 6.3. Let u > 0 be a function on ~-I"x JR. Then u is a solution of Ak, ~u + ut 
= 0  /f and only if u=voT~, where ~: C"x]Rx~ ,~- -+~"xN is the projection 
~(z, s, t)=(z, t) and Av + 4vt=O. 

Proof In case e = 0 this is an immediate corollary of the above proposition. 
The only thing that changes in the argument when e:~0 is that in (,) 2 is 
replaced by 2 + A 2 ~/4. The argument applies as before. 

Corollary 6.4. Let (gt)t=>o be a process valued in ~-I". The following conditions 
are equivalent: 

(1) for each non-negative solution u of the parabolic equation Ak,~U+ut=O 
on ]H" • ~ ,  the process (u(gt, t))t=>o is a martingale of expectation one; 

(2) the projection (zt)t>=o of the process (gt)t>=o onto ~" is equivalent to Brownian 
motion started from the origin. 

Remark 6.5. In [11], Margulis showed that for certain random walks on a finitely 
generated discrete nilpotent group G the positive harmonic functions u factor 
through the commutator subgroup [G, G]. This means that they are of the 
form u--v on, where To: G ~ G/[G, G] and v is harmonic for the image walk. 
In [1] Alexopoulos has shown that in this context the analogue of Theorem 
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6.3 (for e = 0) is valid for the space-time random walk on G x Z. The measures 
involved have finite symmetric support.  This suggests that  Theorem 6.3 should 
hold for any sub-Laplacian on a nilpotent Lie group. 
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