(c) Springer-Verlag 1987

Generalized Ornstein-Uhlenbeck Process
 Having a Characteristic Operator with Polynomial Coefficients

Itaru Mitoma
Department of Mathematics, Hokkaido University, Sapporo 060, Japan

Abstract

Summary. Let Φ be a weighted Schwartz's space of rapidly decreasing functions, Φ^{\prime} the dual space and $\mathscr{L}(t)$ a perturbed diffusion operator with polynomial coefficients from Φ into itself. It is proven that $\mathscr{L}(t)$ generates the Kolmogorov evolution operator from Φ into itself via stochastic method. As applications, we construct a unique solution of a Langevin's equation on Φ^{\prime} : $$
d \xi(t)=d W(t)+\mathscr{L}^{*}(t) \xi(t) d t
$$ where $W(t)$ is a Φ^{\prime}-valued Brownian motion and $\mathscr{L}^{*}(t)$ is the adjoint of $\mathscr{L}(t)$ and show a central limit theorem for interacting multiplicative diffusions.

1. Introduction

Since McKean [18] proved that the empirical distribution $U^{(n)}(t)=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}^{(n)}(t)}$ for an interacting n-particle diffusion process $X^{(n)}(t)=\left(X_{1}^{(n)}(t), X_{2}^{(n)}(t), \ldots, X_{n}^{(n)}(t)\right)$ converges to a non random measure $u(t)=u(t, d x$), several authors (Itô [10], Kusuoka and Tamura [17], Shiga and Tanaka [23], Sznitman [24], Tanaka and Hitsuda [25], Tanaka [26]) studied from different point of views the limit behavior of $S_{n}(t)=\sqrt{n}\left(U^{(n)}(t)-u(t)\right)$. Further it was obtained by Hitsuda and Mitoma [6] that the limit process of $S_{n}(t)$ is governed by a Langevin's equation on a distribution space Φ^{\prime}, (dual space of Φ):

$$
\begin{equation*}
d \xi(t)=d W(t)+\mathscr{L}^{*}(t) \xi(t) d t \tag{1.1}
\end{equation*}
$$

where the characteristic operator $\mathscr{L}^{*}(t)$ is the adjoint of a perturbed diffusion operator $\mathscr{L}(t)$ with uniformly bounded coefficients acting from Φ into itself and $W(t)$ is a Φ^{\prime}-valued Brownian motion.

On the other hand, Dawson [2] studied the fluctuation phenomena for a simple model of interacting diffusions with polynomial coefficients called by

Graham and Shenzle [5] multiplicative processes. Inspired by him to study the fluctuation problem for interacting multiplicative diffusions, we essentially need to consider the Langevin equation where $\mathscr{L}(t)$ is a perturbed diffusion operator with polynomial coefficients for solving the identification problem of the limit processes of $S_{n}(t)$.

The aim of this paper is to prove that the Langevin equation with such a characteristic operator has a unique solution represented similarly as a finite dimensional Ornstein-Uhlenbeck process (Theorem 1). Then we will show that $S_{n}(t)$ converges weakly to a generalized Ornstein-Uhlenbeck process studied in Theorem 1 in the case where $X^{(n)}(t)$ is a multiplicative diffusion process with mean-field-like polynomial interacting drift (Theorem 2).

In Sect. 2 we will prove Theorem 1, where it is essential to verify via stochastic method that $\mathscr{L}(t)$ generates the Kolmogorov evolution operator, (defined precisely later), from Φ into itself. This implies that $\mathscr{L}^{*}(t)$ generates the usual evolution operator from Φ^{\prime} into itself. In Sect. 3, Theorem 2 will be proved in three steps. In Step 1 we will prove the tightness of $S_{n}(t)$ in $C\left([0, \infty) ; \Phi^{\prime}\right)$ of continuous mappings from $[0, \infty)$ into Φ^{\prime}. In the course of the proof it is sufficient to check the Kolmogorov tightness criterion for each real process $\left(S_{n}(t)\right)(\phi), \phi \in \Phi$, ([21]). In Step 2, the limit equation of $S_{n}(t)$ having the form of (1.1) will be derived along the same line as Hitsuda and Mitoma [6]. The uniqueness for the limit equation proved in Theorem 1 will complete the proof in the last Step 3.

2. Generalized Ornstein-Uhlenbeck Process

Before stating results, we will define a suitable' space Φ modified from the Schwartz space \mathscr{S} of rapidly decreasing functions and give some notations. Let $\rho(x)$ be the Friedrichs mollifier and Supp $[\rho(x)] \subset[-1,1]$. Set $g(x)$ $=\int_{\mathbb{R}} e^{-|y|} \rho(x-y) d y, h(x)=1 / g(x)$ and $\Phi=\{\phi(x)=h(x) \varphi(x) ; \varphi \in \mathscr{S}\}$. According to Gelfand-Vilenkin (3.6 in Chap. 1) [3], we will metrize Φ by the countably many semi-norms:

$$
\|\phi\|_{n}=\sup _{\substack{x \in \mathbb{R} \\ 0 \leqq k \leqq n}}\left(1+x^{2}\right)^{n}\left|D^{k}(g(x) \phi(x))\right|, \quad n=0,1,2, \ldots
$$

where $D=\frac{d}{d x}$. Let Φ^{\prime} be the topological dual space of Φ and $\langle x, \phi\rangle=x(\phi)$, $x \in \Phi^{\prime}, \phi \in \Phi$. Denote the space of continuous mappings from [0, ∞) into Φ^{\prime} by $C\left([0, \infty) ; \Phi^{\prime}\right)$ whose topology and Borel field were introduced in [21].

We will give precise definitions concerning a Langevin's equation considered in this paper. Let $W(t)$ be a Φ^{\prime}-valued strongly continuous Gaussian additive process of mean 0 and $W(0)=0$. For any $t \in[0, \infty)$, let $\mathscr{L}(t)$ be a continuous linear operator from Φ into itself and for any $\phi \in \Phi, \mathscr{L}(t) \phi$ continuous from $[0, \infty)$ into Φ. We consider the following integral equation on Φ^{\prime} :

$$
\begin{equation*}
\xi(t)=\xi(0)+W(t)+\int_{0}^{t} \mathscr{L}^{*}(s) \xi(s) d s \tag{2.1}
\end{equation*}
$$

where $\mathscr{L}^{*}(t)$ is the adjoint of $\mathscr{L}(t)$, the initial value $\xi(0)$ and $W(t)$ are defined on a complete probability space (Ω, \mathscr{F}, P) and the integral on the space Φ^{\prime} denotes the Riemann integral. We say that (2.1) has a unique solution if there exists a Φ^{\prime}-valued strongly continuous process $\xi(t)$ defined on (Ω, \mathscr{F}, P) satisfies (2.1) and for any such processes $\xi(t)$ and $\xi(t), \xi(t)=\bar{\xi}(t)$ for all $t \in[0, \infty)$ a.s. whenever $\xi(0)=\bar{\xi}(0)$ a.s. We also consider

$$
\begin{equation*}
\hat{\xi}(t)=\hat{\xi}(0)+\hat{W}(t)+\int_{0}^{t} \mathscr{L}^{*}(s) \hat{\xi}(s) d s, \tag{2.2}
\end{equation*}
$$

where the joint distribution of $(\hat{\xi}(0), \hat{W}(t))$ coincides with that of $(\xi(0), W(t))$ and $\hat{\xi}(0)$ and $\hat{W}(t)$ may be defined on the other probability space $(\hat{\Omega}, \hat{\mathscr{F}}, \hat{P})$. When (2.1) and (2.2) have solutions $\xi(t)$ and $\hat{\xi}(t)$, we say that the uniqueness in law for (2.1) holds if the laws P_{ξ} and P_{ξ} of $\xi(t)$ and $\hat{\xi}(t)$ on $C\left([0, \infty) ; \Phi^{\prime}\right)$ coincide.

Let $T(t)$ be a continuous linear operator from Φ into itself and for any $\phi \in \Phi, T(t) \phi$ continuous from [0, ∞) into Φ. We call $T(t)$ generates the Kolmogorov evolution operator $U(t, s)$ if $U(t, s)$ is a continuous linear operator from Φ into itself such that
(T.1) for any $\phi \in \Phi, U(t, s) \phi$ is continuous from $\{(t, s) ; 0 \leqq s \leqq t\}$ into Φ,
(T.2) $U(t, t)=U(s, s)=$ identity operator,

$$
\begin{equation*}
\frac{d}{d t} U(t, s) \phi=U(t, s) T(t) \phi, 0 \leqq s \leqq t \text { on } \Phi \tag{T.3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d}{d s} U(t, s) \phi=-T(s) U(t, s) \phi, 0 \leqq s \leqq t, t>0 \text { on } \Phi \tag{T.4}
\end{equation*}
$$

Let $T^{*}(t)$ and $U^{*}(t, s)$ be the adjoint operator of $T(t)$ and $U(t, s)$ respectively. By the nuclearity of Φ, we get
Remark. If $T(t)$ generates the Kolmogorov evolution operator $U(t, s)$, then $T^{*}(t)$ generates the usual evolution operator $U^{*}(t, s)$ on Φ^{\prime} equipped with the strong topology. Namely $U^{*}(t, s)$ satisfies the following (1)-(5).
(1) For any $x \in \Phi^{\prime}, U^{*}(t, s) x$ is continuous from $\{(t, s) ; 0 \leqq s \leqq t\}$ into Φ^{\prime}.
(2) For $0 \leqq s \leqq r \leqq t, U^{*}(t, r) U^{*}(r, s)=U^{*}(t, s)$.
(3) $U^{*}(s, s)=$ identity operator.
(4) $\frac{d}{d t} U^{*}(t, s) x=T^{*}(t) U^{*}(t, s) x, 0 \leqq s \leqq t$ on Φ^{\prime}.
(5) $\frac{d}{d s} U^{*}(t, s) x=-U^{*}(t, s) T^{*}(s) x, 0 \leqq s \leqq t, t>0$ on Φ^{\prime}.

Following Holley and Stroock [7] and Itô [11], we begin with a generalization of the finite dimensional Ornstein-Uhlenbeck process.

Before proceeding to a proposition, we give a definition of a stochastic integral $\int_{0}^{t} U^{*}(t, s) d W(s)$ whenever $U(t, s)$ is the Kolmogorov evolution operator. Since Φ is a nuclear Fréchet space, there is another system of Hilbertian seminorms, $\|\|\cdot\|\|_{1} \leqq\| \| \cdot\| \|_{2} \leqq \ldots \leqq\||\cdot|\|_{n} \leqq \ldots$, defining the topology equivalent to that introduced before on Φ. Let Φ_{n} be the completion of Φ by $\|\|\cdot\|\|_{n}, \Phi_{n}^{\prime}$ the dual space of $\Phi_{n},\|\mid \cdot\| \|_{-n}$ the dual norm of Φ_{n}^{\prime} and \langle,\rangle_{n} the canonical bilinear form on $\Phi_{n}^{\prime} \times \Phi_{n}$. Since $W(t)$ is a Φ^{\prime}-valued strongly continuous Gaussian process, for any $T>0$ there exists a positive integer n_{1} such that $E\left[\sup \|W(t)\|_{-n_{1}}^{2}\right]$ $0 \leqq t \leqq T$
$<\infty,([19])$. By (T.1), sup $\|U(t, s) \phi \mid\|_{n_{1}}<+\infty$, so that the stochastic integral $t \quad 0 \leqq s \leqq t \leqq T$
$\int_{0}^{t}\langle d W(s), U(t, s) \phi\rangle_{n_{1}}$ is well defined, (Kunita [15]). We denote the value by $Y_{t}(\phi)$. Since for any fixed $t, Y_{t}(\phi)$ is continuous from Φ into L_{0} of all real random variables with the probability convergence topology and for any fixed $\phi \in \Phi$, $Y_{t}(\phi)$ has a continuous version, combining Itô and Nawata [12] and [20], there exists a Φ^{\prime}-valued strongly continuous process Y_{t} such that $\left\langle Y_{t}, \phi\right\rangle=Y_{t}(\phi)$ almost surely. Define $\int_{0}^{t} U^{*}(t, s) d W(s)=Y_{t}$.

Then we have
Proposition 1. Suppose that $\mathscr{L}(t)$ generates the Kolmogorov evolution operator $U(t, s)$. Then (2.1) has a unique solution

$$
\xi(t)=U^{*}(t, 0) \xi(0)+\int_{0}^{t} U^{*}(t, s) d W(s)
$$

Further the law uniqueness for (2.1) holds.
Proof. Using (T.3) we get

$$
\int_{0}^{t} U^{*}(t, s) d W(s)=W(t)+\int_{0}^{t} \mathscr{L}^{*}(\tau)\left(\int_{0}^{\tau} U^{*}(\tau, s) d W(s)\right) d \tau
$$

so that noticing $\int_{0}^{t} \mathscr{L}^{*}(\tau) U^{*}(\tau, 0) \xi(0) d \tau=U^{*}(t, 0) \xi(0)-\xi(0)$, we have that $\xi(t)$ satisfies (2.1). The uniqueness will be proved by applying the arguments in the proof of Proposition 7.3 of Komatsu [14] for bilinear form \langle,$\rangle . Since U^{*}(t, s)$ is non random, $\xi(t)$ and $\hat{\xi}(t)$ are the same measurable functional of $(\xi(0), W(t))$ and $(\hat{\xi}(0)$, $\hat{W}(t)$), and hence the law uniqueness easily follows from the structure of the Borel field of $C\left([0, \infty) ; \Phi^{\prime}\right)$, ([21]).

Next we will consider the case where $\mathscr{L}(t)=A(t)+J(t)$ and $J(t)$ satisfies the following condition:
(H) There exists a positive integer n_{0} such that for any integer $n \geqq 0$ and any $T>0$,

$$
\sup _{0 \leqq t \leqq T} \sup _{\substack{\|\phi\|_{n_{0}} \ll 1 \\ \phi \in \Phi}}\|J(t) \phi\|_{n}<\infty
$$

In the subsequent discussions, for simplicity we denote positive constants by C_{i} or $C_{i}\left(\tau_{1}, \tau_{2}, \ldots\right)$ with depending parameters $\tau_{1}, \tau_{2}, \ldots$, for ambiguous cases, $i=1,2, \ldots$ and also positive integers by $n_{i}, i=2,3, \ldots$.
Proposition 2. Suppose that for any $t \in[0, \infty), A(t)$ and $J(t)$ are continuous linear operators from Φ into itself, for any $\phi \in \Phi, A(t) \phi$ and $J(t) \phi$ are continuous from $[0, \infty)$ into $\Phi, A(t)$ generates the Kolmogorov evolution operator and $J(t)$ satisfies the condition (H). Then $\mathscr{L}(t)$ generates the Kolmogorov evolution operator $V(t, s)$ and the conclusion of Proposition 1 holds if $U(t, s)$ is replaced by $V(t, s)$.
Proof. It is enough to show that $\mathscr{L}(t)$ generates the Kolmogorov evolution operator. Denote an evolution operator that $A(t)$ generates by $U(t, s)$. Following Theorem 1.19 of Chap. IX in Kato [13], we will consider an integral equation on Φ :

$$
\begin{equation*}
y(t, s, \phi)=U(t, s) \phi+\int_{s}^{t} U(\tau, s) J(\tau) y(t, \tau, \phi) d \tau \tag{2.3}
\end{equation*}
$$

By Baire's category theorem ([8], p. 62), for any integer $n \geqq 0$, we get

$$
\begin{align*}
& \sup _{0 \leqq s \leqq t \leqq T}\|U(t, s) \phi\|_{n} \leqq C_{1}(n, T)\|\phi\|_{n_{2}}, \quad\left(n_{2}>n\right), \tag{2.4}\\
& \sup _{0 \leqq t \leqq T}\|A(t) \phi\|_{n} \leqq C_{2}(n, T)\|\phi\|_{n_{3}}, \quad\left(n_{3}>n\right) . \tag{2.5}
\end{align*}
$$

Hence (2.4) and the condition (H) quarantee that (2.3) is uniquely solved by the method of successive approximations. Define $V(t, s) \phi=y(t, s, \phi)$. Then Gronwall's lemma gives

$$
\begin{equation*}
\sup _{0 \leqq s \leqq t \leqq T}\|V(t, s) \phi\|_{n} \leqq C_{3}(n, T)\|\phi\|_{n_{4}}, \quad\left(n_{4}>n\right) \tag{2.6}
\end{equation*}
$$

Using (T.3) and (T.4) of $U(t, s)$, (2.4) and (2.5), we get

$$
\begin{equation*}
\left.\left\|\left(U\left(t^{\prime}, s^{\prime}\right)-U(t, s)\right) \phi\right\|_{n} \leqq C_{4}(n, T)\left\{\left|t-t^{\prime}\right|+\mid s-s^{\prime}\right\}\right\}\|\phi\|_{n_{5}}, \quad\left(n_{5}>n\right) \tag{2.7}
\end{equation*}
$$

By (T.4) of $U(t, s)$,

$$
\begin{aligned}
\int_{s}^{t}\{ & \left.\frac{1}{\varepsilon}(U(\tau, s+\varepsilon)-U(\tau, s)) J(\tau) V(t, \tau) \phi\right\} d \tau \rightarrow \\
& -A(s) \int_{s}^{t}(U(\tau, s) J(\tau) V(t, \tau) \phi) d \tau \quad \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

since the n-th seminorm of the integrand is bounded uniformly in $\tau \in[s, t]$. Using (2.6), (2.7) and Gronwall's lemma, we have

$$
\begin{equation*}
\left\|\left(V\left(t, s^{\prime}\right)-V(t, s)\right) \phi\right\|_{n} \leqq C_{5}(n, T)\left|s-s^{\prime}\right|\|\phi\|_{n_{6}}, \quad\left(n_{6}>n\right) \tag{2.8}
\end{equation*}
$$

By (2.4), (2.6), (2.7) and (2.8),

$$
-\frac{1}{\varepsilon} \int_{s}^{s+\varepsilon}(U(\tau, s+\varepsilon) J(\tau) V(t, \tau) \phi) d \tau \rightarrow-J(s) V(t, s) \phi \quad \text { as } \varepsilon \rightarrow 0
$$

Thus, together with (T.4) of $U(t, s)$, we find that $V(t, s)$ satisfies (T.4).

Now, it is evident that $V(t, s)$ satisfies (T.1) and (T.2). Given ε and δ, set

$$
\begin{aligned}
& O_{1}(s, \tau)=\left\|\int_{t}^{t+\varepsilon}\left(\frac{1}{\varepsilon} U(\tau, s) A(\tau) \phi\right) d \tau-U(t, s) A(t) \phi\right\|_{n} \\
& O_{2}(s, \varepsilon)=\left\|\int_{t}^{t+\varepsilon}\left(\frac{1}{\varepsilon} U(\tau, s) J(\tau) V(t+\varepsilon, \tau) \phi\right) d \tau-U(t, s) J(t) \phi\right\|_{n}
\end{aligned}
$$

and

$$
R_{V}(s, \varepsilon, \delta)=\left\|\frac{1}{\varepsilon}(V(t+\varepsilon, s)-V(t, s)) \phi-\frac{1}{\delta}(V(t+\delta, s)-V(t, s)) \phi\right\|_{n}
$$

Then if $n \geqq n_{0}$, we have

$$
\begin{aligned}
R_{V}(s, \varepsilon, \delta) \leqq & \sup _{0 \leqq s \leqq t}\left\{O_{1}(s, \varepsilon)+O_{1}(s, \delta)+O_{2}(s, \varepsilon)+O_{2}(s, \delta)\right\} \\
& +C_{6}(n, T) \int_{s}^{t} R_{V}(\tau, \varepsilon, \delta) d \tau, \quad 0 \leqq s \leqq t \leqq T .
\end{aligned}
$$

By (2.4), (2.5) and (2.7), $\lim _{\substack{\varepsilon \rightarrow 0 \\ \delta \rightarrow 0}} \sup _{0 \leqq s \leqq t}\left\{O_{1}(s, \varepsilon)+O_{1}(s, \delta)\right\}=0$. By (2.4), (2.6), (2.7) and (2.8), also $\lim _{\substack{\varepsilon \rightarrow 0 \\ \delta \rightarrow 0}} \sup _{\substack{0 \leqq s \leqq t}}\left\{O_{2}(s, \varepsilon)+O_{2}(s, \delta)\right\}=0$. Applying the generalized Gronwall lemma for $R_{V}(s, \varepsilon, \delta)$ and taking the above two equalities into account, we find that $\left\{\frac{1}{\varepsilon}(V(t+\varepsilon, s)-V(t, s)) \phi\right\}$ forms a Cauchy sequence and hence $V(t, s) \phi$ is differentiable with respect to t. Moreover the above argument gives that $\left\|\frac{1}{\varepsilon}(V(t+\varepsilon, s)-V(t, s)) \phi\right\|_{n}$ is bounded uniformly in $0 \leqq s \leqq T$. Therefore similarly to the proof of (T.4) of $V(t, s)$, we have

$$
\frac{d}{d t} V(t, s) \phi=U(t, s) \mathscr{L}(t) \phi+\int_{s}^{t} U(\tau, s) J(\tau) \frac{d V(t, \tau) \phi}{d t} d \tau
$$

The uniqueness of this equation implies (T.3) of $V(t, s)$.
Before proceeding to Theorem 1, we will introduce some definitions. For any integer $p \geqq-1, C_{p, u}^{\infty}$ denotes a set of real functions $f(t, x)$ such that the following three conditions are satisfied.
(i) $f(t, x)$ is infinitely differentiable, $\left(=C^{\infty}\right)$, with respect to x.
(ii) For any integer $n \geqq 0$ and any $T>0$, there exists a constant $C(T, n)$ such that

$$
\begin{equation*}
\sup _{0 \leqq t \leqq T}\left|D^{n} f(t, x)\right| \leqq C(T, n)(1+|x|)^{p-n} \quad \text { if } p-n>0 \tag{ii-1}
\end{equation*}
$$

$$
\begin{equation*}
\sup _{0 \leqq t \leqq T}\left|D^{n} f(t, x)\right| \leqq C(T, n) \quad \text { if } p-n \leqq 0 . \tag{ii-2}
\end{equation*}
$$

(iii) For any integer $n \geqq 0$ and any $M>0$

$$
\lim _{t \rightarrow s} \sup _{|x| \leqq M}\left|D^{n}(f(t, x)-f(s, x))\right|=0
$$

Suppose that

$$
(\mathscr{L}(t) \phi)(x)=\frac{1}{2} \alpha(t, x)^{2} \phi^{\prime \prime}(x)+\beta(t, x) \phi^{\prime}(x)+(J(t) \phi)(x),
$$

where $\alpha(t, x) \in C_{p, u}^{\infty}, \beta(t, x)=\bar{\beta}(t, x)+\beta_{2 p+1}(t) x^{2 p+1}, \bar{\beta}(t, x) \in C_{2 p, u}^{\infty}, \beta_{2 p+1}(t)$ is continuous in $t \in[0, \infty), \beta_{2 p+1}(t)<0$ if $p \geqq 0$ and $\beta_{-1}(t)=0$.
Theorem 1. Suppose that for any $t \in[0, \infty), J(t)$ is a continuous linear operator from Φ into itself, for any $\phi \in \Phi, J(t) \phi$ is continuous from $[0, \infty)$ into Φ and $J(t)$ satisfies the condition (H). Then $\mathscr{L}(t)$ generates the Kolmogorov evolution operator $U(t, s)$ and (2.1) has a unique solution

$$
\xi(t)=U^{*}(t, 0) \xi(0)+\int_{0}^{t} U^{*}(t, s) d W(s)
$$

Further if $\xi(0)$ is a Φ^{\prime}-valued Gaussian random variable independent of $W(t)$, the law uniqueness for (2.1) holds and the law is Gaussian.
Proof. Set $(A(t) \phi)(x)=\frac{1}{2} \alpha(t, x)^{2} \phi^{\prime \prime}(x)+\beta(t, x) \phi^{\prime}(x)$. Then by Proposition 2, it is enough to check that $A(t)$ generates the Kolmogorov evolution operator. The proof will be devided into two Steps and carried out via stochastic method. In Step 1 we will derive the pointwise Kolmogorov forward and backward equations and in Step 2 verify that these equations hold in an abstract sense.
Step 1. We will consider the following Itô's stochastic differential equation:

$$
\begin{align*}
& \eta_{s, t}(x)=x+\int_{s}^{t} \alpha\left(r, \eta_{s, r}(x)\right) d B(r)+\int_{s}^{t} \beta\left(r, \eta_{s, r}(x)\right) d r \tag{2.9}\\
& \eta_{s, s}(x)=x .
\end{align*}
$$

Here $B(t)$ is 1 -dimensional Brownian motion.
If $p=0,-1$, Eq. (2.9) has a unique non-explosive solution $\eta_{s, t}(x)$ because the coefficients are globally Lipshitz continuous.

Suppose that $p \geqq 1$. For each natural number N, we choose globally Lipshitz continuous functions $\alpha^{N}(t, x)$ and $\beta^{N}(t, x)$ such that

$$
\begin{array}{llll}
\alpha^{N}(t, x)=\alpha(t, x) & \text { and } \quad \beta^{N}(t, x)=\beta(t, x) & \text { if }|x| \leqq N, \\
\alpha^{N}(t, x)=\alpha(t, N) & \text { and } \quad \beta^{N}(t, x)=\beta(t, N) & \text { if } x>N, \\
\alpha^{N}(t, x)=\alpha(t,-N) & \text { and } \quad \beta^{N}(t, x)=\beta(t,-N) & \text { if } x<-N .
\end{array}
$$

Then Eq. (2.9) corresponding to coefficients $\left\{\alpha^{N}(t, x), \beta^{N}(t, x)\right\}$ has a unique solution $\eta_{s, t}^{N}(x)$. For any $T>0$, let $\alpha_{T}>0$ be a constant such that $\sup _{0 \leq t \leq T}|\alpha(t, x)|^{2}$ $\leqq \alpha_{T}\left(1+x^{2 p}\right)$. Let ζ be a real number such that $0<\zeta<\left(\min _{0 \leqq t \leqq T}\left|\beta_{2 p+1}(t)\right|\right) / \alpha_{T}$. By the Itó formula we get

$$
\begin{aligned}
& E\left[e^{\zeta\left|\eta_{s, t}^{N}(x)\right|^{2}}\right]-e^{\zeta|x|^{2}} \\
& \quad=E\left[\int_{s}^{t} e^{\zeta\left|\eta_{s, r}^{N}(x)\right|^{2}}\left\{2 \zeta \eta_{s, r}^{N}(x) \beta^{N}\left(r, \eta_{s, r}^{N}(x)\right)+\left(2 \zeta^{2} \eta_{s, r}^{N}(x)^{2}+\zeta\right) \alpha^{N}\left(r, \eta_{s, r}^{N}(x)\right)^{2}\right\} d r\right] .
\end{aligned}
$$

Noticing a manner of choosing ζ and $\beta_{2 p+1}(t)<0$, we have a constant $C_{7}(T)$ independent of x and N such that

$$
\left\{2 \zeta \eta_{s, r}^{N}(x) \beta^{N}\left(r, \eta_{s, r}^{N}(x)\right)+\left(2 \zeta^{2} \eta_{s, r}^{N}(x)^{2}+\zeta\right) \alpha^{N}\left(r, \eta_{s, r}^{N}(x)\right)^{2}\right\} \leqq C_{7}(T)
$$

Therefore Gronwall's lemma implies

$$
\sup _{N} \sup _{|x| \leqq M} \sup _{0 \leqq s \leqq t \leqq T} E\left[e^{\zeta\left|\eta_{S, t}^{\mathrm{N}}(x)\right|^{2}}\right]<\infty
$$

so that Eq. (2.9) has a unique solution $\eta_{s, t}(x)$ and it has no explosions, (Theorem 5.2, p. 229 of Kunita [16], Ikeda and Watanabe [9]).

By Proposition 2 in [6] and a calculation similar to the above, we have
Lemma 1. For any $\varepsilon>0, T>0$ and $M>0$,

$$
\begin{equation*}
\sup _{|x| \leqq M} \sup _{0 \leqq s \leqq t \leqq T} E\left[e^{\varepsilon\left|\eta_{s, t}(x)\right|}\right]<\infty \tag{2.10}
\end{equation*}
$$

Therefore by the strict conservativeness of $\eta_{s, t}(x),(p .232)$ and Theorem 5.4 of Kunita [16], $\eta_{s, t}(x)$ is infinitely differentiable with respect to x for any $s \leqq t$ and further the proof of Theorem 5.2 of [16] implies that the following differential formulae for $\eta_{s, t}(x)$ hold like in the case of stochastic differential equations with globally Lipschitz smooth coefficients (for example $\S 8$ in Chap. 2 of Gihman and Skorohod [4]):

$$
\begin{equation*}
D^{k} \eta_{s, t}(x)=D^{k} x+\int_{s}^{t} D^{k} \alpha\left(r, \eta_{s, r}(x)\right) d B(r)+\int_{s}^{t} D^{k} \beta\left(r, \eta_{s, r}(x)\right) d r \tag{2.11}
\end{equation*}
$$

for any integer $k \geqq 0$.
Define $(U(t, s) \phi)(x)=E\left[\phi\left(\eta_{s, t}(x)\right)\right]$. Since the coefficients of (2.9) satisfy the condition of Theorem 1.1 (p. 256) of [16], if we prove the following integrabilities for $D^{k} \eta_{s, t}(x)$ quaranteeing the uniform integrabilities used in [22], Itô's forward and backward formulae for $\phi\left(\eta_{s, t}(x)\right)$ lead us to the pointwise Kolmogorov forward and backward equations:

$$
\begin{align*}
& \frac{d}{d t}(U(t, s) \phi)(x)=(U(t, s) A(t) \phi)(x) \tag{2.12}\\
& \frac{d}{d s}(U(t, s) \phi)(x)=-(A(s) U(t, s) \phi)(x) . \tag{2.13}
\end{align*}
$$

Lemma 2. For any integers $i \geqq 1$ and $j \geqq 1$ and any $T>0$,

$$
\begin{equation*}
\sup _{0 \leqq s \leqq t \leqq T} E\left[\left|D^{i} \eta_{s, t}(x)\right|^{\dot{j}}\right] \leqq C_{8}(T)(1+|x|)^{j(i-1)((2 p-1) \vee 0\}}, \tag{2.14}
\end{equation*}
$$

where $a \vee b=\max \{a, b\}$.
Proof. Also in this case, it is enough to check (2.14) for $p \geqq 0$, (Theorem 1, p. 61 of Gihman and Skorohod [4,22]). We will show this by a mathematical induction. For brevity, we use that notation $f^{(k)}(t, x)=D^{k} f(t, x)$. By (2.11) and the Itô formula,

$$
\begin{aligned}
E\left[\left(D \eta_{s, t}(x)\right)^{2 j}\right]-1= & E\left[\int _ { s } ^ { t } (D \eta _ { s , r } (x)) ^ { 2 j } \left\{2 j \beta^{(1)}\left(r, \eta_{s, r}(x)\right)\right.\right. \\
& \left.\left.+j(2 j-1)\left(\alpha^{(1)}\left(r, \eta_{s, r}(x)\right)\right)^{2}\right\} d r\right]
\end{aligned}
$$

In fact, by a manner used in the proof of deriving Lemma 1, there exists a constant $C_{9}=C_{9}(j, T)$ such that

$$
\sup _{0 \leqq s \leqq r \leqq T}\left\{2 j \beta^{(1)}\left(r, \eta_{s, r}(x)\right)+j(2 j-1)\left(\alpha^{(1)}\left(r, \eta_{s, r}(x)\right)\right)^{2}\right\} \leqq C_{9},
$$

and therefore Gronwall's lemma gives (2.14) for $i=1$.
Suppose that (2.14) holds for every integer $1 \leqq i \leqq k$. Set

$$
\alpha_{k, \eta}(s, r)=D^{k+1} \alpha\left(r, \eta_{s, r}(x)\right)-\alpha^{(1)}\left(r, \eta_{s, r}(x)\right) D^{k+1} \eta_{s, r}(x)
$$

and

$$
\beta_{k, \eta}(s, r)=D^{k+1} \beta\left(r, \eta_{s, r}(x)\right)-\beta^{(1)}\left(r, \eta_{s, r}(x)\right) D^{k+1} \eta_{s, r}(x)
$$

Again by (2.11) and the Itô formula,

$$
\begin{aligned}
& E {\left[\left(D^{k+1} \eta_{s, t}(x)\right)^{2 j}\right]=E\left[\int _ { s } ^ { t } \left(2 j (D ^ { k + 1 } \eta _ { s , r } (x)) ^ { 2 j - 1 } \left\{\beta^{(1)}\left(r, \eta_{s, r}(x)\right)\right.\right.\right.} \\
&\left.\times D^{k+1} \eta_{s, r}(x)+\beta_{k, \eta}(s, r)\right\}+j(2 j-1)\left(D^{k+1} \eta_{s, r}(x)\right)^{2 j-2}\left\{\alpha^{(1)}\left(r, \eta_{s, r}(x)\right)\right. \\
&\left.\left.\left.\times D^{k+1} \eta_{s, r}(x)+\alpha_{k, \eta}(s, r)\right\}^{2}\right) d r\right] \\
& \leqq E\left[\int _ { s } ^ { t } \left\{\left(D^{k+1} \eta_{s, r}(x)\right)^{2 j}\left(2 j \beta^{(1)}\left(r, \eta_{s, r}(x)\right)+2 j(2 j-1)\left(\alpha^{(1)}\left(r, \eta_{s, r}(x)\right)\right)^{2}\right)\right.\right. \\
& \quad+2 j\left|D^{k+1} \eta_{s, r}(x)\right|^{2 j-1}\left|\beta_{k, \eta}(s, r)\right| \\
&\left.\left.+2 j(2 j-1)\left|D^{k+1} \eta_{s, r}(x)\right|^{2 j-2}\left|\alpha_{k, \eta}(s, r)\right|^{2}\right\} d r\right]
\end{aligned}
$$

By a manner used in the proof for $i=1$ and Hölder's inequality, there exists a constant $C_{10}=C_{10}(j, T)$ such that the right hand side of the above inequality is dominated by

$$
C_{10} \int_{s}^{t} E\left[\left(D^{k+1} \eta_{s, r}(x)\right)^{2 j}+\left(\alpha_{k, \eta}(s, r)\right)^{2 j}+\left(\beta_{k, \eta}(s, r)\right)^{2 j}\right] d r
$$

Since $\alpha_{k, \eta}(s, r)$ is a finite sum of terms of the type

$$
\begin{gathered}
\alpha^{(j)}\left(r, \eta_{s, r}(x)\right)\left(D \eta_{s, r}(x)\right)^{j_{1}}\left(D^{2} \eta_{s, r}(x)\right)^{j_{2}} \ldots\left(D^{k} \eta_{s, r}(x)\right)^{j_{k}} \\
2 \leqq j \leqq k, \quad \sum_{n=1}^{k} n j_{n}=k+1
\end{gathered}
$$

and $\beta_{k, \eta}(s, r)$ is also written by the same way as the above, we have for $0 \leqq s \leqq r$ $\leqq T$

$$
\begin{aligned}
& E\left[\left(\alpha_{k, \eta}(s, r)\right)^{2 j}\right] \vee E\left[\left(\beta_{k, \eta}(s, r)\right)^{2 j}\right] \\
& \quad \leqq C_{11}(j, T) \sup _{2 \leqq n \leqq k}\left\{E\left[\left(\alpha^{(n)}\left(r, \eta_{s, r}(x)\right)\right)^{4 j}\right]^{1 / 2} \vee E\left[\left(\beta^{(n)}\left(r, \eta_{s, r}(x)\right)\right)^{4 j}\right]^{1 / 2}\right\} \\
& \quad(1+|x|)^{2 j\left(k+1-\sum_{n=1}^{k} j_{n}\right)((2 p-1) \vee 0)} .
\end{aligned}
$$

By a manner used in the proof of deriving Lemma 1, we get for any integer $n \geqq 0$,

$$
\begin{equation*}
E\left[\left(\eta_{s, t}(x)\right)^{2 n}\right] \leqq C_{12}(T)\left(1+|x|^{2 n}\right), \quad 0 \leqq s \leqq t \leqq T, \tag{2.15}
\end{equation*}
$$

and hence

$$
\begin{aligned}
& \sup _{2 \leqq n \leqq k}\left\{E\left[\left(\alpha^{(n)}\left(r, \eta_{s, r}(x)\right)\right)^{4 j}\right]^{1 / 2} \vee E\left[\left(\beta^{(n)}\left(r, \eta_{s, r}(x)\right)\right)^{4 j}\right]^{1 / 2}\right\} \\
& \quad \leqq C_{13}(j, T)(1+|x|)^{2 j((2 p-1) \vee 0)} .
\end{aligned}
$$

Since $\left(k+1-\sum_{n=1}^{k} j_{n}\right) \leqq k-1$, summing up the above inequalities and using Gronwall's lemma, we have (2.14) for $i=k+1$.

Step 2. We shall prove (T.1)-(T.4) of $U(t, s)$ below. Suppose that for any integer $n \geqq 0$, the following equalities have been proved.

$$
\begin{align*}
& \lim _{\substack{t \rightarrow t^{\prime} \\
s \rightarrow s^{\prime}}}\left\|U(t, s) \phi-U\left(t^{\prime}, s\right) \phi\right\|_{n}=0 . \tag{2.16}\\
& \lim _{\substack{t \rightarrow t^{\prime} \\
s \rightarrow s^{\prime}}}\left\|U(t, s) \phi-U\left(t, s^{\prime}\right) \phi\right\|_{n}=0 . \tag{2.17}
\end{align*}
$$

Then (2.16) and (2.17) implies (T.1). (T.2) is immediate from the definition of $U(t, s)$. For any $\phi \in \Phi$,

$$
\begin{align*}
& \|A(t) \phi\|_{n} \leqq C_{14}(n, T)\|\phi\|_{n+(p+2)}, \quad 0 \leqq t \leqq T \tag{2.18}\\
& \lim _{t \rightarrow s}\|A(t) \phi-A(s) \phi\|_{n}=0
\end{align*}
$$

so that together with (2.4) and (2.18), we have $U(\tau, s) A(\tau) \phi, \tau \geqq s$ and $A(\tau) U(t, \tau) \phi, 0 \leqq \tau \leqq t$, are $\|\cdot\|_{n}$-continuous in τ and hence both are the $\|\cdot\|_{n}$-Riemann integrable for every integer $n \geqq 0$. Therefore by Kolmogorov's equations and the definition of n-th semi-norm $\|\cdot\|_{n}$, we have

$$
\begin{gather*}
\left(\int_{s}^{t} U(\tau, s) A(\tau) \phi d \tau\right)(x)=(U(t, s) \phi)(x)-\phi(x) \\
\left(-\int_{s}^{t} A(\tau) U(t, \tau) \phi d \tau\right)(x)=\phi(x)-(U(t, s) \phi)(x) \tag{2.19}
\end{gather*}
$$

which gives (T.3) and (T.4).
To check (2.16) and (2.17), we will begin to prepare a regularity lemma for $\eta_{s, t}(x)$ and the differentials.
Lemma 3. For any $T>0, M>0,0 \leqq s \leqq t \leqq T, 0 \leqq s^{\prime} \leqq t^{\prime} \leqq T$ and any integers $n \geqq 1$ and $m \geqq 0$,

$$
\begin{gather*}
\sup _{|x| \leqq M} E\left[\left|\eta_{s, t}(x)-\eta_{s^{\prime}, t^{\prime}}(x)\right|^{n}\right] \leqq C_{15}(n, T, M)\left\{\left|t-t^{\prime}\right|^{\frac{n}{2}}+\left|s-s^{\prime}\right|^{\frac{n}{2}}\right\}, \tag{2.20}\\
\sup _{|x| \leqq M} E\left[\left|\eta_{s, t}(x)-x\right|^{n}\right] \leqq C_{16}(n, T, M)|t-s|^{\frac{n}{2}}, \tag{2.21}\\
\sup _{|x| \leqq M} E\left[\left|D^{m} \eta_{s, t}(x)-D^{m} \eta_{s^{\prime}, t^{\prime}}(x)\right|^{n}\right] \leqq C_{17}(n, m, T, M)\left\{\left|t-t^{\prime}\right|^{\frac{n}{2}}+\left|s-s^{\prime}\right|^{\frac{n}{2}}\right\}, \\
\sup _{|x| \leqq M} E\left[\left|D^{m}\left(\eta_{s, t}(x)-x\right)\right|^{n}\right] \leqq C_{18}(n, m, T, M)|t-s|^{\frac{n}{2}} . \tag{2.22}
\end{gather*}
$$

Proof. For the proofs of (2.20) and (2.22), it is enough to show them only for the case where $0 \leqq s<s^{\prime}<t<t^{\prime} \leqq T$. Since

$$
\begin{aligned}
\eta_{s^{\prime}, t^{\prime}}(x)= & x+\int_{s^{\prime}}^{t} \alpha\left(r, \eta_{s^{\prime}, r}(x)\right) d B(r)+\int_{s^{\prime}}^{t} \beta\left(r, \eta_{s^{\prime}, r}(x)\right) d r \\
& +\int_{t}^{t^{\prime}} \alpha\left(r, \eta_{s^{\prime}, r}(x)\right) d B(r)+\int_{t}^{t^{\prime}} \beta\left(r, \eta_{s^{\prime}, r}(x)\right) d r \\
\eta_{s, t}(x)= & \eta_{s, s^{\prime}}(x)+\int_{s^{\prime}}^{t} \alpha\left(r, \eta_{s, r}(x)\right) d B(r)+\int_{s^{\prime}}^{t} \beta\left(r, \eta_{s, r}(x)\right) d r
\end{aligned}
$$

the left hand side of (2.20) is dominated by

$$
\begin{align*}
& 5^{n-1} \sup _{|x| \leqq M} E\left[\left|x-\eta_{s, s^{\prime}}(x)\right|^{n}+\left|\int_{s^{\prime}}^{t}\left(\alpha\left(r, \eta_{s^{\prime}, r}(x)\right)-\alpha\left(r, \eta_{s, r}(x)\right)\right) d B(r)\right|^{n}\right. \\
& \quad+\left|\int_{s^{\prime}}^{t}\left(\beta\left(r, \eta_{s^{\prime}, r}(x)\right)-\beta\left(r, \eta_{s, r}(x)\right)\right) d r\right|^{n}+\mid \int_{t}^{t^{\prime}} \alpha\left(r,\left.\eta_{s^{\prime}, r}(x) d B(r)\right|^{n}\right. \\
& \left.\quad+\left|\int_{t}^{t^{\prime}} \beta\left(r, \eta_{s^{\prime}, r}(x)\right) d r\right|^{n}\right] . \tag{2.24}
\end{align*}
$$

Noticing Lemma 1 and the Burkholder inequality, ((3) on p. 193 of Kunita [16]), we get

$$
\begin{align*}
& \sup _{|x| \leqq M} E\left[\left|\int_{t}^{t^{\prime}} \alpha\left(r, \eta_{s^{\prime}, r}(x)\right) d B(r)\right|^{n}+\left|\int_{t}^{t^{\prime}} \beta\left(r, \eta_{s^{\prime}, r}(x)\right) d r\right|^{n}\right] \\
& \leqq C_{19}(n, T, M)\left|t-t^{\prime}\right|^{\frac{n}{2}} \tag{2.25}
\end{align*}
$$

Quite similarly we have

$$
\begin{equation*}
\sup _{|x| \leqq M} E\left[\left|x-\eta_{s, s^{\prime}}(x)\right|^{n}\right] \leqq C_{20}(n, T, M)\left|s-s^{\prime}\right|^{\frac{n}{2}}, \tag{2.26}
\end{equation*}
$$

which proves (2.21) simultaneously and have also (2.23) by Lemmas 1 and 2 and (2.11). $\quad{ }^{k-1}$

Setting $g_{k}(x, y)=\sum_{j=0}^{k-1} x^{k-1-j} y^{j}$ for any integer $k \geqq 1$ and noticing that $g_{2 p+1}(x, y) \geqq \frac{1}{2}\left\{x^{2 p}+y^{2 p}\right\}$ and $\beta_{2 p+1}(t)<0$ if $p \geqq 0$, we have the following by a manner used in the proofs of the previous lemmas;

$$
\begin{equation*}
E\left[\left|\eta_{s^{\prime}, r}(x)-\eta_{s^{\prime}, r}(y)\right|^{2 n}\right] \leqq C_{21}(n, T)|x-y|^{2 n}, \quad 0 \leqq s^{\prime} \leqq r \leqq T \tag{2.27}
\end{equation*}
$$

Since $\eta_{s, r}(x)=\eta_{s^{\prime}, r}\left(\eta_{s, s^{\prime}}(x)\right)$ if $r \geqq s^{\prime}$ and $\eta_{s^{\prime}, r}(y)-\eta_{s^{\prime}, r}(x)$ is independent of $\eta_{s, s^{\prime}}(x)$, we get by (2.26) and (2.27) that for $|x| \leqq M$,

$$
\begin{equation*}
E\left[\left|\eta_{s^{\prime}, r}(x)-\eta_{s, r}(x)\right|^{2 n}\right] \leqq C_{22}(n, T, M)\left|s-s^{\prime}\right|^{n} \tag{2.28}
\end{equation*}
$$

Thus (2.24), together with (2.25), (2.26), (2.28), Lemma 1 and the Burkholder and Schwarz inequalities, leads us to (2.20).

We will show (2.22) by a mathematical induction. If $m=0,(2.22)$ is immediate from (2.20). Suppose that for any integers $k \geqq 0$ and $n \geqq 1,(2.22)$ holds for every integer $0 \leqq m \leqq k$. Using the notations in the proof of Lemma 2, we get

$$
\begin{aligned}
& D^{k+1} \eta_{s, r}(x)-D^{k+1} \eta_{s^{\prime}, t}(x)=D^{k+1}\left(\eta_{s, s^{\prime}}(x)-x\right) \\
& \quad+\int_{s^{\prime}}^{t}\left\{\left(\alpha_{k, \eta}(s, r)-\alpha_{k, \eta}\left(s^{\prime}, r\right)\right)+\alpha^{(1)}\left(r, \eta_{s, r}(x)\right)\left(D^{k+1} \eta_{s, r}(x)-D^{k+1} \eta_{s^{\prime}, r}(x)\right)\right. \\
& \left.\quad+D^{k+1} \eta_{s^{\prime}, r}(x)\left(\alpha^{(1)}\left(r, \eta_{s, r}(x)\right)-\alpha^{(1)}\left(r, \eta_{s^{\prime}, r}(x)\right)\right)\right\} d B(r) \\
& \quad+\int_{s^{\prime}}^{t}\left\{\left(\beta_{k, \eta}(s, r)-\beta_{k, \eta}\left(s^{\prime}, r\right)\right)+\beta^{(1)}\left(r, \eta_{s, r}(x)\right)\left(D^{k+1} \eta_{s, r}(x)-D^{k+1} \eta_{s^{\prime}, r}(x)\right)\right. \\
& \left.\quad+D^{k+1} \eta_{s^{\prime}, r}(x)\left(\beta^{(1)}\left(r, \eta_{s, r}(x)\right)-\beta^{(1)}\left(r, \eta_{s^{\prime}, r}(x)\right)\right)\right\} d r .
\end{aligned}
$$

Then by the assumption of the induction, Lemmas 1 and 2, (2.20), (2.23) and a manner used in the proof of Lemma 2, we have

$$
\begin{equation*}
\sup _{|x| \leqq M} E\left[\left|D^{k+1} \eta_{s, t}(x)-D^{k+1} \eta_{s^{\prime}, t}(x)\right|^{2 n}\right] \leqq C_{23}(n, k+1, T, M)\left|s-s^{\prime}\right|^{n} \tag{2.29}
\end{equation*}
$$

Of course, by Lemmas 1 and 2, we get

$$
\begin{equation*}
\sup _{|x| \leqq M} E\left[\left|D^{k+1} \eta_{s^{\prime}, t}(x)-D^{k+1} \eta_{s^{\prime}, t}(x)\right|^{n}\right] \leqq C_{24}(n, k+1, T, M)\left|t-t^{\prime}\right|^{\frac{n}{2}} \tag{2.30}
\end{equation*}
$$

Therefore (2.29) and (2.30) imply (2.22). This completes the proof.

Now we will return to the proofs of (2.16) and (2.17). First we will discuss the case where $p \geqq 1$. Suppose that $0 \leqq s \leqq t \leqq T$. Since

$$
\begin{equation*}
\|U(t, s) \phi\|_{n}=\sup _{\substack{x \in \mathbb{R} \\ 0 \leqq k \leqq n}}\left(1+x^{2}\right)^{n}\left|D^{k}(g(x)(U(t, s) \phi)(x))\right|, \tag{2.31}
\end{equation*}
$$

changing the order of the differentials and the expectation because of Lemmas 1 and 2, we have by the Leibniz formula that the right hand side of (2.31) is dominated by a finite sum of the terms;

$$
\begin{align*}
& \sup _{x \in \mathbb{R}}\left(1+x^{2}\right)^{n} \mid D^{l} g(x) E\left[h^{(m)}\left(\eta_{s, t}(x)\right) \varphi^{(q)}\left(\eta_{s, t}(x)\right)\left(D \eta_{s, t}(x)\right)^{n_{1}}\right. \\
& \left.\quad\left(D^{2} \eta_{s, t}(x)\right)^{n_{2}} \ldots\left(D^{k} \eta_{s, t}(x)\right)^{n_{k}}\right] \mid \tag{2.32}
\end{align*}
$$

where $0 \leqq l+k \leqq n, 0 \leqq m+q \leqq k, n_{1}+2 n_{2}+\ldots+k n_{k}=k, h^{(m)}(x)=D^{m} h(x)$ and $\varphi^{(q)}(x)=D^{q} \varphi(x)$. By the definitions of $g(x)$ and $h(x)$,

$$
\begin{gather*}
\left|D^{l} g(x)\right| \leqq C_{25}(l) e^{-|x|} \\
\left|h^{(m)}\left(\eta_{s, t}(x)\right)\right| \leqq C_{26}(m) e^{\left|\eta_{s, t}(x)\right|} \tag{2.33}
\end{gather*}
$$

Let $y_{s, t}(x)$ be a unique solution of

$$
y_{s, t}(x)=x+\int_{s}^{t} \beta_{2 p+1}(r)\left(y_{s, r}(x)\right)^{2 p+1} d r
$$

Set $K_{s, t}(x)=\eta_{s, t}(x)-y_{s, t}(x)$. Then we have
Lemma 4. For any $T>0$, there exists a constant $\zeta>0$ such that

$$
\begin{equation*}
\sup _{0 \leqq s \leqq t \leqq T} E\left[e^{\zeta\left|K_{s, t}(x)\right|^{2}}\right] \leqq C_{27}(T)\left(1+x^{2 p}\right) . \tag{2.34}
\end{equation*}
$$

Proof. Let $\alpha_{T}>0$ and $\beta_{T}>0$ be real numbers such that sup $|\alpha(t, x)|^{2} \leqq \alpha_{T}\left(1+x^{2 p}\right)$ $0 \leqq t \leqq T$
and $\sup _{0 \leqq I \leqq T}|\bar{\beta}(t, x)| \leqq \beta_{T}\left(1+x^{2 p}\right)$. We choose a real number ζ such that $0<\zeta$ $<\left(\min _{0 \leqq t \leq T}\left|\beta_{2 p+1}(t)\right|\right) / 4 \alpha_{T}$. Then by a manner similar to that used in the proofs of deriving Lemma 1 and (2.27), we get

$$
E\left[e^{\zeta K_{s, t}(x)^{2}}\right] \leqq 1+E\left[\int_{s}^{t}\left\{F(r) \eta_{s, r}(x)^{2 p}+(G(r)+I) e^{\zeta K_{s, r}(x)^{2}}\right\} d r\right],
$$

where

$$
\begin{aligned}
F(r) & =\zeta e^{\zeta K_{s, r}(x)^{2}}\left\{\left(\frac{1}{2} \beta_{2 p+1}(r)+2 \zeta \alpha_{T}\right) K_{s, r}(x)^{2}+2 \beta_{T}\left|K_{s, r}(x)\right|+\alpha_{T}\right\} \\
G(r) & =\zeta K_{s, r}(x)^{2}\left\{\frac{1}{2} \beta_{2 p+1}(r)\left(\eta_{s, r}(x)^{2 p}+y_{s, r}(x)^{2 p}\right)+2 \zeta \alpha_{T}+1\right\} \\
I & =\zeta\left(\zeta \beta_{T}^{2}+\alpha_{T}\right) .
\end{aligned}
$$

Noticing a manner of choosing ζ and $\beta_{2 p+1}(t)<0$, we have

$$
F(r) \leqq C_{28}(T) \quad \text { and } \quad G(r) \leqq C_{29}(T)
$$

Therefore the inequality (2.15) and Gronwall's lemma give us (2.34).
By making use of (2.33), (2.34), Lemma 2 and the Schwarz inequality, we get that (2.32) is dominated by

$$
\begin{equation*}
C_{30}(n, T) \sup _{x \in \mathbb{R}}\left(1+x^{2}\right)^{n(p+1)+p} e^{-|x|+\left|y_{s, t}(x)\right|} E\left[\left|\varphi^{(q)}\left(\eta_{s, t}(x)\right)\right|^{2}\right]^{\frac{1}{2}} \tag{2.35}
\end{equation*}
$$

Since

$$
y_{s, t}(x)=\frac{x}{\left(1-2 p\left(\int_{s}^{t} \beta_{2 p+1}(r) d r\right) x^{2 p}\right)^{1 / 2 p}}
$$

and

$$
\begin{aligned}
& E\left[\left|\varphi^{(\varphi)}\left(\eta_{s, t}(x)\right)\right|^{2}\right]^{\frac{1}{2}} \\
& \quad=E\left[\frac{\left(1+\eta_{s, t}(x)^{2}\right)^{(4 n(p+1)+8 p+2) p}}{\left.\left(1+\eta_{s, t}(x)^{2}\right)^{(4 n(p+1)+8 p+2) p}\left|\varphi^{(9)}\left(\eta_{s, t}(x)\right)\right|^{2}\right]^{\frac{1}{2}}}\right. \\
& \quad \leqq\|\phi\|_{(2 n(p+1)+4 p+1) p} E\left[\left(\frac{1}{1+\eta_{s, t}(x)^{2}}\right)^{(4 n(p+1)+8 p+2) p}\right]^{\frac{1}{2}}
\end{aligned}
$$

(2.35) is dominated by

$$
\begin{equation*}
C_{31}(n, T) \sup _{x \in \mathbb{R}}\left(1+x^{2}\right)^{(L-2 p-1) / 2} e^{-\gamma(t, s)|x|}\|\phi\|_{L p} E\left[\left(\frac{1}{1+\eta_{s, t}(x)^{2}}\right)^{2 L p}\right]^{\frac{1}{2}}, \tag{2.36}
\end{equation*}
$$

where $\gamma(t, s)=1-\left(1+\lambda(t, s) x^{2 p}\right)^{-1 / 2 p}, \lambda(t, s)=-2 p \int^{t} \beta_{2 p+1}(r) d r$ and $L=2 n(p$ $+1)+4 p+1$.

For the simplicity we will omit the parameters t, s of $\gamma(t, s)$ and $\lambda(t, s)$ except for ambiguous cases.

Setting $H(x)=1+\lambda x^{2 p}+\left(\left(1+\lambda x^{2 p}\right)^{1 / 2 p} K_{s, t}(x)+x\right)^{2 p}$, we get

$$
\begin{align*}
& E\left[\left(\frac{1}{1+\eta_{s, t}(x)^{2}}\right)^{2 L p}\right]^{\frac{1}{2}} \\
& \quad \leqq C_{32}(n, T)\left\{E\left[\left(\frac{1}{H(x)}\right)^{2 L}\right]^{\frac{1}{2}}+E\left[\left(\frac{\lambda x^{2 p}}{H(x)}\right)^{2 L}\right]^{\frac{1}{2}}\right\} \tag{2.37}
\end{align*}
$$

Let (Σ, \mathscr{B}, Q) be a probability space where the 1-dimensional Brownian motion $B(t)$ is defined.

Suppose that $|x| \geqq 1$. Setting

$$
A=\left\{\sigma \in \Sigma ; \frac{\left(1+\lambda x^{2 p}\right)^{1 / 2 p}}{|x|}\left|K_{s, t}(x)\right|<\frac{1}{2}\right\}
$$

and noticing that

$$
H(x)=1+\lambda x^{2 p}+x^{2 p}\left(1+\frac{\left(1+\lambda x^{2 p}\right)^{1 / 2 p}}{x} K_{s, t}(x)\right)^{2 p}
$$

we get

$$
\begin{align*}
E\left[\left(\frac{1}{H(x)}\right)^{2 L}\right] & =\left(\int_{A}+\int_{\Sigma \backslash A}\right)\left(\frac{1}{H(x)}\right)^{2 L} d Q \\
& \leqq\left(\frac{1}{1+x^{2 p} / 4^{p}}\right)^{2 L}+\left(\frac{1}{1+\lambda x^{2 p}}\right)^{2 L} Q(\Sigma \backslash \Lambda) . \tag{2.38}
\end{align*}
$$

By (2.34), $\sup _{0 \leqq s \leqq t \leqq T} E\left[\left|K_{s, t}(x)\right|^{4 L p}\right] \leqq C_{33}(n, T)\left(1+x^{2 p}\right)$, so that the Čebyšev inequality implies

$$
Q(\Sigma \backslash \Lambda) \leqq C_{34}(n, T)\left(\frac{1+\lambda x^{2 p}}{x^{2 p}}\right)^{2 L}\left(1+x^{2 p}\right)
$$

and hence combining this with (2.38), we get

$$
\begin{equation*}
E\left[\left(\frac{1}{H(x)}\right)^{2 L}\right]^{\frac{1}{2}} \leqq C_{35}(n, T)\left\{\left(\frac{1}{1+x^{2 p}}\right)^{L}+\left(\frac{1}{x^{2 p}}\right)^{(2 L-1) / 2}\right\} \tag{2.39}
\end{equation*}
$$

Quite similarly we have

$$
\begin{equation*}
E\left[\left(\frac{\lambda x^{2 p}}{H(x)}\right)^{2 L}\right]^{\frac{1}{2}} \leqq C_{36}(n, T) \lambda^{L}\left(1+x^{2 p}\right) \tag{2.40}
\end{equation*}
$$

Since $\frac{1}{\gamma(t, x)} \leqq C_{37}(p, T) \frac{1}{\lambda(t, s)}, t, s \in[0, T]$, we have

$$
\left(1+x^{2}\right)^{(L-2 p-1) / 2} e^{-y|x|} \leqq L!2^{L / 2}\left(\frac{1}{\lambda}\right)^{L} \frac{C_{37}(p, T)^{L}}{\left(1+x^{2}\right)^{(2 p+1) / 2}}
$$

and hence combining this with (2.37)-(2.39) and (2.40), we have if $|x| \geqq 1$,

$$
\begin{align*}
& \left(1+x^{2}\right)^{n(p+1)+p} e^{-\gamma|x|} E\left[\left(\frac{1}{1+\eta_{s, t}(x)^{2}}\right)^{(4 n(p+1)+8 p+2)}\right]^{\frac{1}{2}} \\
& \quad \leqq C_{38}(n, T)\left\{\left(\frac{1}{1+x^{2 p}}\right)^{(n(p+1)+3 p+1)}+\left(\frac{1}{x^{2 p}}\right)^{(n(p+1)+3 p+1 / 2)}\right. \\
& \left.\quad+\frac{1}{\left(1+x^{2}\right)^{1 / 2}}\right\} . \tag{2.41}
\end{align*}
$$

If $t=s$, for any integer $0 \leqq k \leqq n$,

$$
\begin{align*}
& \left(1+x^{2}\right)^{n}\left|D^{k}(g(x) \phi(x))\right| \\
& \quad \leqq\|\phi\|_{(2 n(p+1)+4 p+1) p}\left(\frac{1}{1+x^{2}}\right)^{(2 n(p+1)+4 p+1) p-n}, \tag{2.42}
\end{align*}
$$

By (2.41) and (2.42), we obtain that for any $\varepsilon>0$ there exists an $M>0$ such that

$$
\sup _{0 \leqq s \leqq t \leqq T} \sup _{\substack{|x| \geqq M \\ 0 \leqq k \leqq n}}\left(1+x^{2}\right)^{n}\left|D^{k}(g(x)(U(t, s) \phi)(x))\right|<\frac{\varepsilon}{3} .
$$

Hence we get

$$
\begin{align*}
& \left\|U(t, s) \phi-U\left(t^{\prime}, s\right) \phi\right\|_{n} \\
& \quad \leqq \frac{2}{3} \varepsilon+\sup _{\substack{|x| \leq M \\
0 \leqq k \leqq n}}\left(1+x^{2}\right)^{n}\left|D^{k}\left(g(x)\left((U(t, s) \phi)(x)-\left(U\left(t^{\prime}, s\right) \phi\right)(x)\right)\right)\right| \tag{2.43}
\end{align*}
$$

By Lemma 3 and the Schwarz inequality, we get that the second term of the right hand side of (2.43) is dominated by $C_{39}(n, T)\left|t-t^{\prime}\right|^{1 / 2}$, which proves (2.16). Now (2.17) will be proved similarly.

For the case where $p=-1,0$, as we proved in [22] we get

$$
\left(1+x^{2}\right)^{n}\left|D^{k}(g(x)(U(t, s) \phi)(x))\right| \leqq C_{40}(n, T)\|\phi\|_{n+1} \frac{1}{1+x^{2}}, \quad t, s \in[0, T]
$$

by making use of Lemma 2.3 (p. 212) of Kunita [16]. The rest of the proof will be carried out similarly. This completes the proof.

3. Central Limit Theorem for Interacting Multiplicative Diffusions

Inspired by Graham and Schenzle [5], we will study a central limit theorem for interacting multiplicative diffusions. Before explaining the circumstance, we will introduce some notations. For any integer $p \geqq-1$, let C_{p}^{∞} be a set of real C^{∞}-functions $f(x)$ such that for any integer $i \geqq 0$ there exists a constant $C(i)$ satisfying $\left|D^{i} f(x)\right| \leqq C(i)(1+|x|)^{p-i}$ if $p-i>0$ and $\left|D^{i} f(x)\right| \leqq C(i)$ if $p-i \leqq 0$. Further $C_{p}^{\infty} \times C_{p}^{\infty}$ denotes a set of real C^{∞}-functions $f(x, y)$ such that for any integer $i \geqq 0$ there exists a constant $\bar{C}(i)$ satisfying $\left|\bar{D}^{i} f(x, y)\right| \leqq \bar{C}(i)(1+|x|+|y|)^{p-i}$ if $p-i>0$ and $\left|\bar{D}^{i} f(x, y)\right| \leqq \bar{C}(i)$ if $p-i \leqq 0$, where $\bar{D}^{i}=\frac{\partial^{i}}{\partial x^{i_{1}} \partial y^{i_{2}}}$ and $i_{1} \geqq 0, i_{2} \geqq 0$
are integers such that, $i_{1}+i_{2}=i$.

Now we will consider the following Itô's stochastic differential system.

$$
\begin{align*}
X_{i}^{(n)}(t)= & \sigma_{i}+\int_{0}^{t} a\left(X_{i}^{(n)}(r)\right) d B_{i}(r) \\
& +\int_{0}^{t}\left\{b\left(X_{i}^{(n)}(r)\right)+c\left(X_{i}^{(n)}(r), \bar{X}_{n}(r)\right)\right\} d r \tag{3.1}\\
\bar{X}_{n}(t)= & \frac{1}{n} \sum_{j=1}^{n} X_{j}^{(n)}(t), \quad i=1,2, \ldots, n,
\end{align*}
$$

where $a(x) \in C_{p}^{\infty}, b(x)=\bar{b}(x)+b_{2 p+1} x^{2 p+1}, \bar{b}(x) \in C_{2 p}^{\infty}, b_{2 p+1}<0$ if $p \geqq 0, b_{-1}=0$ and $c(x, y) \in C_{2 p}^{\infty} \times C_{2 p}^{\infty}$. Further the coefficients $\left\{\sigma_{i}\right\}$ are independent copies of
a real random variable σ which satisfies $E\left[e^{\varepsilon_{0}|\sigma|^{2}}\right]<\infty$ for some $\varepsilon_{0}>0$ and is independent of $B(t)$ and $\left\{B_{i}(t)\right\}$ are independent copies of $B(t)$.

Similarly to Step 1 in Sect. 2 , we assume $p \geqq 1$ and denote by $a^{N}(x), b^{N}(x)$ and $c^{N}(x, y)$ the truncations of $a(x), b(x)$ and $c(x, y)$. Let $X_{i}^{(n), N}$ be a unique solution of Eq. (3.1) corresponding to the coefficients

$$
\left\{a^{N}(x), b^{\mathrm{N}}(x), c^{N}(x, y)\right\} \quad \text { and } \quad \bar{X}_{n, N}(r)=\frac{1}{n} \sum_{j=1}^{n} X_{j}^{(n), N}(r) .
$$

Let $a_{p}>0$ and $b_{p}>0$ be constants such that $|a(x)|^{2} \leqq a_{p}\left(1+x^{2 p}\right)$ and $|b(x)|$ $\leqq b_{p}\left(1+x^{2 p}\right)$. We choose a real number ζ such that $0<\zeta<\min \left\{\varepsilon_{0},\left|b_{2 p+1}\right| / a_{p}\right\}$. Since $X_{i}^{(n), N}(t)$ and $X_{j}^{(n), N}(t)$ have the same distribution, by the Itô formula, we have

$$
\begin{align*}
E & {\left[e^{\left.\zeta\left|X_{i}^{(n), N}(t)\right|\right|^{2}}\right] \leqq E\left[e^{\zeta\left|\sigma_{i}\right|^{2}}\right]+E\left[\int_{0}^{t} \frac{1}{n} \sum_{i=1}^{n} e^{\zeta\left(X_{i}^{(n), N}(r)\right)^{2}}\right.} \\
& \cdot\left\{2 \zeta\left(X_{i}^{(n), N}(r)\right) b\left(X_{i}^{(n), N}(r)\right)\right. \\
& +2 \zeta c_{p}\left|X_{i}^{(n), N}(r)\right|\left(1+\left|X_{i}^{(n), N}(r)\right|^{2 p}+\left|\bar{X}_{n, N}(r)\right|^{2 p}\right) \\
& \left.\left.+\left(2 \zeta^{2}\left(X_{i}^{(n), N}(r)\right)^{2}+\zeta\right) a_{p}\left(1+\left|X_{i}^{(n), N}(r)\right|^{2 p}\right)\right\} d r\right], \tag{3.2}
\end{align*}
$$

where c_{p} is a constant such that $|c(x, y)| \leqq c_{p}\left(1+x^{2 p}+y^{2 p}\right)$. By the Hölder inequality, we get for any integer $m \geqq 0$,

$$
\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}^{(n), N}(r)\right|^{2 m+1}\left|\bar{X}_{n, N}(r)\right|^{2 p} \leqq\left(\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}^{(n), N}(r)\right|^{2 m+2 p+1}\right),
$$

so that the right hand side of (3.2) is dominated by

$$
\begin{align*}
& E\left[e^{\xi\left|\sigma \sigma_{i}\right|^{2}}\right]+E\left[\int _ { 0 } ^ { t } \sum _ { m = 0 } ^ { \infty } \frac { \zeta ^ { m } } { m ! } \left\{\frac { 1 } { n } \sum _ { i = 1 } ^ { n } \left(2 \zeta b_{2 p+1}\left(X_{i}^{(n), N}(r)\right)^{2 m+2 p+2}\right.\right.\right. \\
& +2 \zeta\left(b_{p}+c_{p}\right)\left|X_{i}^{(n), N}(r)\right|^{2 m+1}\left(1+\left|X_{i}^{(n), N}(r)\right|^{2 p}\right) \\
& +2 \zeta c_{p}\left|X_{i}^{(n), N}(r)\right|^{2 m+2 p+1} \\
& \left.\left.+\left|X_{i}^{(n), N}(r)\right|^{2 m}\left(2 \zeta^{2}\left|X_{i}^{(n), N}(r)\right|^{2}+\zeta\right) a_{p}\left(1+\left|X_{i}^{(n), N}(r)\right|^{2 p}\right)\right\} d r\right] . \tag{3.3}
\end{align*}
$$

By a manner of choosing ζ and of proving previous lemmas, there exists a constant $C_{41}>0$ such that (3.3) is dominated by

$$
E\left[e^{\xi\left|\sigma_{i}\right|^{2}}\right]+C_{41} \int_{0}^{t} \frac{1}{n} \sum_{i=1}^{n} E\left[e^{\xi|X(n), N(r)|^{2}}\right] d r .
$$

and hence again using the fact that $X_{i}^{(n), N}(t)$ and $X_{j}^{(n), N}(t)$ have the same distribution, we get by (3.2),

$$
E\left[e^{\xi| | X\left(\xi^{n, N},\left.N(t)\right|^{2}\right.}\right] \leqq E\left[e^{\zeta\left|\sigma_{i}\right|^{2}}\right]+C_{41} \int_{0}^{t} E\left[e^{\xi|X(n), N(r)|^{2}}\right] d r .
$$

Therefore Gronwall's lemma gives

$$
\sup _{N} \sup _{0 \leqq t \leqq T} E\left[e^{\zeta\left|X_{1}^{(n), N}(t)\right|^{2}}\right]<\infty,
$$

so that similarly to the manner of deriving Lemma 1 , (3.1) has a unique non explosive solution $X_{i}^{(n)}(t)$ and together with the exponential integrability for $p=-1,0$ proved in [6], we have the following lemma which will be used later.
Lemma 5. For any $\varepsilon>0$ and $T>0$,

$$
\begin{equation*}
\sup _{0 \leqq t \leqq T} E\left[e^{\varepsilon \mid X \ell^{(n)}(t)}\right] \leqq C_{42}(T, \varepsilon)<\infty \tag{3.4}
\end{equation*}
$$

where $C_{42}(T, \varepsilon)$ is independent of n and i.
We will proceed to the discussion of the following non linear stochastic differential equation because the equation is the formal limit of (3.1).

$$
\begin{align*}
X_{i}(t)= & \sigma_{i}+\int_{0}^{t} a\left(X_{i}(r)\right) d B_{i}(r) \\
& +\int_{0}^{t}\left\{b\left(X_{i}(r)\right)+c\left(X_{i}(r), \int_{R} x u(r, d x)\right)\right\} d r \tag{3.5}
\end{align*}
$$

$$
u(r, d x) \quad \text { is the probability distribution of } X_{i}(r)
$$

Let $Y_{0}(t)=\sigma_{i}$ and $Y_{n}(t), n=1,2, \ldots$, be defined successively as follows:

$$
Y_{n}(t)=\sigma_{i}+\int_{0}^{t} a\left(Y_{n}(r)\right) d B_{i}(r)+\int_{0}^{t}\left\{b\left(Y_{n}(r)\right)+c\left(Y_{n}(r), E\left[Y_{n-1}(r)\right]\right)\right\} d r
$$

For integers $m \geqq\left(2 p\left(2 p-\frac{1}{2}\right) \vee 1\right)$, by the Hölder inequality we get

$$
\begin{aligned}
& \left|Y_{n}(r)\right|^{2 m-1}\left|E\left[Y_{n-1}(r)\right]\right|^{2 p \vee 0} \\
& \quad \leqq C_{43}\left\{1+\left|Y_{n}(r)\right|^{2 m}\left|Y_{n}(r)\right|^{\left({ }^{2 p-1)} \overline{m-p}\right.}\right) \vee 0 \\
& \left.\quad E\left[\left|Y_{n-1}(r)\right|^{2 m}\right]\right\},
\end{aligned}
$$

so that noticing $(2 p-1) \frac{m}{m-p} \leqq 2 p-\frac{1}{2}$ and $b_{2 p+1}<0$ if $p \geqq 0$ and using the Itô formula we have

$$
\begin{aligned}
E\left[\left|Y_{n}(t)\right|^{2 m}\right] \leqq & C_{44}\left\{1+E\left[\left|\sigma_{i}\right|^{2 m}\right]+\int_{0}^{t} E\left[\left|Y_{n}(r)\right|^{2 m}\right] d r\right. \\
& \left.+\int_{0}^{t} E\left[\left|Y_{n-1}(r)\right|^{2 m}\right] d r\right\}
\end{aligned}
$$

Hence by the generalized Gronwall lemma, there exists a constant C_{45} independent of n such that

$$
\begin{equation*}
\sup _{0 \leqq t \leqq T} E\left[\left|Y_{n}(t)\right|^{2 m}\right] \leqq C_{45} . \tag{3.6}
\end{equation*}
$$

Noticing $\sum_{j=0}^{2 p}\left(Y_{n}(t)\right)^{2 p-j}\left(Y_{n-1}(t)\right)^{j} \geqq \frac{1}{2}\left\{\left(Y_{n}(t)\right)^{2 p}+\left(Y_{n-1}(t)\right)^{2 p}\right\}$ and $b_{2 p+1}<0$ if $p \geqq 0$ and using the Itô formula, Hölder's inequality, (3.6) and the assumptions of the coefficients $\{a(x), b(x), c(x, y)\}$, we have for $m \geqq(2 p \vee 1)$,

$$
\begin{equation*}
E\left[\left|Y_{n}(t)-Y_{n-1}(t)\right|^{2 m}\right] \leqq C_{46} \int_{0}^{t} E\left[\left|Y_{n-1}(r)-Y_{n-2}(r)\right|^{2 m}\right] d r \tag{3.7}
\end{equation*}
$$

Therefore by the iteration, (3.5) has a solution $X_{i}(t)$. Similarly the inequality (3.6) holds if $Y_{n}(t)$ is replaced by $X_{i}(t)$ and also the inequality (3.7) holds if $Y_{n}(t)-Y_{n-1}(t)$ is replaced by $X_{i}^{1}(t)-X_{i}^{2}(t)$ for two solutions $X_{i}^{1}(t), X_{i}^{2}(t)$ of the equation (3.5), so that Gronwall's lemma gives the uniqueness of solutions of (3.5).

Now the central limit theorem is as follows.
Theorem 2. Suppose that $b_{2 p+1}<0$ if $p \geqq 0, b_{-1}=0$ and $E\left[e^{\varepsilon_{0}|\sigma|^{2}}\right]<\infty$ for some $\varepsilon_{0}>0$. Then $S_{n}(t)$ converges weakly in $C\left([0, \infty): \Phi^{\prime}\right)$ to a generalized OrnsteinUhlenbeck process $S(t)$ given by a unique solution of

$$
d \xi(t)=d W(t)+\mathscr{L}^{*}(t) \xi(t) d t
$$

where

$$
\begin{aligned}
(\mathscr{L}(t) \phi)(x)= & \frac{1}{2} a(x)^{2} \phi^{\prime \prime}(x)+\left(b(x)+c\left(x, \int_{\mathbb{R}} y u(t, d y)\right)\right) \phi^{\prime}(x) \\
& +x \int_{\mathbb{R}} \phi^{\prime}(z) c_{y}\left(z, \int_{\mathbb{R}} x u(t, d x)\right) u(t, d z)
\end{aligned}
$$

and

$$
c_{y}(x, y)=\frac{d}{d y} c(x, y)
$$

The Φ^{\prime}-valued Brownian motion $W(t)$ has a covariance functional $E\left[\left\langle W(t), \phi_{1}\right\rangle\left\langle W(s), \phi_{2}\right\rangle\right]=\int_{0}^{t \wedge s}\left(\int_{\mathbb{R}} a(x)^{2} \phi_{1}^{\prime}(x) \phi_{2}^{\prime}(x) u(\tau, d x)\right) d \tau, t \wedge s=\min \{t, s\}$ and the initial value $\xi(0)$ is a Φ^{\prime}-valued Gaussian random variable independent of $W(t)$ and of mean 0 and covariance $E\left[\left\langle\xi(0), \phi_{1}\right\rangle\left\langle\xi(0), \phi_{2}\right\rangle\right]$ $=E\left[\phi_{1}(\sigma) \phi_{2}(\sigma)\right]-E\left[\phi_{1}(\sigma)\right] E\left[\phi_{2}(\sigma)\right]$.

The proof will be devided into three steps as we mentioned in the introduction.

Step 1. Tightness of $\left\{S_{n}(t)\right\}$ in $C\left([0, \infty)\right.$: $\left.\Phi^{\prime}\right)$
By Theorem 12.3 of Billingsley [1] and Theorem 3.1 and (R.2) of [21], it is enough to examine the Kolmogorov test for $\left\langle S_{n}(t), \phi\right\rangle, \phi \in \Phi$ such that for any $T>0$,

$$
\begin{array}{cl}
E\left[\left|\left\langle S_{n}(t)-S_{n}(s), \phi\right\rangle\right|^{4}\right] \leqq C_{47}(\phi)|t-s|^{2} \quad 0 \leqq s \leqq t \leqq T, \\
E\left[\left|\left\langle S_{n}(0), \phi\right\rangle\right|^{2}\right] \leqq C_{48}(\phi), & \tag{3.8}
\end{array}
$$

where $C_{47}(\phi)$ and $C_{48}(\phi)$ are independent of n.
To prove (3.8), we prepare two lemmas

Lemma 6. For any integer $m \geqq\left(2 p\left(2 p-\frac{1}{2}\right) \vee 1\right)$ and any $T>0$ there exists a constant $C_{49}(m, T)$ independent of n and i such that

$$
\begin{equation*}
\sup _{0 \leqq r \leqq T} E\left[\left|X_{i}^{(n)}(t)-X_{i}(t)\right|^{2 m}\right] \leqq C_{49}(m, T) / n^{m} \tag{3.9}
\end{equation*}
$$

Proof. First we remark that Fatou's lemma, together with (3.6), implies

$$
\begin{equation*}
E\left[\left|X_{i}(t)\right|^{2 m}\right] \leqq C_{50}(m, T), \quad 0 \leqq t \leqq T \tag{3.10}
\end{equation*}
$$

Since

$$
\begin{align*}
2 m \mid & X_{i}^{(n)}(r)-\left.X_{i}(r)\right|^{2 m-1}\left|c\left(X_{i}^{(n)}(r), \bar{X}_{n}(r)\right)-c\left(X_{i}(r), E\left[X_{i}(r)\right]\right)\right| \\
\leqq & C_{51}\left|X_{i}^{(n)}(r)-X_{i}(r)\right|^{2 m-1}\left\{| X _ { i } ^ { (n) } (r) - X _ { i } (r) | \left(1+\left|X_{i}(r)\right|^{(2 p-1) \vee 0}\right.\right. \\
& \left.+\left|X_{i}^{(n)}(r)\right|^{(2 p-1) \vee 0}+\left|\bar{X}_{n}(r)\right|^{(2 p-1) \vee 0}\right) \\
& +\left|\bar{X}_{n}(r)-E\left[X_{i}(r)\right]\right|\left(1+\left|X_{i}(r)\right|^{(2 p-1) \vee 0}+E\left[X_{i}(r)\right]^{(2 p-1) \vee 0}\right. \\
& \left.\left.+\left|\bar{X}_{n}(r)-E\left[X_{i}(r)\right]\right|^{(2 p-1) \vee 0}\right)\right\}, \tag{3.11}
\end{align*}
$$

so that noticing

$$
\bar{X}_{n}(r)=\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}^{(n)}(r)-X_{j}(r)\right)+\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}(r)-E\left[X_{j}(r)\right]\right)+E\left[X_{j}(r)\right]
$$

and using (3.10) and the Hölder inequality, we have that for $0 \leqq r \leqq T$, the right hand side of (3.11) is dominated by

$$
\begin{aligned}
C_{52}\{ & \left|X_{i}^{(n)}(r)-X_{i}(r)\right|^{2 m}\left(1+\left|X_{i}(r)\right|^{\left(2 p-\frac{1}{2}\right) \vee 0}+\left|X_{i}^{(n)}(r)\right|^{\left(2 p-\frac{1}{2}\right) \vee 0}\right) \\
& \left.+\frac{1}{n} \sum_{j=1}^{n}\left|X_{j}^{(n)}(r)-X_{j}(r)\right|^{2 m}+\left(\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}(r)-E\left[X_{j}(r)\right]\right)\right)^{2 m}\right\}
\end{aligned}
$$

Noticing $b_{2 p+1}<0$ if $p \geqq 0$ and using the Itô formula, the above inequalities and the independence of $X_{i}(t), i=1,2, \ldots$, we have

$$
\begin{aligned}
E\left[\left|X_{i}^{(n)}(t)-X_{i}(t)\right|^{2 m}\right] \leqq & C_{53} \frac{1}{n^{m}}+C_{54} \int_{0}^{t}\left\{E\left[\left|X_{i}^{(n)}(r)-X_{i}(r)\right|^{2 m}\right]\right. \\
& \left.+\frac{1}{n} \sum_{j=1}^{n} E\left[\left|X_{j}^{(n)}(r)-X_{j}(r)\right|^{2 m}\right]\right\} d r, \quad 0 \leqq t \leqq T
\end{aligned}
$$

and hence Gronwall's lemma gives (3.9).
By the above lemma, Fatou's lemma can be applied for (3.4). Hence we have
Lemma 7. For any $\varepsilon>0$ and $T>0$,

$$
\begin{equation*}
\sup _{0 \leqq t \leq T}\left\{E\left[e^{\left.\varepsilon \mid X_{(}^{n}\right)(t) \mid}\right] \vee E\left[e^{\varepsilon \mid X_{i}(t)}\right]\right\} \leqq C_{55}(T, \varepsilon)<\infty \tag{3.12}
\end{equation*}
$$

where $C_{55}(t, \varepsilon)$ is independent of n and i.

Once we know Lemmas 6 and 7, we will be able to prove (3.8) similarly to the proof of Theorem 1 of Hitsuda and Mitoma [6].

Step 2. Langevin's Equation of Limit Process

Let $S(t)$ be the limit process of a convergent subsequence $\left\{S_{n_{v}}(t)\right\}$ of $\left\{S_{n}(t)\right\}$. The existence is guaranteed by Step 1 and the proof of Proposition 5.1 of [21]. Noticing the form of $(\mathscr{L}(t) \phi)(x)$, we get that for any $T>0$ and any integer $n \geqq 0$,

$$
\begin{aligned}
\|\mathscr{L}(t) \phi\|_{n} \leqq C_{56}(n, T)\|\phi\|_{n+p+2}, \quad 0 \leqq t \leqq T \\
\|\mathscr{L}(t) \phi-\mathscr{L}(s) \phi\|_{n} \leqq C_{57}(n, T)\|\phi\|_{n+p+1}|t-s|^{1 / 2}, \quad t, s \in[0, T] .
\end{aligned}
$$

Hence $\mathscr{L}^{*}(t) S(t)$ is continuous in t on Φ^{\prime}, so that we can define

$$
W_{S}(t)=S(t)-S(0)-\int_{0}^{t} \mathscr{L}^{*}(r) S(r) d r
$$

Applying the Itô formula to $\phi\left(X_{i}^{(n)}(t)\right)$ and $\phi\left(X_{i}(t)\right)$ and using Lemmas 6 and 7, we have

$$
\begin{aligned}
& \left\langle S_{n}(t)-S_{n}(0), \phi\right\rangle \\
& =\int_{0}^{t}\left\langle S_{n}(r), \frac{1}{2} a(\cdot)^{2} \phi^{\prime \prime}(\cdot)+\left(b(\cdot)+c\left(\cdot, \int_{\mathbb{R}} y u(r, d y)\right)\right) \phi^{\prime}(\cdot)\right\rangle d r \\
& \quad+\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{0}^{t} \phi^{\prime}\left(X_{i}(r)\right) a\left(X_{i}(r)\right) d B_{i}(r)+R_{2, n}(t, \phi)+I_{1}^{(n)}(t),
\end{aligned}
$$

where

$$
\begin{aligned}
I_{1}^{(n)}(t) & =\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{0}^{t} \phi^{\prime}\left(X_{i}^{(n)}(r)\right)\left(c\left(X_{i}^{(n)}(r), \bar{X}_{n}(r)\right)\right. \\
& \left.-c\left(X_{i}^{(n)}(r), E\left[X_{i}(r)\right]\right)\right) d r
\end{aligned}
$$

and

$$
\lim _{n \rightarrow \infty} E\left[\left|R_{2, n}(t, \phi)\right|\right]=0
$$

Rewrite $I_{1}^{(n)}(t)$ as the sum of terms

$$
\begin{aligned}
I_{11}^{(n)}(t)= & \int_{0}^{t} \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\phi^{\prime}\left(X_{i}^{(n)}(r)\right)-\phi^{\prime}\left(X_{i}(r)\right)\right)\left(c\left(X_{i}^{(n)}(r), \bar{X}_{n}(r)\right)\right. \\
& \left.-c\left(X_{i}^{(n)}(r), E\left[X_{i}(r)\right]\right)\right) d r \\
I_{12}^{(n)}(t)= & \int_{0}^{t} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi^{\prime}\left(X_{i}(r)\right)\left(c\left(X_{i}^{(n)}(r), \bar{X}_{n}(r)\right)-c\left(X_{i}^{(n)}(r), E\left[X_{i}(r)\right]\right)\right. \\
& \left.-c_{y}\left(X_{i}(r), E\left[X_{i}(r)\right]\right)\left(\bar{X}_{n}(r)-E\left[X_{i}(r)\right]\right)\right) d r
\end{aligned}
$$

$$
\begin{aligned}
I_{13}^{(n)}(t)= & \int_{0}^{t} \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\phi^{\prime}\left(X_{i}(r)\right) c_{y}\left(X_{i}(r), E\left[X_{i}(r)\right]\right)\right. \\
& \left.-E\left[\phi^{\prime}\left(X_{i}(r)\right) c_{y}\left(X_{i}(r), E\left[X_{i}(r)\right]\right)\right]\right)\left(\bar{X}_{n}(r)-E\left[X_{i}(r)\right]\right) d r, \\
I_{14}^{(n)}(t)= & \int_{0}^{t}\left\langle S_{n}(r), E\left[\phi^{\prime}\left(X_{i}(r)\right) c_{y}\left(X_{i}(r), E\left[X_{i}(r)\right]\right)\right](\cdot)>d r .\right.
\end{aligned}
$$

By Lemmas 6 and 7 and the independence of $X_{i}(t), i=1,2, \ldots$, we get

$$
\lim _{n \rightarrow \infty} E\left[\left|I_{11}^{(n)}(t)\right|\right]=0, \quad \lim _{n \rightarrow \infty} E\left[\left|I_{12}^{(n)}(t)\right|\right]=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} E\left[\left|I_{13}^{(n)}(t)\right|\right]=0
$$

Therefore setting $R_{n}(t, \phi)=R_{2, n}(t, \phi)+I_{11}^{(n)}(t)+I_{12}^{(n)}(t)+I_{13}^{(n)}(t)$, we obtain

$$
\begin{aligned}
& \left\langle S_{n}(t)-S_{n}(0), \phi\right\rangle-\int_{0}^{t}\left\langle S_{n}(r), \mathscr{L}(r) \phi\right\rangle d r \\
& \quad=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{0}^{t} \phi^{\prime}\left(X_{i}(r)\right) a\left(X_{i}(r)\right) d B_{i}(r)+R_{n}(t, \phi)
\end{aligned}
$$

where $\lim _{n \rightarrow \infty} E\left[\left|R_{n}(t, \phi)\right|\right]=0$, which will complete the proof similarly to the proof of Theorem 2 in [6].

Step 3. Proof of Theorem 2

By Step 2, any limit process $S(t)$ of $S_{n}(t)$ satisfies a Langevin's equation of type stated in Theorem 1. It is easy to check the condition (H), so that appealing to Theorem 1 we have that the probability measures induced by any limit process of $S_{n}(t)$ on $C\left([0, \infty) ; \Phi^{\prime}\right)$ coincide. Thus Step 1, the proof of Proposition 5.1 in [21] and Theorem 2.3 in Billingsley [1] lead us to the completion of the proof of Theorem 2.

Acknowledgment. The author would like to express his hearty thanks to the referees for valuable suggestions.

References

1. Billingsley, P.: Convergence of probability measures. New York London Sydney Toronto: Wiley 1968
2. Dawson, D.A.: Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Statist. Phys. 31, 29-85 (1983)
3. Gelfand, I.M., Vilenkin, N.Ya.: Generalized functions 4. New York London: Academic Press 1964
4. Gihman, I.I., Skorohod, A.V.: Stochastic differential equations. Berlin Heidelberg New York: Springer 1972
5. Graham, H., Schenzle, A.: Carleman imbedding of multiplicative stochastic processes. Phys. Rev. A25, 1731-1754 (1982)
6. Hitsuda, M., Mitoma, I.: Tightness problem and stochastic evolution equation arising from fluctuation phenomena for interacting diffusions. J. Multivariate Anal. 19, 311-328 (1986)
7. Holley, R.A., Stroock, D.W.: Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions. Publ. RIMS. Kyoto Univ. 14, 741-788 (1978)
8. Holváth, J.: Topological vector spaces and distributions 1. Reading, Mass.: Addison-Wesley 1966
9. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Tokyo: North-Holland-Kodansha 1981
10. Itô, K.: Distribution-valued processes arising from independent Brownian motions. Math. Z. 182, 17-33 (1982)
11. Itô, K. : Infinite dimensional Ornstein-Uhlenbeck processes. Kinokuniya, Tokyo: Taniguchi Symp. SA, Katata, 197-224 (1984)
12. Itô, K., Nawata, M.: Regularization of linear random functionals. (Lect. Notes Math., vol. 1021, pp. 257-267. Berlin Heidelberg New York: Springer 1983
13. Kato, T.; Perturbation theory for linear operators. Berlin Heidelberg New York: Springer 1976
14. Komatsu, H.: Semi-groups of operators in locally convex spaces. J. Math. Soc. Japan 16, 232-262 (1964)
15. Kunita, H.: Stochastic integrals based on martingales taking values in Hilbert space. Nagoya Math. J. 38, 41-52 (1970)
16. Kunita, H.: Stochastic differential equations and stochastic flows of diffeomorphisms. (Lect. Notes Math., vol. 1097. Berlin Heidelberg New York Tokyo: Springer 1984
17. Kusuoka, S., Tamura, Y.: Gibbs measures for mean field potentials. J. Fac. Sci. Univ. Tokyo Sect. 1 A Math. 31, 223-245 (1984)
18. McKean, H.P.: Propagation of chaos for a class of non linear parabolic equations. Lect. Ser. Differ. Eq. Catholic Univ., 7, 41-57 (1967)
19. Mitoma, I.: On the norm continuity of \mathscr{S}^{\prime}-valued Gaussian processes. Nagoya Math. J. 82, 209-220 (1981)
20. Mitoma, I.: On the sample continuity of \mathscr{S}^{\prime}-processes. J. Math. Soc. Japan 35, 629-636 (1983)
21. Mitoma, I : Tightness of probabilities on $C\left([0,1] ; \mathscr{P}^{\prime}\right)$ and $D\left([0,1] ; \mathscr{S}^{\prime}\right)$. Ann. Probab. 11,989-999 (1983)
22. Mitoma, I.: An ∞-dimensional inhonogeneous Langevin's equation. J. Funct. Anal. 61, 342-359 (1985)
23. Shiga, T., Tanaka, H.: Central limit theorem for a system of Markovian particles with mean field interactions. Z. Wahrscheinlichkeitstheor. Verw. Geb. 69, 439-459 (1985)
24. Sznitman, A.S.: A fluctuation result for non linear diffusions. (preprint)
25. Tanaka, H., Hitsuda, M.: Central limit theorem for a simple diffusion model of interacting particles. Hiroshima Math. J. 11, 415-423 (1981)
26. Tanaka, H.: Limit theorems for certain diffusion processes with interactions. Kinokuniya, Tokyo: Taniguchi Symp. SA, Katata, 469-488 (1984)

Received June 12, 1986; received in revised form December 1, 1986

