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Summary. Let q~ be a weighted Schwartz's space of rapidly decreasing func- 
tions, q~' the dual space and ~( t )  a perturbed diffusion operator with polyno- 
mial coefficients from ~ into itself. It is proven that A~ generates the 
Kolmogorov evolution operator from q5 into itself via stochastic method. 
As applications, we construct a unique solution of a Langevin's equation 
on q~' : 

d ~ (t) = dW(t) + ~ *  (t) ~ (t) d t, 

where W(t) is a q~'-valued Brownian motion and ~*(t) is the adjoint of 
Aq(t) and show a central limit theorem for interacting multiplicative diffu- 
sions. 

1. Introduction 

n 1 n 
Since McKean [18] proved that the empirical distribution U ( )(t)= n i~=lJx~)<o 

for an interacting n-particle diffusion process X(n)(t)=(X(l")(t), X~")(t) . . . .  , X(n)(t)) 
converges to a non random measure u(t)=u(t,  dx), several authors (It6 [-10], 
Kusuoka and Tamura [-17], Shiga and Tanaka [23], Sznitman [-24], Tanaka 
and Hitsuda [-25], Tanaka [26]) studied from different point of views the limit 

behavior of S.(t)=]/n(U<n)(t)-u(t)). Further it was obtained by Hitsuda and 
Mitoma [-6] that the limit process of S.(t) is governed by a Langevin's equation 
on a distribution space ~', (dual space of ~): 

d ~(t): dW(t) + ~*(0  ~(t) dt, (L1) 

where the characteristic operator ~*(t) is the adjoint of a perturbed diffusion 
operator ~( t )  with uniformly bounded coefficients acting from ~ into itself 
and W(t) is a ~'-valued Brownian motion. 

On the other hand, Dawson [2] studied the fluctuation phenomena for a 
simple model of interacting diffusions with polynomial coefficients called by 
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Graham and Shenzle [5] multiplicative processes. Inspired by him to study 
the fluctuation problem for interacting multiplicative diffusions, we essentially 
need to consider the Langevin equation where L~v(t) is a perturbed diffusion 
operator with polynomial coefficients for solving the identification problem of 
the limit processes of S,(t). 

The aim of this paper is to prove that the Langevin equation with such 
a characteristic operator has a unique solution represented similarly as a finite 
dimensional Ornstein-Uhlenbeck process (Theorem 1). Then we will show that 
Sn(t) converges weakly to a generalized Ornstein-Uhlenbeck process studied 
in Theorem 1 in the case where X(n)(t) is a multiplicative diffusion process with 
mean-field-like polynomial interacting drift (Theorem 2). 

In Sect. 2 we will prove Theorem 1, where it is essential to verify via stochastic 
method that 5~(t) generates the Kolmogorov evolution operator, (defined preci- 
sely later), from q~ into itself. This implies that 5~*(t) generates the usual evolu- 
tion operator from ~b' into itself. In Sect. 3, Theorem 2 will be proved in three 
steps. In Step 1 we will prove the tightness of Sn(t) in C([0, oo); q~') of continuous 
mappings from [0, oo) into ~'. In the course of the proof it is sufficient to 
check the Kolmogorov tightness criterion for each real process (Sn(t))(4)), 4)e ~, 
([21]). In Step 2, the limit equation of S,(t) having the form of (1.1) will be 
derived along the same line as Hitsuda and Mitoma [6]. The uniqueness for 
the limit equation proved in Theorem 1 will complete the proof in the last 
Step 3. 

2. Generalized Ornstein-Uhlenbeck Process 

Before stating results, we will define a suitable" space �9 modified from the 
Schwartz space 5~ of rapidly decreasing functions and give some notations. 
Let p(x) be the Friedrichs mollifier and Supp [ p ( x ) ] c [ - 1 ,  1]. Set g(x) 
= ~ e - I ' lp (x -y )dy ,  h(x)=l/g(x) and 4)={4)(x)=h(x)(p(x); q~eSP}. According 

IR 

to Gelfand-Vilenkin (3.6 in Chap. 1) [3], we will metrize ~b by the countably 
many semi-norms: 

114)1[,= sup (l+xZ)"lDk(g(x)O(x))l, n=0, 1,2, ... 
x ~ R  

O<_k<_n 

d 
where D=d~- x. Let 4~' be the topological dual space of 4~ and <x, 4)5=x(4)), 

x ~ ' ,  4 )~ .  Denote the space of continuous mappings from [0, oo) into ~' 
by C([0, oo); ~') whose topology and Borel field were introduced in [21]. 

We will give precise definitions concerning a Langevin's equation considered 
in this paper. Let W(t) be a ~'-valued strongly continuous Gaussian additive 
process of mean 0 and W(0)=0. For any t~[0, or), let ~( t )  be a continuous 
linear operator from 4~ into itself and for any 4)e4~, 5r continuous from 
[0, ~ )  into ~. We consider the following integral equation on ~': 
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~(t)= ~(o)+ w(t)+ i 2p*(s) ~(s) ds, 
0 

535 

(2.1) 

where s is the adjoint of L,e(t), the initial value 4(0) and W(t) are defined 
on a complete probability space (~, i f ,  P) and the integral on the space ~' 
denotes the Riemann integral. We say that (2.1) has a unique solution if there 
exists a ~'-valued strongly continuous process ~ (t) defined on (f2, ~-, P) satisfies 
(2.1) and for any such processes ~(t) and ~-(t), ~(t)=~-(t) for all t~[0, ~)a . s .  
whenever 4(0)= ~-(0) a.s. We also consider 

t 

~(t) = ~(0) + IV(t) + S 2#* (s) ~(s) ds, (2.2) 
0 

where the joint distribution of (~(0), IV(t)) coincides with that of (~(0), W(t)) 
and ~(0) and IV(t) may be defined on the other probability space (~, ~' ,  t3). 
When (2.1) and (2.2) have solutions ~(t) and ~'(t), we say that the uniqueness 
in law for (2.1) holds if the laws Pc and P~ of ~(t) and ~'(t) on C([0, oe); ~') 
coincide. 

Let T(t) be a continuous linear operator from 45 into itself and for any 
~)~cl), T(t)~ continuous from [0, oo) into q~. We call T(t) generates the Kolmogo- 
rov evolution operator U(t, s) if U(t, s) is a continuous linear operator from 
4~ into itself such that 

(T.1) for any ~be~, U(t, s)c~ is continuous from {(t, s); O<__s<=t} into 4~, 
(T.2) U (t, t)= U (s, s)=identi ty operator, 

d 
(r.3) ~ g(t,s)c~=g(t,s) r(t)c/), O<_s<_t on ep, 

d 
(T.4) dss U(t, s)~b= -T(s )  U(t, s)c~, O<s<=t, t > 0  on 4~. 

Let T*(t) and U*(t, s) be the adjoint operator of T(t) and U(t, s) respectively. 
By the nuclearity of 45, we get 

Remark. If T(t) generates the Kolmogorov evolution operator U(t, s), then T* (t) 
generates the usual evolution operator U* (t, s) on 45' equipped with the strong 
topology. Namely U* (t, s) satisfies the following (i)-(5). 

(1) For  any xe~' ,  U*(t, s)x is continuous from {(t, s); O<s<=t} into ~'. 
(2) For  O<_s<_r<_t, U*(t, r) U*(r, s)= U*(t, s). 
(3) U* (s, s)-- identity operator. 

d 
(4) ~ U*(t, s)x= T*(t) U*(t, s)x, O<_s<_t on ~'. 

d 
(5) dss U*(t, s)x= -U*(t ,  s) T*(s)x, O<=s<=t, t > 0  on 4~'. 

Following Holley and Stroock [7] and It6 [11], we begin with a generaliza- 
tion of the finite dimensional Ornstein-Uhlenbeck process. 
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Before proceeding to a proposition, we give a definition of a stochastic inte- 

gral i U*(t, s)dW(s) whenever U(t, s) is the Kolmogorov evolution operator. 
0 

Since �9 is a nuclear Fr6chet space, there is another system of Hilbertian semi- 
norms, 111-1111<111.1[[2__<...=<111.111,< .... defining the topology equivalent to that 
introduced before on ~. Let ~ ,  be the completion of q~ by ][l'][],, 4~', the dual 
space of ~b,, ][[-][[_, the dual norm of ~', and ( , ) ,  the canonical bilinear form 
on ~', x ~, .  Since W(t) is a ~'-valued strongly continuous Gaussian process, 
for any T > 0  there exists a positive integer n I such that E [  sup [][W(t)[[]z_,,] 

O<=t<~T 

< oo, ([19]). By (T.1), sup [[[U(t, s)~b[[], 1 < + oo, so that the stochastic integral 
O<_s<_t<~T 

i(dW(s), U (t, s)(o),l is well defined, (Kunita [15]). We denote the value by 
0 

Yt(qS). Since for any fixed t, Yt(~b) is continuous from �9 into Lo of all real random 
variables with the probability convergence topology and for any fixed q ~ ,  
Y~(~b) has a continuous version, combining It6 and Nawata  [12] and [20], there 
exists a ~'-valued strongly continuous process Yt such that (Yt, ~b) = Yt(qS) almost 

t 

surely. Define ~ U*(t, s) dW(s)= Yr. 
0 

Then we have 

Proposition 1. Suppose that 5f(t) generates the Kolmogorov evolution operator 
U (t, s). Then (2.1) has a unique solution 

t 

~(t)---- V*(t, 0) ~(0)+ J V*(t, s) dW(s). 
0 

Further the law uniqueness for (2.1) holds. 

Proof. Using (T.3) we get 

i ) U*(t,s)dW(s)=W(t)+ ~*(z) U*(~,s)dW(s) dz, 
0 0 \ 0  

so that noticing i 5~ U*(z, 0) r (0) d r =  U*(t, 0) ~ (0) -  ~(0), we have that ~(t) 
0 

satisfies (2.1). The uniqueness will be proved by applying the arguments in the 
proof of Proposition 7.3 of Komatsu [14] for bilinear form ( , ) .  Since U*(t, s) 
is non random, ~(t) and ~(t) are the same measurable functional of (~(0), W(t)) 
and (~'(0), lYV(t)), and hence the law uniqueness easily follows from the structure 
of the Borel field of C([0, ~ ) ;  ~'), ([21]). 

Next we will consider the case where 5g(t)=A(t)+J(t) and J(t) satisfies 
the following condition: 

(H) There exists a positive integer no such that for any integer n > 0  and any 
T > 0 ,  

sup sup HJ(t)qSl[.<~. 
O<~t<T ll4,11no~ 1 

q~e~ 
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In the subsequent discussions, for simplicity we denote positive constants by 
C, or C~(z l, z2 . . . .  ) with depending parameters zl,  z2, ..., for ambiguous cases, 
i = 1, 2 . . . .  and also positive integers by nz, i = 2, 3 . . . . .  

Proposition 2. Suppose that for any t~[0, ~) ,  A(t) and J(t) are continuous linear 
operators fi*om ~9 into itself, for any c~b ,  A(t)O and J(t)~ are continuous from 
[0, oo) into q~, A(t) generates the Kolmogorov evolution operator and J(t) satisfies 
the condition (H). Then 5f (t) generates the Kolmogorov evolution operator V(t, s) 
and the conclusion of Proposition 1 holds if U (t, s) is replaced by V(t, s). 

Proof It is enough to show that 5~(t) generates the Kolmogorov evolution 
operator. Denote an evolution operator that A(t) generates by U(t, s). Following 
Theorem 1.19 of Chap. IX in Kato [13], we will consider an integral equation 
on ~b: 

y (t, s, q$) = U (t, s) q$ + i U (z, s) 3 (z) y (t, z, q$) d z. (2.3) 
t 

$ 

By Baire's category theorem ([8], p. 62), for any integer n > 0, we get 

sup ]lU(t,s)~)ll,<C~(n, T)ll~bl[,2, (n2>n), (2.4) 
O<_s<_t<_T 

sup IlA(t)4)][,<-_Ca(n, T)llq$11,3, (ha>n). (2.5) 
O N t N T  

Hence (2.4) and the condition (H) quarantee that (2.3) is uniquely solved by 
the method of successive approximations. Define V(t, s)c) =y(t, s, qb). Then Gron- 
wall's lemma gives 

sup ]lV(t,s)Oll,<C3(n, T)]I~I],4, (n4>n). (2.6) 
O<_s<_t<_T 

Using (T.3) and (T.4) of U(t, s), (2.4) and (2.5), we get 

II(g(t' ,s')-g(t,s))cb]ln<C4(n,r){lt-t ' l+ls-s'[}ll~ll,~, (ns>n). (2.7) 

By (T.4) of U(t, s), 

+ ~ ) -  u (-~, s)) J ('0 ! { I ( u ( z ,  s V(t,z)dp}dz~ 

-A(s )  i(U(z,s)J(z)V(t,z)c~)dz as e--+ 0, 
S 

since the n-th seminorm of the integrand is bounded uniformly in z~ Is, t]. Using 
(2.6), (2.7) and Gronwall 's lemma, we have 

rl(V(t, s ' )-  V(t, s))cblJ,<=Cs(n, T ) I s - s ' [  IIr (n6 > n). (2.8) 

By (2.4), (2.6), (2.7) and (2.8), 

1 s+e  

(U(z,s+e) J(z) V(t, 'c)O)dz~ -J (s )  V(t,s)~ as ~ 0 .  
$ 

Thus, together with (T.4) of U(t, s), we find that V(t, s) satisfies (T.4). 
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Now, it is evident that V(t, s) satisfies (T.1) and (T.2). Given e and 8, set 

tS~( 1 A(72)~)dz-U(t,s)A(t)~b , 0 1 ( S ,  72)= - -  U(72,  S) 
t \ e  

and 

'i~( ~ ~)~)d72 U(t,s) O2(s,e)= -- U(72, s) J(72) V(t +e, - J(t)(o , 
t ke  

8)= ~ 1 s))q~. Rv(s,e, (V(t+e,s)-V(t,s))~b-~(V(t+(5,s)-V(t, 

Then if n > no, we have 

Rv(S, e, 5)< sup {Ol(S , ~)-}-OI(S , ( ~ ) ' ~ - 0 2 ( S  , ~)q-O2(s , (~)} 
O < s < t  

t 

+C6(n,r)~Rv(72, e,c~)dz, O<_s<_t<_T. 
s 

By (2.4), (2.5) and (2.7), lim sup {Ol(S, e)+Ol(s, 6)} =0.  By (2.4), (2.6), (2.7) and 
e--*O O<_s<t 
~ 0  

(2.8), also lira sup {O2(s, e)+O2(s, 6)}=0. Applying the generalized Gronwall 
~-~0 0 < s < t  
~ 0  

lemma for Rv(s, e, c5) and taking the above two equalities into account, we find 

that t-~ (V(t +5, s ) -  V(t, s))~)~ forms a Cauchy sequence and hence V(t, s)r is 
% .  J 

differentiable with respect to t. Moreover the above argument gives that 

-(V(t + 5, s ) -V( t ,  s))r , uniformly s similarly is bounded in 0 _< __< T Therefore 

to the proof of (T.4) of V(t, s), we have 

d V(t, s)q~= U(t, s)5f(t)c~+ i U(z, s)J(z) dV(t, z)q5 
dt dt s 

- - d z .  

The uniqueness of this equation implies (T.3) of V(t, s). 
Before proceeding to Theorem 1, we will introduce some definitions. For  

any integer p=> -- 1, Cp~ u denotes a set of real functions f( t ,  x) such that the 
following three conditions are satisfied. 

(i) f( t ,  x) is infinitely differentiable, (=  C~176 with respect to x. 
(ii) For  any integer n>__0 and any T > 0 ,  there exists a constant C(T, n) 

such that 

(ii-1) sup [D"f(t,x)l<=C(T,n)(l+[xl) p-" if p--n>O, 
O<~1NT 
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(ii-2) sup [D"f(t,x)[<C(T,n) if p--n<O. 
O<=t<= T 

(iii) For any integer n > 0 and any M > 0 

lim sup ID"(f(t, x ) - f ( s ,  x))] =0. 
t ~ s  i x l _ < M  

Suppose that 

(2f (t) ~)(x) = lc~ (t, x) 2 q~" (x) +/~ (t, x) q~' (x) + (J (t) ~) (x), 

where o~(t, x)eC~,,, fi(t, x)=fi(t, x)+ fl2p+ l(t)x 2p+ l, fi(t, x)eC~v,, , f izp+l(t) is  
continuous in te l0 ,  oo), flZv+l(t)<O if p > 0  and f l_l( t)=0.  

Theorem 1. Suppose that for any tE[-0, oo), J(t) is a continuous linear operator 
from �9 into itself, for any 0 ~ ,  J(t)O is continuous from [0, oo) into �9 and 
J(t) satisfies the condition (H). Then ~(t)  generates the Kolmogorov evolution 
operator U (t, s) and (2.1) has a unique solution 

~(t)= u*(t, o) 3(0)+ i u*(t, s) dW(s). 
0 

Further if ~(0) is a q~'-valued Gaussian random variable independent of W(t), 
the law uniqueness for (2.1) holds and the law is Gaussian. 

Proof Set (A(t)4))(x)=�89 x) 2 (a"(x)+~(t, x)d)'(x). Then by Proposition 2, it 
is enough to check that A(t) generates the Kolmogorov evolution operator. 
The proof will be devided into two Steps and carried out via stochastic method. 
In Step 1 we will derive the pointwise Kolmogorov forward and backward equa- 
tions and in Step 2 verify that these equations hold in an abstract sense. 

Step I. We will consider the following It6's stochastic differential equation: 

t t 

~,,, (x) = x + ~ ~ (r, ~,~(~)) dB (r) + ~/~(r, ~,,~(x)) d r 

, , , , (x)=x.  * ~ (2.9) 

Here B(t) is 1-dimensional Brownian motion. 
If p = 0 , - - 1 ,  Eq. (2.9) has a unique non-explosive solution tls, t(x ) because 

the coefficients are globally Lipshitz continuous. 
Suppose that p > 1. For each natural number N, we choose globally Lipshitz 

continuous functions aN(t, x) and fiN(t, x) such that 

~N(t,x)=~(t,x) and fiN(t,x)=fi(t,x) if Ixl<N, 

~N(t,x)=~(t,N) and fiN(t,x)=fl(t,N) if x > g ,  

:~N(t,x)=c~(t,--N) and fiN(t,x)=fl(t,--N) if x <- -N.  
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Then Eq. (2.9) corresponding to coefficients {c~N(t, x), flu(t, x)} has a unique solu- 
tion N t/s.~(x ). For any T > 0 ,  let e r > 0  be a constant such that sup ]c~(t, x)l 2 

O<_t<_T 

< e r ( l + x a p ) .  Let ( be a real number such that 0 < ~ < (  rain ]fl2p+l(t)l)/er. 
O<_t<_T 

By the It6 formula we get 

E [e ~ I~(~)12] _ e ~ I x 12 

= E[!  e~l"~r(x)[2 {2( tl:r(X) flN (r, qsUr(x)) +(2(Z rl~r(x)2 + Oc~n (r, tl:r(x))2} dr]. 

Noticing a manner of choosing ~ and flzp+l(t)<0, we have a constant Cv(T) 
independent of x and N such that 

{2 ( ~/~r (x) fiN(r, tl~r(x)) + (2 (2 qsu, r (x)2 + ~) aN(r, q~r (x))2} < C7 (r). 

Therefore Gronwall 's lemma implies 

sup sup sup E[e r < oo , 
N [xl<=M O<-s<-t<-T 

so that Eq. (2.9) has a unique solution qs,~(x) and it has no explosions, (Theo- 
rem 5.2, p. 229 of Kunita [16], Ikeda and Watanabe [9]). 

By Proposition 2 in [6] and a calculation similar to the above, we have 

Lemma 1. For any e > O, T > 0 and M > O, 

sup sup E[e ̀ ln~,~(x)l] < o0. (2.10) 
Ixl<_M O<_s<t<_T 

Therefore by the strict conservativeness of t/s,~(x), (p. 232) and Theorem 5.4 
of Kunita [16], ~/sa(x) is infinitely differentiable with respect to x for any s=< t 
and further the proof of Theorem 5.2 of [16] implies that the following differen- 
tial formulae for ~/~a(x) hold like in the case of stochastic differential equations 
with globally Lipschitz smooth coefficients (for example w 8 in Chap. 2 of Gihman 
and Skorohod [4]): 

t t 

Dkrls,t(x)=Dkx+ ~ Dkc~(r, rl,,,(x))dB(r)+ ~ okfl(r, tl,,,(x))dr (2.11) 
s s 

for any integer k > 0. 
Define (U(t, s) r = E [c~ (r/s,,(x))]. Since the coefficients of (2.9) satisfy the 

condition of Theorem 1.1 (p. 256) of [16], if we prove the following integrabilities 
for Dkrls,,(x) quaranteeing the uniform integrabilities used in [22], ItO's forward 
and backward formulae for qS(t/sa(X) ) lead us to the pointwise Kolmogorov 
forward and backward equations: 

d 
(U (t, s) qS) (x) -- (U (t, s) A (t) qS) (x), (2.12) 

d 
dss (U(t, s)~o)(x)= --(A(s) U (t, s)(o)(x). (2.13) 
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Lemma 2. For  any  integers i >  1 and j >  1 and any  T > 0 ,  

sup E[lDirls,  t (x)[J]<=Cs(T)( l  +]x[)  j ( i -1)((2p-1)v~ (2.14) 
O<_s<_t<_T 

where a v b = max {a, b}. 

Proof.  Also in this case, it is enough to check (2.14) for p__>0, (Theorem 1, p. 61 
of Gihman and Skorohod [4, 22]). We will show this by a mathematical induc- 
tion. For brevity, we use that notation f(k)(t ,  x ) = D k f ( t ,  X). By (2.11) and the 
It6 formula, 

EE(Drls,,(x)) 2j] -- 1= E l !  (D r/~,r (x)) 2J {2j fl(1)(r, ~,r(X)) 

+ j ( 2 j -  1)(~(1)(r, t/~,r (x))) 2} dr].  

In fact, by a manner used in the proof of deriving Lemma 1, there exists a 
constant C9 = C9 (j, T) such that 

sup {2j ffX)(r, r /s ,r(x))+j(2j-  l)(~(1)(r, t/~,,(x))) 2} < C9, 
O<_s<~r<_T 

and therefore Gronwall's lemma gives (2.14) for i=  1. 
Suppose that (2.14) holds for every integer 1 _<i_< k. Set 

O:g,. (s, r) = D k + l c~ (r, ~l~.r (x))--  ~(1)(r, r/~,. (x)) D k + 1 rl~, ~ (x) 

and 
ilk, n (S, r) = D k + a fl (r, rls., (x)) -- fl(1)(r, rls., (x)) D k + 1 ~ls,r (X). 

Again by (2.11) and the It6 formula, 

qs,~(x)) 

x D k+ l tl~,r(X ) + flk,,(s, r)} + j (2 j - -  1)(D k+l q~,~(x)) 2j-z {cdl)(r, tls,r(x)) 

x D k + 1 ~s,r (X) -~ O~k. rl (S, r)} 2) d r[ 

[j __< E {(D k+l q~,,(x))2J(2j fl(1) (r, t/s,~ (x))+ 2 j ( 2 j -  1) (7(1)(r, r/,., (x))) 2) 

+ 2 j lDk+ lrls.~(x)l 2 j -  I I/~k,n(s, r)l 

+ 2 j ( 2 j -  1)[D k+ 1 ~s ,r (X)[2j -2[O~k,q(S ,  r ) [ 2 }  drJ. 
By a manner used in the proof for i=  1 and H61der's inequality, there exists 
a constant C~o = Clo(j, T) such that the right hand side of the above inequality 
is dominated by 

t 

Ca o ~ E [(D g +1 t/,., (x))2 j + (C~k., (S, r)) 2J -k (flk,n(S, r)) 2j] dr. 
s 
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Since ak,,(S, r) is a finite sum of terms of the type 

cd J) (r, 11~,~ (x)) (D 11 ~,r (x)) jl (D 211~,~ (x))j2. .. (D k 11s,~ (x)) j~, 
k 

2 < j < k ,  ~ n j , = k + l ,  
n = l  

and flk,,(S, r) is also written by the same way as the above, we have for O<s<_r 
< T  

E [(~.,(s.  ~))~J] v E [(/~.,(s. r)) ~i] 
=< Cl1 (j, T) sup {E [-(cd ") (r, 115,~(x))) 4j] 1/2 V E [(fl(n)(F, 11s, r(X))) 4j] 1/2} 

2 < _ n < ~ k  

(l_[_lXi)2j(k+l-~aj.)((2p 1) v 0). 

By a manner used in the proof of deriving Lemma 1, we get for any integer 
n=>0, 

E[(11~,,(x))2"]<Clz(r)(l +lx12"), O<s<_t<_T, (2.15) 

and hence 

sup {E [(e(")(r, 115,r (x)))4J] 1/2 v E [(if")(r, 115,r (x))) a J] 1/2} 
2 < _ n < _ k  

< C13 (j, T)(1 + Ix  l) 2jtt2v- 1)v o) 

( ~tJ") -< k -  1' summing up the abOve inequalities and using GrOn- Since k + 1 - , ,  _ 

wall's lemma, we have (2.14) for i = k +  1. 

Step 2. We shall prove (T.1)-(T.4) of U(t, s) below. Suppose that for any integer 
n > 0, the following equalities have been proved. 

lim I] U(t, s)4)- U(t', s)q~l[, =0. (2.16) 
t -*  t '  
s ~ s ,  

lim LI U(t, s)43 - U(t, s')qS[I, = 0. (2.17) 
t -4 t '  

s ~ S "  

Then (2.16) and (2.17) implies (T.1). (T.2) is immediate from the definition of 
U(t, s). For any qSe~, 

[[A(t)~ll~<= C14(n, T)II~ll.+(v+2~, 
lira [IA(t)~o- A(s)~ll,=O, 
t---~S 

0 < t < T ,  
(2.18) 

so that together with (2.4) and (2.18), we have U(z,s)A(z)dp, z > s  and 
A(z) U(t,z)4) , O<_z<_t, are [I-I[n-COntinuous in z and hence both are the 
N-[L,-Riemann integrable for every integer n>0.  Therefore by Kolmogorov's  
equations and the definition of n-th semi-norm II �9 I[ . ,  we have 
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t 

s,  tx, 

s 

(2.19) 

which gives (T.3) and (T.4). 
To  check (2.16) and (2.17), we will begin to prepare  a regulari ty lemma 

for q,,t(x) and the differentials. 

L e m m a  3. For any T > O, M > O, 0 < s <_ t < T, 0 <_ s' < t' <_ T and any integers n > 1 
and re>O, 

sup E[[q,,,(x)--q,,,,,(x)["]<Cls(n, T,M){l t- t ' l~+[s-s '[~},  (2.20) 
I:q_-<M 

sup E[ltls,,(x)--x I"] < C16(n, T, m)[t-s[~,  (2.21) 
Ixl_-<M 

sup E[ID"q ~, ,(x)--Dmtl,,,t,(x)]"]<Cav(n,m, T,M){[t- t ' l~+[s - s' [ ~}, (2.22) 
DI_-<M 

sup EKlO"(~s,,(x)--x)ln 3 <__C~8(n , m, T, M ) I t - s l  ~. (2.23) 
Ixl<=M 

Proof For  the proofs  of  (2.20) and (2.22), it is enough to show them only for 
the case where 0 < s < s' ' <_ < t < t _ T. Since 

t 

r/,,, t, (x) = x + j" e (r, r/~,,~ (x)) dB (r) + f fi (r, r/s,,~ (x)) d r 
s '  s" 

t '  t '  

+ j" a (r, tls,,~ (x)) dB (r) + ~ fi (r, tl,,r (X)) d r, 
t t 

t /s , , (x)  = r/~, , ,(x) + f ~(r, tl,,~(x))dB(r)+ i fl(r, tl,,,(x))dr, 
s '  s '  

the left hand  side of (2.20) is domina ted  by 

5 " - t  sup E[lx--rls,s,(x)["+ J (~(r, rls,,~(x))-o~(r, rls, r(x)))dB(r)" 
[ x l < M  '- 

+ ' d r"+  i' ~ls,,~(x)dB(r) " (/~(r, ~s, r(x))-/~(r, ~s,~(x))) ~(r, 
S' t 

(2.24) 

Not ic ing L e m m a  1 and the Burkholder  inequality,  ((3) on p. 193 of Kuni ta  [16]), 
we get 
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t ' n t' n 

_-_ C19(n, T, M) It - C L ~. (2.25) 

Quite similarly we have 

sup E [I x - ~s, ~, (x)I"] <= C2o (n, ~ M )  Is - s' I ~, (2.26)  
Ixl<-M 

which proves (2.21) simultaneously and have also (2.23) by Lemmas 1 and 2 
and (2.11). k-1 

Setting gk (x ,y ) :  ~ x k - l - j y  j for any integer k__>l and noticing that 
j=O 

g2p+l (X,  y ) ~ � 8 9  2p} and /~2p+l(t)<0 if p > 0 ,  we have the following by 
a manner used in the proofs of the previous lemmas; 

E[Iq,,,r(x)-rls,,(y)12"q<C21(n,Z)lx-yl 2", O<s'<_r<T. (2.27) 

Since q~,r(x)=I/~, r(t/~,s,(x)) if r > s' and tls, r ( y ) -qs , , ( x  ) is independent of t/~,~,(x), 
we get by (2.26) and (2.27) that for I xl _-< M, 

e El ~s,,~(x)- ~ , r (x)?"]  __< c~(n ,  7; M) I s -  s' I"- (2.28) 

Thus (2.24), together with (2.25), (2.26), (2.28), Lemma 1 and the Burkholder 
and Schwarz inequalities, leads us to (2.20). 

We will show (2.22) by a mathematical induction. If m = 0, (2.22) is immediate 
from (2.20). Suppose that for any integers k > 0 and n > 1, (2.22) holds for every 
integer 0 < m_< k. Using the notations in the proof of Lemma 2, we get 

Dk+lrls,t(x) Dk+l k+t  - ~ , ~ ( x )  = O ( , l~ , s , (x ) -  x)  

+ i {(ak,,( s' r)-- c~k,,(s' , r)) + c~(1) (r, tl~,~(x))(D k+ 1 q~,,(x)-- D k+ 1 l,]s,,r(X) ) 
$, 

"t- O k +1 ~]s,,r(X)(O~(1)(r, ~]s,r(X) ) __ ~(1) ( r ,  ~ s ' , r  (X)))} d R ( r )  

+ [ {(fik,,(s, r)-- flk,,(S', r)) + fl(1)(r, qs,,(x))(D k+l rl~,~(x ) -  O k + 1 t]s,,r(X)) 
s' 

+ D ~+~ rl~,,,(x)(/3(~)(r, O,,~(x))-/3(1)(r, ~,  r(x)))} dr. 

Then by the assumption of the induction, Lemmas 1 and 2, (2.20), (2.23) and 
a manner used in the proof  of Lemma 2, we have 

sup EElDk+ltl~,~(x)--Dk+ltl~,,t(x)] 2"] "< C23(r/, k-l- 1, T, M)Is--s ' l".  (2.29) 
Ixl_-<M 

Of course, by Lemmas 1 and 2, we get 

sup E [ID k + ~ r/,,t (x) -- D k + 1 r/~,,t" (x) I"] < C24 (n, k + 1, T, M) I t - t' I ~. (2.30) 
Ixl<=M 

Therefore (2.29) and (2.30) imply (2.22). This completes the proof. 
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Now we will return to the proofs of (2.16) and (2.17). First we will discuss 
the case where p > 1. Suppose that 0 < s < t_< T. Since 

II U(t, s)~ll ,= sup (1 +x2)" IDk(g(x)(U(t, s)~b)(x))[, (2.31) 
x e ~  

O<_k<_n 

changing the order of the differentials and the expectation because of Lemmas 1 
and 2, we have by the Leibniz formula that the right hand side of (2.31) is 
dominated by a finite sum of the terms; 

where 
q)(q) (x)= Dq~o (x). By the definitions of g(x) and h(x), 

IDt g(x) l < C25(l)e - N ,  

I h~m) (t/s,, (x)) [ < C2 6 (m) e I~','~)1. 

Let y~,,(x) be a unique solution of 

t 

Ys,t  (X)  = X -~ ~ f12 p + 1  ( r ) ( Y s , r  (X))  2 p + 1  d r .  
s 

sup(1 +x2) n IDZg(x) E[h~")(tls,,(x)) ~o~q)(qs,t(x))(Dt/s,,(x))"' 
xe~ .  

(D~ ~,~(x))"~...(D ~n~,,(x))"q I, (2.32) 

O<_l+k<n, O < m + q < k ,  n ~ + 2 n 2 + . . . + k n k = k ,  h(m)(x)=D"h(x) and 

(2.33) 

Set Ks,~(x)= qs, t(x)--ys,t(x). Then we have 

Lemma 4. For any T > O, there exists a constant (>  0 such that 

sup E[e ~lr~,~)l~] < C27(T)(1 + xZP). (2.34) 
O<_s<_t<_T 

Proof. Let ~r > 0 and fit  > 0 be real numbers such that sup l a (t, x)] 2 __< aT (1 + x 2p) 
O<=t<_T 

and sup [fl(t,x)l<=flr(l+xZP). We choose a real number ( such that 0 < (  
O<=t<=T 

<(  rain J fl2p+ l(t)J)/4~r. Then by a manner similar to that used in the proofs 
O<_t<_T 

of deriving Lemma 1 and (2.27), we get 

E [e ~K~,~(~] <= 1 + E ~ {F(r) t/s,~(x) 2p + (G (r) + I) e ~K~,'(~)~} d r , 
~s 

where 

F (r) = (e  ;Ks,r(~)2 {(�89 fl: p + 1 (r) + 2 ( c~ T)Ks,, (x) 2 + 2 fit IKs,,(x) l+ ~ r}, 

G(r)=~ Ks,r(x)Z {�89 l(r)(t/s,r(x)ZP + Ys,,(x)ZP)+ 2( c~r+ l}, 

I = ~ ( ~ + ~ T ) .  
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Noticing a manner of choosing [ and/~2v + ~ (t)< 0, we have 

F(r)<=C28(T ) and G(r)<=C29(T). 

Therefore the inequality (2.15) and Gronwall's lemma give us (2.34). 
By making use of (2.33), (2.34), Lemma 2 and the Schwarz inequality, we 

get that (2.32) is dominated by 

Since 

and 

C3o(n , T)sup(l+x2)"(P+l)+pe-I~l+ly,,~c~)lE[lqo(q)(tl~,t(x))12] ~. (2.35) 
x~]~ 

Ys, t (x) = 
X 

1--2p fl2p+l(r) dr X 2p 

E 1-1 ~o(~ (~#.,,(x))123 ~ 
E ([~ +/1~'t(x)Z)(4"(P + a)+ Sp + 2)p 

._~ ~]s,t(X)2)(4n(p + 1)T- 8p + 2)p IqCq)(ns,,(x))12] a 

[ (  1 "~(4n,p + 1)+ 8/:,+ 2,p]�89 
___< II ~bll<2,(v+ 1)+4p+ 1 ) P E l t  1 ..[_~]s,t(x)2} ] , 

(2.35) is dominated by 

C31(F/, T)sup(1 +x2)(L-2v-1)12e -r~''~)lxl IIq~llLpg l+~s,,(x)2} ] , (2.36) 
x6R 

where 7(t, s)= 1 - (1  +2(t ,  S)x2P) -112p, ).(t, S)= - 2 p  j" ~82p+l(r)dr and L=2n(p  
+ l ) + 4 p + l .  s 

For  the simplicity we will omit the parameters t, s of 7(t, s) and 2(t, s) except 
for ambiguous cases. 

Setting H(x) = 1 + 2x 2v + ((1 + 2xZP) 1/zp Ks,t(x) + x) zp, we get 

( I - 1  1 \2LI~ r/2x2V\2cwi 
(2.37) 

Let (Z, N, Q) be a probability space where the 1-dimensional Brownian motion 
B(t) is defined. 

Suppose that ]xl > 1. Setting 

A = { a ~ Z ;  (1 + 2xee) 1/2p Ixi IK~"(x)l <1} 
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and noticing that 

H(x)=Iq-.~x2p-'}-x 2p lq  (I-}-2x2p)I/2PKs,t(x) , 
x 

we get 
1 2L 1 2L 

1 ~2L 2L 

By (2.34), sup 
O<_s<_t<_T 

equality implies 

E[IK,,t(x)] 4Lv] ~C33(n, T)(1 -}-x2P), SO that the Cebygev in- 

Q(S\A)  < C34(n, T)(.1 + )Lx2P~ 2L ) ~  -] (I+x~'), 

and hence combining this with (2.38), we get 

F/ 1 \2L]�89 ([  1 \L [ 1 \(2L-1)/2"~ 
(2.39) 

Quite similarly we have 

[12x2p\2L]~ < 
(2.40) 

S i n c e - -  
1 

(t, ~) 
1 

<C3v(P, T ) , , 7 , ,  t, sE[-0, T], we have 
/~t~, s) 

(1 _.]_ X2)(L-2p-1)/2 e-~ Ix l<L  ! 2L/2(~) L C37 (P, T) L 
(1 + X2) (2p+ 1)/2 

and hence combining this with (2.37)-(2.39) and (2.40), we have if [x I> 1, 

[[ 1 \(4n(p+l)+8p+2)]�89 

1 _\ 
q (1 .+. x2)1/2j, - (2.41) 

If t = s, for any integer 0_< k_< n, 

(1 + x2)" [D k (g (x) r (x))] 

{ 1 ~(2n(p+l)+4p+l)p--n 
--< IIr ll(2,,(p +,)+4,+ ,}~ \ ~ ]  (2.42) 
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By (2.41) and (2.42), we obtain that for any 8>0  there exists an M > 0  such 
that 

g 

sup sup (1 +x2)" IDk(g(x)(U(t, s)~b)(x))l < ~ .  
O<_s<_t<_T I x l > M  

O<_k<_n 

Hence we get 

II u(t, s )~ -  u(t', s)O [I. 
2 

< 5 e +  sup (1 +x2)" IOk(g(x)((U(t, s)c~)(x)-(U(t', s)~b)(x)))l. 
Ixl<=M 
O<_k<_n 

(2.43) 

By Lemma 3 and the Schwarz inequality, we get that the second term of the 
right hand side of (2.43) is dominated by C39(n, T) I t - t '  [ 1/2, which proves (2.16). 
Now (2.17) will be proved similarly. 

For  the case where p = - 1, 0, as we proved in [22] we get 

1 
(l+x2)'lDk(g(x)(U(t,s)c~)(x))l<-<_C4o(n, T)11r l + x  2, t, se[O, r], 

by making use of Lemma 2.3 (p. 212) of Kunita [16]. The rest of the proof 
will be carried out similarly. This completes the proof. 

3. Central Limit Theorem for Interacting Multiplicative Diffusions 

Inspired by Graham and Schenzle [5], we will study a central limit theorem 
for interacting multiplicative diffusions. Before explaining the circumstance, we 
will introduce some notations. For  any integer p > --1, let C~ be a set of real 
C~-functions f (x)  such that for any integer i > 0  there exists a constant C(i) 
satisfying [Dif(x) l < C(i)(1 + I x  [)P-i if p -  i>  0 and [D~f(x)[< C(i) if p - i <  0. Fur- 
ther C ;  x C ;  denotes a set of real C~-functions f (x ,  y) such that for any integer 
i>  0 there exists a constant C(/) satisfying I/)if(x, y)[ < C(i)(1 +lx l  + [yl)P-i if 

p - i > O  and IDif(x,y)l<C(i) i f p - i < O ,  where /)i - -  and il>O, i2>0 
are integers such that, il + i2 = i. - 0xh 0y~2 - - 

Now we will consider the following It6's stochastic differential system. 

xln)( t )  = ai + i a(X~")(r)) dBi(r)  
0 

t 

+ S {b (X! n) (r)) + c (X} ") (r), Sn (r))} d r (3.1) 
0 

_ 1 " 
= ~1 x}") (t), i = 1, 2,..., n, x . ( t )  ~ J= 

where a(x)eC~, b(x)=b(x)+bEp+l x2p+l, b(x)eC~p, b2p+l<0  if p>0 ,  b _ l = 0  
and c(x, y)eC~p x C~p. Further the coefficients {0-i} are independent copies of 
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a real random variable a which satisfies E[e~~ for some % > 0  and 
is independent of B(t) and {Bi(t)} are independent copies of B(t). 

Similarly to Step 1 in Sect. 2, we assume p >  1 and denote by aN(x), bN(x) 
and cN(x, y) the truncations of a(x), b(x) and c(x, y). Let X~ ")'N be a unique 
solution of Eq. (3.1) corresponding to the coefficients 

rl 

{aN(x),bN(x),cN(x,y)} and J(,,N(r)= lj__~IX}~''N(r). 

Let ap>0  and bp>0  be constants such that la(x)12<ap(l+x 2p) and Ib(x)l 
<bp(1 +x2p). We choose a real number ( such that 0 < ( < r a i n { % ,  ]b2p+l I/ap}. 
Since XI'~ and X~")'N(t) have the same distribution, by the It6 formula, we 
have 

[ i 1 ~  E[er E _ er 
LO /'7, i = 1  

. {2 ( (XI  ")'N (r)) b (XI ")'N (r)) 

+ 2 (  cp I X~")'N(r)I (1 + I X!")'N(r)12P + I X~.,~(r) ? ~) 
+ (2( 2 (XI")'N(r)) z + 0 ap(1 + I X!")'N(r)lZp)} dr], (3.2) 

where cp is a constant such that Ic(x, y)l<ep(1 +X2p+yZP). By the H61der in- 
equality, we get for any integer m > 0, 

) _1 IX!")'N(r)lZm+l [X"'N(r)I2P< n ~ [Xl")'N(r)12~+zP+l 
/ ' /  i = 1  \ i = 1  

so that the right hand side of (3.2) is dominated by 

m = o  i = 1  

+ 2 ((b,  + cp) I X!")'s (r)[2m +1 (1 + IXf");U(r)[2,) 

+ 2 (  cp ] Xl")'U(r) I a '+  2"+ a 

+lXl")'U(r)12"(2(2IXl""N(r)12+()a,(i+lXl""U(r)12")}dr]. (3.3) 

By a manner of choosing ( and of proving previous lemmas, there exists a 
constant C41 > 0 such that (3.3) is dominated by 

i l  ~ E[er 2] dr. E[e~I~'I2]+C41 n i=l 

and hence again using the fact that X! ")' N(t) and XS.")' N(t) have the same distribu- 
tion, we get by (3.2), 

t 

E [e ~ I X~")'Nml2] =< E [e ~ I ~ 12] + C41 .I E [e ~ Ix~")'N(~ dr. 
0 
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Therefore Gronwall 's lemma gives 

sup sup E[e  ~lx~'N(~ < oo, 
N O < t < T  

so that similarly to the manner of deriving Lemma 1, (3.1) has a unique non 
explosive solution X!")(t) and together with the exponential integrability for 
p = - 1, 0 proved in 1-6], we have the following lemma which will be used later. 

Lemma 5. For any e > 0 and T > O, 

sup E[e~lX~"~(~ ~ C 4 2 ( T ~ e ) <  (30 (3.4) 
O<_t<_T 

where C42(T, e) is independent o f  n and i. 

We will proceed to the discussion of the following non linear stochastic 
differential equation because the equation is the formal limit of (3.1). 

t 

X i(t) = ai + ~ a (Xi(r)) dBi (r) 
0 

+ i {b(X,(r)) + c(X,(r), ~ xu(r,  dx))} dr, (3.5) 
0 R 

u(r, dx)  is the probability distribution of Xi(r ). 

Let Yo(t)= ai and Y.(t), n =  1, 2, ..., be defined successively as follows: 

t t 

Y, (t) = ai + I a (I1, (r)) dBi (r) + 5 {b (Y, (r)) + c (Y~ (r), E [ Y, _ 1 (r)])} d r. 
0 o 

For integers m > (2p (2 p - - 1 ) v  1), by the HOlder inequality we get 

] Y.(r)l am-1 IE CY,_ I (r)] I 2 p ' ~  

<C43{1+1Y,(r)l  2m I Y,(r)l( (2p 1)~-P)V~ Y,-l(r)lem]}, 

m 1 
so that noticing ( 2 p - 1 )  __< 2 p - ~  and b 2 p + l < 0  if p > 0 and using the It6 
formula we have m - p  

{ EEl Y~(t)12m'l ~_~C44 1-I-gl-[ cril2m] + ~ E[] Y,(r)] zm] dr 
0 

} + ~ EI-I Yn-l(r)] 2m] dr . 
0 

Hence by the generalized Gronwall lemma, there exists a constant C45 indepen- 
dent of n such that 

sup EI-I Y.(t)l 2m] <C45. (3.6) 
O < t < = T  
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2p 
Noticing ~ (Y~(t))2P-J(Y~_a(t))J>=_�89 } and b2p+, < 0  if p = 0  

j=0 

and using the It6 formula, H61der's inequality, (3.6) and the assumptions of 
the coefficients {a(x), b(x), c(x, y)}, we have for m>=(2p v 1), 

t 
E [I Yn (t) - -  rn - 1  (t)] 2 m] ~ C 4  6 ff E [I Yn I (r) - -  Yn -- 2 (r)] 2 r n ] d  r. 

o 
(3.7) 

Therefore by the iteration, (3.5) has a solution Xi(t). Similarly the inequality 
(3.6) holds if Y,(t) is replaced by Xi(t) and also the inequality (3.7) holds if 
Y,(t)-Y,_l(t) is replaced by X~(t) -xZ( t ) for  two solutions X](t), XZ(t) of the 
equation (3.5), so that Gronwall 's lemma gives the uniqueness of solutions of 
(3.5). 

Now the central limit theorem is as follows. 

Theorem 2. Suppose that b2p+~ < 0 / f  p=>0, b_ 1 = 0  and E[e  ~~ < oo for some 
ao>0. Then S,(t) converges weakly in C([0, oe): O') to a generalized Ornstein- 
Uhlenbeck process S(t) given by a unique solution of 

where 

and 

d ~ (t) = dW(t) + ca, (t) ~ (t) d t, 

(Sf (t) 4)(x) = l a  (x) 2 0" (x) + (b (x) + c (x, ~ y u (t, d y))) ~b' (x) 
P._ 

+x ~ dp'(z) c.(z, ~ xu(t, dx)) u(t; dz) 
N. N. 

d 
c,(~, y) = ~ c (x, y). 

The O'-valued Brownian motion W(t) has a covariance functional 
tAS 

E[<W(t), 01)<W(s), q~2)] = S (S a(x)2 4'~(x) (o'2(x) u('c, dx))dz, tAs=min{t ,  s} 
0 N. 

and the initial value ~(0) is a O'-valued Gaussian random variable independent 
of W(t) and of mean 0 and covariance E[(~(0) ,~bl)(~(0) ,4)2)]  
= E [ ~  (~) ~ (~)] - E [~, (~)] E [ 4 ' ~ ( o ) ] .  

The proof  will be devided into three steps as we mentioned in the introduc- 
tion. 

Step 1. Tightness of {S,(t)} in C([-0, oe): O') 

By Theorem 12.3 of Billingsley [1] and Theorem 3.1 and (R.2) of [21], it is 
enough to examine the Kolmogorov test for <S,(t), (a), 0 ~ 0  such that for any 
T > 0 ,  

E[l<S.(t)--S.(s),~b)141<=C47(O)lt--s[ 2 O<_s<t<_T, 
(3.8) 

E [1 <s,(0), 4,> 1~] _-< c48 (~), 

where C47(~b) and Cgs(~b) are independent of n. 
To prove (3.8), we prepare two lemmas 
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L e m m a  6. For any integer m>-_(2p(2p-�89 1) and any T > 0  there exists a con- 
stant C49(m , T) independent of n and i such that 

sup E[IX!")( t ) -Xi( t ) l  2"] < C49(m , T)/n". (3.9) 
O<_t<_T 

Proof First  we remark  that  Fa tou ' s  lemma, together  with (3.6), implies 

E[]X,(t)[2m]<Cso(m, T), O<_t<_T. 
Since 

(3.10) 

2 m I Xl ") (r) - X i (r) l 2 m - 1  ] C ( X !  n) (r), 2 n (r)) -- c (X, (r), E [X, (r)])] 

_-< c 5 ,  I x l"~(r )  - X,(r)12m- ' {I x l">(r)  - X , ( r )  I (1 + I X , ( r ) r  ~2p- ~ v o 

~_ ] xln)(r)](2p - 1)v o + [ .~n (r)[(2p -- 1)v 0) 

+ ] X ,  (r) -- E [X i (r)] I (1 + I X~(r) ] <2 p- x) ,~ 0 + E [-X~ (r)]<2 p- 1) ,~ 0 

+ IX,  (r) - E [X  i (r)] ](2p- ,) ,/o)}, (3.11) 

so that  noticing 

1 i 1 i 
J = l  J=l 

and using (3.10) and the H61der inequality,  we have that  for 0 <  r <  T, the right 
hand  side of (3.11) is domina ted  by 

C52 {[ xln)(r) -- Xi(r ) [2m(1-1- [ X  i (r)[ tip - �89 v o .qt_ [ Xl,)(r)[cap- �89 v o) 

1 ~ (1  j =~1 )2m} ~- - -  I X }  n) (r)  - -  X j  (r)] 2 rn -k- (Xj  (r) -- E [Xj(r)]) . 
n j = l  

Notic ing bep+l<O if p > 0  and using the I t6 formula,  the above  inequalities 
and the independence  of  X~ (t), i = 1, 2 . . . . .  we have 

g[lX!n)(t)-Xi(t)12m]<=C53 ~ q - C 5 4  E[lX!")(r)-Xi(r)[  2~] 

~= E[IX}")(r)-Xj(r) l  2"] dr, 0 < t < T ,  

and hence Gronwal l ' s  lemma gives (3.9). 
By the above  lemma, Fa tou ' s  lemma can be applied for (3.4). Hence  we 

have 

L e m m a  7. For any e > 0 and T > 0, 

sup {E[e ~lxt")tt)l] v E[ee[X'tt)l]} <= C55(T, a)< oo (3.12) 
O<_t<T 

where C55 (t, e) is independent of n and i. 
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Once we know Lemmas 6 and 7, we will be able to prove (3.8) similarly 
to the proof of Theorem 1 of Hitsuda and Mitoma [6]. 

Step 2. Langevin's Equation of Limit Process 

Let S(t) be the limit process of a convergent subsequence {S,~(t)} of {S,(t)}. 
The existence is guaranteed by Step 1 and the proof of Proposition 5.1 of [21]. 
Noticing the form of (Sr we get that for any T > 0  and any integer 
n>0, 

I]~(t)Oi[,<Cs6(n,T)H4~ll,+p+z, 0 < t < T ,  

ll2e(t)dP-~(s)r T)II~bll.+p+x It-s[ 1/2, t,s~[O, T]. 

Hence ~*(t)S(t)  is continuous in t on ~', so that we can define 

W s (t) = S (t) - S (0) - i ~ *  (r) S (r) d r. 
0 

Applying the It6 formula to O(Xl")(t)) and O(Xi(t)) and using Lemmas 6 and 
7, we have 

<s.(t)- s.(o), r 

= i (S,(r), �89 2 0 " ( ' ) + ( b ( ' ) + c ( ' ,  [. yu(r, dy))) # ( ' ) > d r  
0 1R 

1 
i qS'(X~(r)) a(Xi(r)) dBi(r)+ R2,.(t, (o) + I(~")(t), 

-~- ]//n i=1 0 
where 

and 

(n" 1 

-- c(Xln)(r), E [Xi(r)]))  d r  

l im E [ I R 2 , . ( t ,  r = 0 .  

Rewrite I(~")(t) as the sum of terms 

/~"~(t)= i 1 ~ "~(r))--r ~, (r 
0 ~ i =  

- c(Xl"~(r), E [X,(r)])) dr, 

n 

1 ,~1 r (xi (r)) (c (X! "~ (r), X .  (r)) - c (X! "~ (r), E [X,  (r)]) I~z) (t) = i 
0 "= 

--  cy (Xi (r), E [ X i  (r)]) ( s  (r) -- E I X  i (r)])) d r, 
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I(a~a ) ( t )=  0 I ~ i=1 ((pt(Xi(g)) cy(Xi(r),  g [ / i ( r ) ] )  

- E [r  e,(X,(r), E [X~(r)])])(X~.(r)- E [X~(r)]) d r, 

t 

I ~  (t) = ~ ( S, (r), E [ r  (Xi (r)) cy (X i (r), E [Xi (r)])] ( ' )  > d r. 
0 

By Lemmas  6 and  7 and  the independence of  Xi(t), i = 1, 2 . . . . .  we get 

lim E [I I~"~ (t)11 = 0, lim E [I I~z ) (t)[] = 0 and lim E[I  1(1"3 ) (t)l] = 0. 
n ---~ oo n--+~ n~o~ 

Therefore setting R.  (t, q~) = R2, n (t, O) (n) (n) (n) +Ill(t)+I12(t)+Ila(t), we obtain  

(S . ( t ) -  S.(O), O>- i (S.(r), Y(r)q~> dr 
0 

_ 1 ~ i r a(X,(r))dBi(r)+R.(t.c~). 
~ i = 1 0  

where lira E [I Rn (t, qS)I1 = 0, which will complete  the p roo f  similarly to the p roo f  
n~oo 

of Theorem 2 in [6]. 

Step 3. Proof of Theorem 2 

By Step 2, any limit process S(t) of S,(t) satisfies a Langevin 's  equat ion  of  type 
stated in Theorem 1. It is easy to check the condi t ion  (H), so that  appeal ing 
to Theorem 1 we have that  the probabi l i ty  measures induced by any limit process 
of S,(t) on C([0, oo); ~')  coincide. Thus  Step 1, the p roo f  of  Propos i t ion  5.1 
in [211 and Theorem 2.3 in Billingsley [11 lead us to the comple t ion  of  the 
p roof  of  Theorem 2. 

Acknowledgment. The author would like to express his hearty thanks to the referees for valuable 
suggestions. 
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