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Summary. Series of new characterizations by zero regression properties are 
derived for the distributions in the class of natural exponential families with 
power variance functions. Such a class of distributions has been introduced in 
Bar-Lev and Enis (1986) in the context of an investigation of reproducible 
exponential families. This class is broad and includes the following families: 
normal, Poisson-type, gamma, all families generated by stable distributions 
with characteristic exponent an element of the unit interval (among these are 
the inverse Gaussian, Modified Bessel-type, and Whittaker-type distributions), 
and families of compound Poisson distributions generated by gamma variates. 
The characterizations by zero regression properties are obtained in a unified 
approach and are based on certain relations which hold among the cumulants 
of the distributions in this class. Some remarks are made indicating how the 
techniques used here can be extended to obtain characterizations of general 
exponential families. 

1. Introduction 

Let _X =(X1 .... , X,), where X1 .... , X, are i.i.d.r.v.'s with common distribution F, 
and T~ = Ti(_X), i= 1, 2, be two statistics. Characterizations of F by means of zero 
regression of T1 on T2 have been thoroughly discussed in Lukacs and Laha (1964) 
and Kagan, Linnik, and Rao (1973). (The latter references are hereafter referred to 
as LL and KLR, respectively.) Other recent works on this topic are those of 
Gordon (1973), Heller (1983), and Seshadri (1983). The majority of such 

characterizations are those for which T~ is some polynomial and T2 is ~. Xi or the 
i=1 

sample mean X,. In Lukacs (1963), LL, KLR, and Gordon (1973), T~ is at most of 
fourth degree, whereas in Heller (1983) it is of a higher degree. The only 

* The work of this author was performed while he was a visitor in the Department of Statistics, State 
University of New York at Buffalo 
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distributions so characterized are the normal, gamma, Poisson-type, Cauchy, 
geometric, binomial, and negative binomial. In Seshadri (1983), T1 is not a 
polynomial and a series of characterizations of the inverse Gaussian distribution is 
obtained. 

As noted in LL (p. 109) and Heller (1983), the problem of characterizing 
distributions by use of zero regression of an arbitrarily high degree polynomial 
statistic on the sample mean is of a complicated nature with difficulties of two 
kinds. First, it involves solving a differential equation of high degree in terms of the 
characteristic function (c.f.) of the distribution being characterized and, secondly, 
determining which solutions are c.f.'s. 

A referee has pointed out that Heller (1979, 1983) attempted to show that there 
is a linkage between methods of obtaining polynomial statistics which have 
constant regression on the mean, for a given distribution, methods of proof for 
characterization theorems, and special function theory (placed within the context 
of group representation theory). Within this framework, different types of special 
functions (and thus of characterizations) are shown to derive from different Lie 
algebras or different irreducible representations of the same Lie algebra, or 
different realizations of the same representation of the same Lie algebra. 

In this paper, we derive series of new characterizations by zero regression 
properties for the distributions in the class of natural exponential families having 
power variance functions (abbreviated NEF-PVF's). Such a class has been 
introduced independently and in different contexts by several authors. Tweedie 
(1984) and Jorgensen (1987) have treated this class in the context of generalized 
linear models and exponential dispersion models. Bar-Lev and Enis (1986) (BLE) 
have presented it in the context of an investigation of reproducible exponential 
families. This class includes as particular cases the following families: normal, 
Poisson-type, gamma, all families generated by stable distributions with character- 
istic exponent an element of the unit interval, and families of compound Poisson 
distributions generated by gamma variates. 

For the case where T~ is a suitably chosen polynomial statistic of arbitrarily 

high degree and Tz is ~ Xi, we provide a series of new characterizations for NEF- 
i = l  

PVF distributions. In obtaining such characterizations, we present a unified 
approach both in finding the polynomial statistics which have zero regression on 
it 

Y, X~, and in proving the subsequent characterization theorems. This approach, 

which is based on certain relations holding among cumulants of NEF-PVF 
distributions, can also be exploited for obtaining similar characterizations for 
other exponential families. 

In Sect. 2, we briefly review some basic properties of NEF-PVF distributions 
and reparameterize the corresponding c.f.'s in terms of cumulants of order r and 
r +  1, r = 1, 2,.... Such reparameterizations are useful in proving the subsequent 
theorems. In Sect. 3, we present characterization theorems for NEF-PVF 
distributions, while their proofs are relegated to Sect. 4. 

2. NEF-PVF's: Some Preliminaries 

For later use, we present in this section a basic review (excerpted from BLE) of 
NEF-PVF's and reparameterizations of such families. Let ~ = {F o : 0 6 0  C R) be a 
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linear exponential family of order 1 (hereafter, called a natural exponential family 
(NEF)) with members 

dFo(x ) = h(x) exp { Ox + c(0)} dv(x), (2.1) 

where v is a e-finite measure on some Borel set of the real line. ~ is assumed to be 
minimal and steep. For 0e  intO, let #=~(0)=-dc(0) /d0 ,  ~2=#(intO), and 
(V(#), f2) be the mean value, the mean parameter space, and the variance function, 
respectively, corresponding to (2.1). 

Definition 2.1. A NEF ~,~ is said to have a power variance function if its variance 
function is of the form V(#) = c~#~, # e O, for some constants c~ 4:0 and 7, called the 
scale and power parameters, respectively. [] 

NEF-PVF's  were shown in BLE to have O of the form R, R +, or R- .  For  a 
NEF-PVF,  7 = 0  iff f2=R. A NEF-PVF with variance function (e#~, f2 = R - )  can 
be considered as the reflection about the origin of a NEF-PVF with variance 
function (eg~, f2=R+). Accordingly, we restrict our attention throughout the 
sequel to results concerning f2 of the form R or R +. Since ~- is steep, f2 is equal to 
the interior of the convex support of (2.1); i.e., the members of a NEF-PVF ~ are 
concentrated on R (if 7 = 0) or on R + (if 7 4= 0). The following theorem provides a 
complete identification of NEF-PVF distributions. 

Theorem 2.1 (BLE, Sect. 4). Let ~ be a NEF-PVF with power parameter 7, then 
(i) it is necessary that 7~ ( -oo ,  O)u(O, 1); 

(ii) the 7-values O, 1, and 2 correspond to the families of normal, Poisson-type, 
and gamma distributions, respectively; 

(iii) for any fixed 7 e (1, 2), ~ is a family of compound Poisson distributions 
generated by gamma variates; and 

(iv) for any fixed 7 ~ (2, oo), ~ is the family generated by a stable distribution 
concentrated on (0, oo) and possessing a characteristic exponent equal to 
( 2 -  j / (1 - 7). [] 

Families of distributions which are NEF-PVF's  constitute a rich class, as for 
each 7e{0}u[1,  oo) there corresponds an exponential family. The subclass 
indicated in (iv) of Theorem 2.1 contains as special cases the families of modified 
Bessel-type (7=2.5), inverse Gaussian (7=3) and Whittaker-type (7=4) distri- 
butions. Hougaard (1986) considered the utility of the latter subclass of 
distributions as survival distributions in the context of constructing life table 
methods for heterogeneous populations. 

All NEF-PVF distributions are infinitely divisible. NEF-PVF's  with power 
parameter 7 = 0, 1 or 7 ~ (1, 2) are regular with parameter space O = R if7 = 0, 1, and 
O = R -  if 7e(1,2). NEF-PVF's  with 7e(2, oo) are steep (but nonregular) with 
int O = R- .  Any NEF-PVF ~ (with f2 = R + or s = R) can be considered as being a 
two-parameter family parameterized by :~ (the scale parameter) and 0, where 
(c~, 0)~(0, oo)x O (see BLE, Sect. 3). We henceforth consider ~ as being a two- 
parameter family. 

Let ~cj be the j-th cumulant of a NEF-PVF distribution. For  further use, it is 
more convenient to work with parameterizations of ~ in terms of 0% ~Cr+l), 
r =  1, 2, ..., rather than (e, 0). We first reparameterize ~,~ in terms of (~c 1, tq). By 
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using BLE (Sects. 2 and 6), we obtain the following results: if 7 = 0 (~2 = R) then 
(tq, t % ) e R x R  +, c~=~c 2 and 0 = t q / t q ;  while if 7>1  ( f2=R +) then 
(K1 ,  K2) E R + x R +, c~ = ~c2/tc [ and 0 = / s 1 6 3  - ] ; )]  for 7 > 1, or 0 = ( /s163 log~q for 
7--1. The mapping (e, 0)~(~ 1, ~c2) is one-to-one between the sets R + x i n t o  and 
R + x R+. Let f*( t :7)  and h*( t :7)=logf*( t :7)  be the c.f. and the cumulant c.f., 
respectively, corresponding to a N E F - P V F  distribution with power parameter 7- 
Then, by use of the above results and BLE (Sect. 2) we can represent h*(t:7) in 
terms of (~q, ~c2) as 

~i~ l t-- tcit2/2, 

(te2/tc2) [-e it~/~* - 1], 

h*(t : 7) = - (t~2/lc2) log[-1 - it(Kff~2)], 

~ {B+itO-~)(~d<)] ~-1}, 
~:2(2-7) 

where, ~ = ( 2 - 7 ) / ( 1 - 7 )  for 7e(1,2)w(2, oo). 

7 = 0  

7=1  

7 = 2  

y e (1,2)w(2, oo), 

(2.2) 

For  7 = 0  (the normal case), ~ j = 0  for j = 3 , 4 , . . . .  Accordingly, we express 
h*(t" 7) in terms of(G, G+ ~), r = 2, 3, ..., only for 7 > 1. To obtain such expressions, 
we employ some of the results of BLE (Sect. 6). Substituting r--  1 into (6.5), and 
(q ,p)=(r- l , r -2)  with r > 2  into (6.6), respectively, of BLE, we obtain the 
following relations 

2 l~,r+2l's y~l,r=l,2,. . . ,  (2.3) 

where 

fir(z,) = [ - r~ - ( r -  1)]/[-(r- 1 )7-  ( r -  2)3. (2.4) 

[-We also define/3o(7)- 1 for all 7, and occasionally write fir instead of fir(Y), for 
simplicity.] Use of (2.3) with r = 1, yields ~c3~ q =//1(?)tc2. Since ~q, ~2, and/71(7) are 
positive, ~c 3 is positive, too. Substituting ~q =/?a(7)tc2/~c3 in (2.2), we obtain an 
expression for h*(t:7) in terms of (tr t%). By successively repeating the same 
argument for r = 2, 3,. . . ,  it follows that the G's are positive and 

h*(t' y) = 

r + l t  r " l / r r _ _ l ] ,  ~r /Kr+ l) [ e~'+ 7 =1 

--[;Oifii+*](tc:+~/tcr+l)lOg [1 it(K~lffG)q,i__is flj J ? = 2  

,rrl  r l[i itil  ,ir+ll  / In/?~+ l/'~r 1+ - 1  
2 -  7 LJ~=~o J J ~ +1 j~ll ~ P~ 

/(r  

2 ~ (1,2)w(2, oo). 

(2.5) 

Note that the mappings (G, G+ 1)~(G+ 1,/s 2), r = 1 , 2 ,  ..., are one-to-one from 
R + x R + onto itself. 
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3. Characterization Theorems for NEF-PVF Distributions 

Let F be a distribution function and let f(t), h(t)=logf(t), #i, and ~c i be the c.f., the 
cumulant c.f., the i-th moment, and the i-th cumulant, respectively, associated with 
F. We assume that the p-th moment of F exists. Let (X1, ..., X,) be a random 

sample of size n taken from F, and define Lj = ~ X~,j = 1, 2,. . . .  We construct a 
k=l 

polynomial statistic, ~,p, whose expectation is Xp~Cq, q__<p. We then use ~.p to 
construct an estimator, St(?), whose expectation is 

Sr(7)=tgr+2Kr--flr(7)K2+t, r = l , 2 ,  . . . , 7 > 1 ,  

where fl~(7) is defined in (2.4). [We note here that, following Sect. 2, if F is a NEF-  
PVF distribution then: (i) if 7 = 0, ~:pKq = 0, p = 3, 4, ..., and (ii) if 7 > 1, S~(7)= 0, 
r =  1,2, ....3 

By requiring ~q,p and St(7) to have zero regression on La and imposing mild 
conditions on F, we obtain easily solved equations in terms of the derivatives of f 
whose solutions can be identified as the c.f.'s corresponding to N E F - P V F  
distributions. 

The construction of ~,v is made as follows. Let f(P)(t)= dPf(t)/dt v and h(P)(t) 
= dPh(t)/dt v. By LL (p. 99), the product h(P)(t)h(q)(t) can be represented in some 
f-neighborhood of zero (denoted by N~) as 

h(P)(t) h(q)(t) 

r 2(p) z(q) f ~ [f(J)(t)/f(t)]@, /_. ~1...~/~1...z~ [i1= , [f(i'(t)/f(t)3~J} {j=~ (3.1) 

where the summation in (3.1) is extended over all nonnegative integers sl , . . . ,  Sp 
and 11 .... , lq satisfying 

P q 
2 jsj = p, ~, jlj = q. (3.2) 

j = l  j = l  

Substituting t = 0  in (3.1) and noting that h(J)(0)= iJ~cj, we obtain 

r),(;) ~(q) r,,~+z~,,~+z~ ,,~+l~,,~+l...#p~] (3.3) l~pN'q ~- /, ~sl...Sp/~ll...lqkt~l t~2 ""t~q / * q + l  

Definemo=-O, mr= ~ (sj+Ij),r=l .... ,q, andmq+r=mq+ ~ sq+j,r=l ..... p -q .  
j = l  j = l  

Let ~,p denote the statistic obtained by replacing in (3.3) the term in square 
brackets with 

f d~i 1 md 1 (l/n(mv))~,,* I~ X j~ ,  where n(m~)=n(n-1)...(n-(mv-1)) 
= k=md t + l  

and the summation Z* runs over all distinct indices j~, i=  1,...,rap, satisfying 
1 <ji<n; i.e., 

L,p= 2;, ...... . 2 1~ J (3.4) 
d = l  k = m a - a + l  

The following lemma presents some properties of ~,p. 
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Lemma 3.1. Assume that the p-th cumulant of F exists and n > p + q .  Let Tq, p be 
given by (3.4), then 

(i) e(~,peUL~)=i-(P+~)h(P)(t)h(q)(t)f"(t), teNo,  
(ii) E ( L , , ) =  ~.~.. 

d itXi~, Proof. (i) Using the i.i.d, property of the XSs and the fact that E(Xj~e ) 
= i-dftd)(t), d =  1 . . . . .  p, we obtain 

I P md 1 P Z*E e "~1 II I] xJ~ = Z*f"-m,(t) [I [i-df(d)( t )]  me-ma- t  
[_ d = l  k = m a -  j.+ 1 d = l  

Hence, for t e N0 we have 

^ " ; - (p+q)c"t ,~(p)  ~(q) ~ ~ [ftd)(t)/f(t)]~+~ t 
J 

which is the desired result. 
(ii) This statement is verified by substituting t = 0 in (i). []  

We now define 

g(Y) = ~ , , + 2 - ~ ( 7 1  ~+ 1,r+ 1, r = 1 , 2  . . . . .  7 > 1 .  (3.5) 

The next corollary is an immediate application of Lemma 3.1. 

Corollary 3.1. Assume that F possesses a finite moment of order r+ 2 and that 
n > 2 r +  2. Let St(7) be given by (3.5), then for r= 1, 2 ....  and 7 > 1, 

(i) E(~r(7) e i'Ll) = i-(2~ + 2)f,(t ) [-h(,)(t) h(~ + 2)(0 
- f l~(7) (  h ( r+  1)(t))2], t ~ We, 

(ii) E(~(7))=S~(7). []  

We exemplify the form of S~(7) for the case r = l .  Here, fl1(7)=7 and 

^ 3 2 T, I n  X X  3 n  X X X + ( 2 n  ) X X X X , , ,  1 , 3 = ( / ( ~ ) Z  ; ~ - ( / ( 3 ~ ) 2  ; ~ ~ / ( ~ Z  ~ ~ 

X X  2 n  X X X + ( l n  X X X X  , ~ 2 , 2  = ( l / n ( 2 ) )  2 2 2 

where the summations are all taken over all distinct indices,j, k, 1, m. In terms of the 
Lfs, ;~1(7) has the form 

$1(7) = (lint4)) {( n2 + n + 4)LaL 1 - (n 2 + n) L 4 -  3(n + 1)L2 L] 

+ 3(n -- 1)/~ + 2LI + ~[-(n 2 - 3n + 3)/~ --(n 2 - -  n)L,  

--2nL2L ] +4(n--  I)L3L t + L4]}. 
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We now present characterization theorems for NEF-PVF distributions which 
are based on the statistics ~,  p and gr(7). The proofs of these theorems are presented 
in Sect. 4. In what follows, we assume that the Xfs  have a common nondegenerate 
distribution F. Theorem 3.1 characterizes the normal distribution. 

Theorem 3.1. Let  p and q be any two integers satisfying l <q<__p, p >  3, and let 
n > p + q. Assume that F possesses a f inite p-th moment. Then Tq, v has zero regression 
on L1 iff F is the normal distribution. [] 

We note that we can generalize and obtain additional characterizations of the 
normal distribution, of the type presented in Theorem 3.1. We construct an 
unbiased estimator of ~c~%~:v(v>3), say 7"q,~,v, in the same manner as ~,p was 
constructed. We are then able to prove that Tq, p,~ has zero regression on L t i ffF is 
normal. Such kind of results are, in a sense, a generalization of Theorem 6.2.5 of 
LL. In the latter theorem, the authors obtained a characterization of the normal 
distribution by requiring the p-th statistic (an unbiased polynomial statistic for ~Cp), 
p>3 ,  to have zero regression on L~. 

In the following theorems, we consider characterizations of NEF-PVF 
distributions with power parameter 7 > 1. 

Theorem 3.2. Assume that F has a finite third moment with ~1 >0. For n >  4 and 
7 >-1, $1(7) has zero regression on L 1 iff F is a N E F - P V F  distribution with power 
parameter 7. [] 

Before presenting the next theorem, we introduce a notation taken from 
Lukacs (1970, p. 149). We write lext IF] = 0  if F (x)=0  for x<O,  and F(x)>0  for 
x > 0 .  

Theorem 3.3. Assume that F has a f inite moment o f  order r + 2 (r > 2) and satisfies: 
tcr ~ O, ~:r + a ~ O, and lext IF] = 0. For n > 2r + 2 and 7 >= 1, ~(7) has zero regression 
on L 1 iff  F is a N E F - P V F  distribution with power parameter 7. [] 

Lukacs (1956, 1962) presents a characterization theorem for a family of 
distributions which includes the Poisson distribution as a special case. The next 
theorem generalizes the result of Lukacs and provides characterizations based on 
the zero regression of S~(7) o n  L 1. For each 7 > 1, the family of distributions so 
characterized includes NEF-PVF distributions with power parameter 7. Such a 
family possesses c.f.'s of the form 

f ( t :  7) = exp {h*(t: 7) + Pk(t)}, (3.6) 

where h*(t: 7) is the cumulant c.f. corresponding to a NEF-PVF distribution with 
power parameter 7 and Pk(t) is a polynomial in t with degree k <  3, for 7 > 1, and 
degree k__< 2, for 7 = 1. 

Theorem 3.4. Assume that F has a f inite moment  of  order r + 2 (r >= 3) with ~c r > 0 and 
Kr + j > O. For n > 2r + 2 and 7 > 1, S,(7) has zero regression o n  L 1 iff F has a e . f  . o f  the 
form given by (3.6). [] 

We end this section by making some comments concerning further character- 
izations of the type presented so far. The techniques used in this study have been 
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based on the relation St(7)= ~crK~+z-fl~(7);c2+ 1 =0, which holds for NEF-PVF 
distributions. Adoption of similar techniques enables us to obtain characteriza- 
tions for general NEF's. This is made as follows. Let o~ 0 be a particular NEF we 
wish to characterize and express ~0 by its variance function. Suitable differenti- 
ation of the latter can lead to various relations holding among the cumulants of Yo 
(e.g., BLE, Sect. 6). Such relations can always be given the general form 
g(xj~, ..., ~:~,,)= 0, where (~cj,, ..., ;%,) is a certain set of m cumulants. Among these 
relations, we choose go which is polynomial in the ;cj,'s and construct an unbiased 
polynomial statistic ~o for go in a manner analogous to that used for Sr(7). Then, by 
requiring ~0 to have zero regression on L1, we obtain a differential equation, one 
solution of which is the c.f. associated with ~o. To show that the latter c.f. is the 
only feasible solution, we may have to impose some further conditions. The 
number of conditions added depends heavily on a suitable choice of go. Indeed, 
such a kind of procedure has been actually employed in most of the references cited 
in Sect. 1. The present authors have obtained further characterizations of the 
distributions appearing in those references by employing the above described 
technique. Details are omitted for the sake of brevity. 

4. Proofs of Theorems 3.1-3.4 

We prove only the necessity parts of Theorems 3.1-3.4, as the sufficiency parts are 
easily verified. The proofs are based on a fundamental lemma, frequently used in 
characterization problems (cf. Lemma 1.1.1 of KLR). This lemma states: If E(Y) 
exists, then Y has zero regression on X iff 

E ( Y E  itx) = O, t e R .  (4.1) 

Proof  o f  Theorem 3.1. Suppose that ~,  p has zero regression on L r It follows from 
(4.1) and Lemma 3.1 that 

h(V)(t) htq)(t) = O, t r N o . (4.2) 

We first show that relation (4.2) implies that h(V)(t)= 0 on No. To this end assume 
there exists to ~ N0 for which htV)(to) # O. Since the p-th moment of F exists, h(P)(t) is 
continuous and there exists a neighborhood of to, say Nol(to), such that Nol(to) C No 
and h(P)(t)+ 0 on N~l(to). Hence, by (4.2) we must have, h(q)(t)= 0 on N~(to). But 
q <p, thus we obtain htV)(t)= 0 on No~(to), a contradiction. Therefore, htV)(t)= 0 on 
No, the general solution of which is a polynomial of degree at most p -  1. By using 
the initial conditions (h(0) = 0, h(J)(0) =/6c j, j = 1, ..., p - 1), the theory of analytic 
c.f.'s and the theorem of Marcinkiewicz (see Lukacs (1970), Corollary to Theorem 
7.3.3) we obtain that F is normal. [] 

Before proving the remaining theorems, we present a lemma whose proof is 
omitted as it can easily be verified by induction. 
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L e m m a  4.1. (i) 

and 

Le t  7 E(1, 2)~(2, ~ )  and r =  1, 2 , . . . ,  then 

= r + 1/(1 - fl~), 

r--1 

1-7=(1-~)  13/~j, 
j=0  

(1-/~r) ~ I] (j+l/(1-~))= I] (1+j(1-/~3), 
j= l  j= l  

(4.3) 

(4.4) 

(4.5) 

(4.6) 

m = i r+ ~G+ 1~[fiG] iT'. 

We now consider the three cases, A, B, and C, separately. 

(4.11) 

(4.12) 

as  

h(O) = O, hU)(O) = iJtcj, j = 1, 2 . . . .  , 

(1 - -  ?)r 11 (4.7) 1 =o(r)(2-~) li' 

r--1 r--1 

where Qtr)=O(O--1)~(r  11= [I  flj+ l, a n d / 2  = 13 flj. 
j = o  j = o  

(ii) Le t  7 = 2 and r = 1 , 2 , . . . ,  then 

r - - 1  

I]  ,-jt~j+ l = F / ( r - -  1)! . [ ]  (4.8) 
j=O 

We now prove Theorems  3.2 and 3.3, simultaneously.  In these proofs, we 
distinguish between three different cases relating to ?-values. These are A) ? = 1, 
B) ?~(1,2)tJ(2,  oe), and C ) 7 = 2 .  No te  that  the indices r of the Sr(7)'s in 
Theorems  3.2 and 3.3 are r = 1 and r > 2, respectively. Accordingly,  for  each of the 
cases A, B, and C, we consider two subcases: (i) r = 1, and (ii) r > 2, and refer to the 
different assumptions on F linked with each such subcase. 

P r o o f  o f  Theorems  3.2 and 3.3. Let  7 => 1, r = 1,2, ..., and assume that  ~r(?) has zero 
regression on L1. By (4.1) and Corol lary  3.1, we have 

h(~ + 2)(0 h(r)(t) = flrEh(r+ 1)(t)] 2, t e N o . (4.9) 

Since ~cj=t=0 for j = r ,  r +  1, and hU)( . ) is cont inuous,  there exists a c o m m o n  
ne ighborhood  of the origin in which h(~)(.) and h(r+l)(-) do not  vanish. This 
ne ighborhood  can be taken  to be N o wi thout  loss of  generality. Thus,  by dividing 
bo th  sides of (4.9) by h(~)(t)h (~+ 1)(0, we get (d /d t ) log  {h (~+ 1)(t)/[h(~)(t)]Pr} = 0, or 

h (r + ~)(t)/[h(~)(t)] Pr = m, t e N~, (4.10) 

where m is a constant  determined by the initial condi t ions 
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A) ~=1. Here, fl~=flr(1)=l, r =  1,2, ..., and (4.12) and (4.10) become, respec- 
tively, m = ixr+ 1/x~ and 

h(r+l)(t)=mh(")(t), t6Na. (4.13) 

(4.13) is a linear differential equation of order ( r+ 1) whose general solution is 

r - - 1  

h(t)=Co+ Z ej(it)J/J!+cf "t, teN6, (4.14) 
j = l  

where the cj's are determined by (4.11) as 

co=O, cj=tcj-~c~+l-~/x~_ { for j = 1 , 2  . . . .  , r - l ,  and _ ,+1, C r - -  Kr /tCr+ 1 " 

From the theory of analytic c.f.'s (cf. Lukacs, 1956, Lemma 4.1), it follows that h(t) 
in (4.14) can be extended to the whole real axis. We now consider below the two 
subcases relating to r-values. 

i) r = l" for this subcase, (4.14) becomes, h(t)= (Kzl/K2) [e "~ /~-  1]. Since ~:2 > 0 
(F is nondegenerate) and ~c 1 > 0  (an assumption of Theorem 3.2), we obtain by 
comparing h(t) with h*(t: 1) in (2.2) that the corresponding F is a NEF-PVF 
distribution with power parameter 7 = 1. 

ii) r > 2: we have 

{ ~-ic~ (it)J/j'} f(t) = exp ~+ 1 , [eU~.+ ~/~_ (~c~ /~c~+1) 1 ]+  ~ , teR.  (4.15) 
J 

Since f(t) in (4.15) is analytic and lext I-F] =0  (an assumption of Theorem 3.3), 
f(t) satisfies (cf. Kawata, 1972, Theorem 11.5.6) 

where 

lim sup [y-  1 logf(iy)] = 0, (4.16) 
y--* c~3 

y-  1 logf(iy) 

{ - } = y  1 ,+1 , [e-y~r+~/~_l] -- ( tg r  / K r  + 1)  "q- y)J/j!, y>O.  (4.17) 

We prove that (4.16) implies that the coefficients ci, j = 1, ..., r -  1 vanish. For this 
purpose, we distinguish between two cases concerning Kr and ~r + 1: 1) ~r+ 1/xr <0, 
and 2) xr+l/~c,>0. For 1), we divide y-llogf(iy) by yr and obtain by 
L'Hospital's rule that lim[y-(r+l)logf(iy)]=oo. The latter result implies 

y-'* o9 

lira [y-1 logf(iy)] = o% and this contradicts (4.16). Thus, case 1) is not feasible. 
y--+ aO 

1~,~+W,f ~r,,-y .... /~ r -1 ]=0 .  The latter For  case 2), we clearly have, l i m y -  v~, /,~+lJL~ 
y ~ a O  

r - - 1  

relation together with (4.16) and (4.17) imply that lira ~ cj(-1)@J-1/j!=O. 
y ~ o 0  j = l  
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Hence the cfs  must  vanish, in part icular  

r r -  r - l ~ .  r - 2  t~ 
C l  = l s 1 6 3  ~ ~ O ,  C2 = 1 ~ 2 - - 1 s  r //s 1 = t ) .  (4.18) 

Since/s > 0 and ~c 1 > 0 (lext [F]  = 0), it follows from (4.18) that  ~j > 0, j = r, r + 1. 
Finally, substi tuting in (4.15), c j = 0 ,  j =  1, . . . ,  r - 1 ,  and compar ing  the resulting 
expression with (2.5) (for ? = 1), we get the desired result. 

B )  7e(1 ,2 )u(2 ,  oo). Setting y=h(r)(t) in (4.10), we obtain  dy/y~r-=mdt or h(r)(t) 
= [ ( 1 - f i r ) ( m t + c , ) ]  1/(1-~) for t eN~,  where m is given in (4.12) and 

Cr-~(ffKr)l-#'/(1--fi,), flr=~ 1, r----1,2 . . . . .  

Hence,  by using (4.3), we can write 

(4.19) 

where 

r - 1  
h( t )=D( t )+  • c~it)~/j!, t e N  a, (4.20) 

j=O 

[(1 - fir) cJ  ~ E(m/c,) t + 1 ]~ 
D(t) = r (4.21) 

mr(1 _fi,)r [ [  ( /+1/(1--f i r))  
j = l  

We express D(t) differently. By using (4.3), (4.4), (4.12), and (4.19), we obtain 

m i(1 - 7) (~:r + 1/~C,) 
- -  -~ r -  1 e2~iUflr '  

cr [ I  Bj 
j=O 

u = 0, -t- 1, + 2, . . . ,  (4.22) 

and 

r + l  
[(1-- flr)Cr]~ _ ~C~ e2~i~PrVe2~iow ' v , w = 0 ,  +1 ,  _+2, . . . .  (4.23) 

F r o m  (4.5) and (4.6) we have 

_ r-  1 B J+ 1 (4.24) ( l - f i r )  r l~I 0 + 1 / ( 1  f i r ) )= (2 -7 )  I1 ~j �9 
j = l  j = o  

Substi tuting (4.22), (4.23), and (4.24) into (4.21), and then the resulting expression 
into (4.20), we obtain 

h(t)= I 
2-  -Lj=o J j . ' - r  o 

it(1--?)(tcr+ 1/Kr)e 2~i"~r ~ _ 1 + cj(it)J/j! (4.25) 
• -[- r - 1  "= ' 

H 
j=O 

u ,v ,w=O,  +_1, + 2 , . . . , t ~ N ~ .  
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We show that only one of the solutions given by (4.25) is feasible. To this end, we 
differentiate (4.25) to obtain h(r)(t) and h tr + x)(t), and then substitute hi(0) = i6cj, j = r, 
r + 1, we find 

iJxj = @(j)[(1 - ?)~/(2- ?)] (I,/P2) xje 2~i~p'~ e2~ie*[e2~i~a'] ~, 

for j = r ,  r +  1, and u,v, w = 0 , _  1, +2,  ..., where 0u), 11, and l 2 a r e  defined in 
Lemma4.1. Use of (4.7) in the latter relations, yields for j = r ,  r + l ,  
e2nie#"Ve2~ieW[e2 '~ iU#r]  " =  1, e2niq#"Ve2rCieW[e2rau#"] '+ 1 = 1, from which we obtain that 
e 2niu#'= 1 and eE~i~176 = i. Substituting the two latter identities in (4.25), we 
get 

F /Ii  1 / 
= ,~r /~r+l] 1+  ,----zT-~tXr+l/ r) h(t) ~ _ v |  ~I fli +1 r r+:/  r 

- 7  Lj=o 17/~j 
j =O  

re-1 

+ y c,@j/j!, t~u~, f4.26) 
j = l  

where the cfs are determined by (4.11) as 

cj=~cj-O(j)[( l -7)J/(Z-y)]( l l / lJ2)[~c~+l-J/ tr  , j = l , . . . , r - 1 .  

Clearly, h(t) in (4.26) is analytic and can be extended to the whole real line. 
The proofs of Theorems 3.2 and 3.3 can now be completed in manners analogous 
to those of the two subcases r = 1 and r > 2 of case A. Details are omitted for the 
sake of brevity. 

C )  ?=2 .  By noting that r +  1/(1--fir)=0 for this case, we immediately obtain 
from (4.10) 

r - -1  

h(t) = E(t) + Y. ej(it)J/j!, r = 1, 2 . . . .  , t ~ No ,  (4.27) 
j=O  

where 

E(t) = 
1 

r -1 log {(1 -- fir) cr[(m/c,)t  + 1] }, 
(l--fir) rmr I~ (j+l/(1--flr)) 

j = l  

(4.28) 

0 
m and cr are given by (4.12) and (4.19), respectively, and l]  is defined to be 1. 

j = l  
We now investigate this case in a manner analogous to case B [see the lines 

following Eq. (4.21)]. By using (4.8), we obtain 

r - 1 ] r - 1  

(1 -f ir) '  I]  (J+ 1/(I - f i r ) )= - 1 / I ]  BJ+I (4.29) r ' j  
j =  1 / j = O  

By noting that fir = 1 + 1/r for 7 = 2, we can express m r and m/cr, as 

, ,~r /~r+l (4.30) m ~ , V r + l / ~ V  r 
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and 

(m/cr)= - i  flj (~:,+1/~r 2~iw/~, w=0 ,  +_1, + 2 , . . . .  (4.31) 
J 

Substitute (4.29), (4.30), and (4.31) into (4.28) and then the resulting expression into 
(4.27). Then, a similar kind of argumentation as in case B can be used to show that 
e2~iw/'= 1. This results in 

r - 1  j + l  r + l  r 
h ( t ) = -  j x, /t%+l)log 1-it(x,+t/~.~ flj 

j d = 

r - - 1  

+ ~ cj(it)J/j!, t~N~,  (4.32) 
j =0  

where the cjs  are determined by (4.11) as 

r,H Co =0,  c ;=  ~ j _ ( / _  1)! (~r+ l - J /  ~-J~ +~ j = l  . . . .  , r - l .  
Lj=O j 

The rest of the proof can be completed in a manner analogous to that of case A. 
Details are omitted. []  

Proof of Theorem 3.4. For 7 > 1, we denote by f( t  : 7) the c.f. corresponding to F, 
and assume that ~r(Y) has zero regression on L1. It is apparent, from the proofs of 
Theorems 3.2 and 3.3 and the assumption (of the present theorem) concerning the 
positiveness of Kr and Kr+ 1, that f ( t  :7) has the form, f ( t  : 7) =exp{h*(t:7)+Pk(t)}, 
where Pk(t) is polynomial of degree k, and h*(t : 7) is the cumulant c.f. corresponding 
to a N E F - P V F  distribution with power parameter y [see (2.5)1. Consider the 
function re(z)= g(z)exp EPk(Z)], where g(z) is an infinitely divisible c.f. regular in a 
half plane I m ( z ) > - d ( d > 0 ) .  Christensen (1962, Theorem4.1) showed that a 
necessary condition for re(z) to be a c.f. is that k < 3. In our case, exp [h*(z:7)] is 
infinitely divisible (Sect. 2) and, as easily can be shown, regular in a half plane, 
hence k<3 .  For 7=1  (the Poisson-type case), Lukacs (1970, Theorem 7.3.5) 
showed that k <  2. []  
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