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Abstract. We consider the time evolved states Pt = P ~ 0t- 1 of the free motion 
Or(q, v)=(q+tv,  v), q, vMR a, starting in some non-equilibrium state 15 and 
look at the associated process X7 of fluctuations of the actual number 0t/~(/~) 

of p.rti l s oft e rea, z.tio., in wit  vo ocities i n . a t  

time tie around its mean as e ~ 0 (i.e., in the hydrodynamic limit). It is 
shown that under natural conditions on the initial state 15, especially a mixing 
condition in the space variables, for each t the laws of the fluctuations become 
Gaussian in the hydrodynamic limit in the following sense:/5~ (XT)-1=~ Qt 
as e ~ 0, where ~ denotes weak convergence and Q, is a centered Gaussian 
state, which is translation invariant in the space variables. Fur thermore the 
time evolution (Qt)t is also given by the free motion in the sense that Q~ 
=Q0o07  1. On the other hand we shall see tha t /~P~ . ;~ •  as t ~ ,  where 
Pz.~ • ~ is the Poisson process with intensity measure z. 2 • z, i.e., the equilibri- 
um state for the free motion with particle density z and velocity distribution 
z. In the hydrodynamic limit this behaviour corresponds to the ergodic theo- 
rem for the fluctuation process: Qt=~ Q as t ~ ~ .  Here Q is a centered Gaus- 
sian state describing the equilibrium fluctuations, i.e., the fluctuations of 
P~.~ • ~. Thus we prove the central limit theorem for the ideal gas: fluctuations 
are Gaussian even in non-equilibrium. The proofs rest on an adaption of 
the method of moments for sequences of generalized fields. 

Introduction 

The natural object to be considered in the kinetic theory of gases would 
be a gas of infinite many particles in y = ~ d  (d > 1), starting in some non-equilib- 
rium state and evolving under the action of the Newtonian dynamic. Unfortu- 
nately in this case nothing can be done with respect to the problems of conver- 
gence to equilibrium resp. time evolution of fluctuations. Therefore it is of interest 
to replace the Newtonian dynamics by simpler models of deterministic time 
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dynamics. Here we consider the simplest case where there is no interaction 
among the particles, and now the above problems become accessible to a com- 
plete mathematical treatment. 

Thus we consider the free motion in Y of infinitely many particles. The 
phase of this gas is given by a position q s Y and a velocity v e Y for each molecule, 
and will change with time according to Or(q, v)= (q + tv, v). At time 0 the phases 
are distributed according to some law P, describing a non-equilibrium state 
of the gas. The main assumptions on P are translation invariance and good 
mixing properties in the space variables. 

We consider the time evolved states P~= Po 0~-1 and look at 

where A, B are bounded Borel sets in Y and e > 0  is small. This defines the 
1 

mean number of particles in - . A  with velocities in B at time tie. The aim 
of this paper is twofold: e 

First we are interested in the problem of convergence to equilibrium of 
the time evolution (/])t- Then we consider the associated process of the fluctua- 

tions of the actual number O t / , ( l ~ ) ( 1 . A x B ) a r o u n d i t s m e a n f o r e - ~ O  (i.e., 

in the hydrodynamic limit), and after having established the existence of its limit 
time evolution ((~,)t we study its asymptotic behaviour as t ~ oo. To be more 
precise, the fluctuations are described by the following measure-valued process 
(which we consider as a generalized random field in X = Y x Y): 

X~:/./--~ (f--~ 8a/2 �9 [ Z f(e'q,v)--vlt/,(f~)]) �9 
(q, v)eOtl~(#) 

Here e>0 ,  f ~ - - - @ ( X )  1 and f~ is defined by f~(q, v)=f(e.q,  v). It is to be 
proved that for each t the laws of the fluctuations become Gaussian in the 
hydrodynamic limit: 

i~. '=Po (X~)- 1 =~ Qt as e ~ 0 ,  

where => denotes weak convergence on the conjugate ~ *  of ~ and Qt is a 
centered Gaussian state which is translation invariant in the space variables. 
The time evolution (Qt)t is also given by the free motion in the sense that (~t 
--Qo ~ 0~-1. Another  feature of the underlying evolution (/])~ is also inherited: 
We show that /~=>Pz~| as t-~oo,  where P~| is the Poisson process with 
intensity measure z 2 |  determined by the constants of the free motion z = parti- 
cle density and z = velocity distribution. An ergodic theorem of this has been 
proved first under different conditions by Dobrushin/Suhov [6]. (See also Willms 
[-15].) In the hydrodynamic limit this corresponds to the ergodic theorem for 
the fluctuation process: 

Q I ~ Q  as t --~ oo,  

N(x) denotes the Schwartz space of infinitely differentiable functions on X of compact support 
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where (~ is a centered Gaussian state describing the equilibrium fluctuations, 
i.e., the fluctuations of P~a| Thus we have proved for the free motion, what 
appears as an ad-hoc assumption in the literature (see [-8, 10, 12]): fluctuations 
are Gaussian even out of equilibrium. A theorem of this kind has been obtained 
first by McKean [11] for the so-called one-dimensional 2-speed Maxwellian 
gas. The mathematical problem behind the results below is the problem of 
weak convergence of sequences of generalized random fields in X under assump- 
tions on the asymptotic behaviour of their moments resp. cumulants. This is 
called method of moments and will be developed in Sect. 1 2 

The main idea in the proof of the ergodic theorem Pt=~P~.| as well as 
the existence of the Gaussian fluctuation process (Qt)t is the same 3 : We consider 
the cumulants YT of order m > 2  of /~  resp. Pt ~. Since we assume simplicity of 
/5 (i.e.,/5 is concentrated on the simple Radon point measures on X) and thereby 
of /~ resp. /~, we have to consider only the restrictions ~7 of 77' to 2 m 
={(xl . . . .  , x~ )eX~l j l  + j 2 ~ x j , ~ x j ~ } .  This reduction is explained in Sect. 2. 
Then we reduce ~)~' again, now exploiting their translation invariance in the 
space variables. This is the main step in the proofs of Sect. 3 and shows that 
the natural condition for the right asymptotic behaviour of the cumulants Y~' 
(as t ~ oo) is Brillinger's mixing condition (3.10). (Compare [-3]3 

1. The Method of Moments for Generalized Random Fields 

Let V be a linear space and V;Tg its algebraic dual. For f e  V, /~e Va*g define 
~s(#)=#(f) .  Let No(Va*g)=O-(~s; f e V )  be the smallest a-algebra of subsets in 
V,*g with respect to which all the functions ~I, f e  V, are measurable. 

A linear map Z from V into the set of random variables over a probability 
space (f2, ~-, P) is called a linear process over V (on (f2, Y ,  P)). A probability 
measure P on (V,*g, No(V,*g)) defines a linear process f ~  ~I and therefore is 
also called a linear process over V. Two linear processes Z1, Zz over V on 
probability space (f21, o~1, ~'1), (f22, ~-2, IP2) are said to be (probabilistically) 
equivalent, if for all keN,  f l ,  ... ,fke V the corresponding k-dimensional distribu- 
tions coincide, i.e., 

]~1,  (Z1 ( f l )  . . . . .  Z1 (fk)) = ]I)2, ( Z 2 ( f l )  . . . . .  Z2(fk))" 

A linear process Z over V on (f2, ~-, P) is called of k-th order, if for each 
f l  . . . . .  f k e V  

Vw (f~ . . . .  ,fk) = ~ Z( f~) . . . . .  Z(fk) diP 
a 

exists and is finite. In this case vw is called the moment of Z of  k-th order. 
We sometimes write also k Vz((f/)i=l ..... k). For  a linear process P over V we write 
v~. A necessary and sufficient condition for Z to be of k-th order is 

[Z(f)[kdlP< + oe for each f e  V. 
g? 

2 see also [17] 
a A more detailed explanation of the main ideas of the proofs can be found in [18] 
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Z is called of infinite order, if it has moments of all orders. We now prove 
two theorems relating the convergence of moments to the convergence of the 
corresponding linear process and vice versa. 

Theorem 1.1. Let (P,) be a sequence of linear processes over V and P a linear 
process over V. Suppose that for each f e V  P,,~s converges weakly to P~ and 
that for some k e n  

(1.1) sup P,(~}k)< + oe for each f e e  
n 

Then P is of k-th order and 

v~.(fl . . . . .  fO ~ v~(fl . . . . .  fk), f t , . . .  ,fk e V. (1.2) 

Proof. Let 

fl,. . . ,fkeV a n d  #n-~-Pn , (~ f ,  . . . . .  r  I A ~ - P ( ~ f l  . . . . .  ~ fk  )" 

It is well known that weak convergence of the one-dimensional marginal distri- 
butions implies convergence of finite-dimensional marginal distributions. Thus 
#, converges weakly to #. 

Using Skorochod's representation theorem (see [1], Theorem 29.6) there exist 
random vectors Y,= (y~l), ..., y~k)) and y=(y(1) ,  ..., y(,)) on a common proba- 
bility space (f2, ~,~, Q) s.th. Y, has distribution #,,  Y has distribution p and 

k k 

Y,(co)-+ Y(co) for each co. Let X , =  [ I  Y,(J) and X =  1-[ Y(J). Since convergence 
j = l  j = l  

with probability 1 implies convergence in distribution we have X , ~ X ,  i.e. 
Q x ~ Q x .  Thus if we can show that {X,}, is uniformly integrable, then X is 
integrable with respect to Q and Q(X,)---+Q(X). In this case the theorem is 
proved because @,(f l ,  . . . , f k )=Q(X, )  and @(f,  . . . .  , fk)=Q(X).  But for ~>0 ,  
n e N  

iX ,  l d Q < l  ~ iX ,  lZd Q 1 v2kt c r = = -  e, wx ,J ,  . . . .  ,fk,fk), 
IxM__>~ ~ ~ 

which combined with H61der's inequality implies uniform integrability of {X,} 
in view of (1.1). []  

Theorem 1.2. Let (P~) be a sequence of linear processes over V, each of which 
is of infinite order. Suppose that for each k e N ,  f l ,  ... , fke V 

(1.3) the limits vk(fl . . . . .  fk )=l im vke,(fl, "",fk) exist and 
n 

(1.4) 2 v 2 n ( f i ,  " " ' f / ) /  2n = .~- (30. 
n > l  i 

Then there exists a unique linear process P over V of  infinite order s.th. vk = Vkp, 
k e N ,  and P, converges cylindrically to P, i.e., 

P",(r162 .... Cf~)~ P(~r ..... ~ )  for each k e N ,  f~, . . . , L E E  

Here =~ denotes weak convergence of probability measures in IRk. 
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Proof  1. As has been seen already in [17], combining assumption (1.3) with 
the method of moments in the finite-dimensional case (summarized in Lem- 
ma (1.4) of [16]) yields for given vectors f l ,  ... , f ke  V the existence of a probability 
measure #I ...... A on N k, which is a solution of the 0Rk)-moment problem corre- 
sponding to the moments 

Vrl+'"+r~(fl, 2 . , f l  . . . . .  fk, .r~'.,fk), rl . . . .  , rk~NO. 

2. From Carleman's many-dimensional uniqueness criterium (see Lemma 1.4 
of [16]) we know that the probability measures/~y ...... sk are uniquely determined 
by their moments on account of assumption (1.4). Therefore 

(1.5) P~,(esl, .... ~fk )=:>#f ...... fk' kEN,  f l ,  "" ,Leg, ,  

follows from 1.3 (e.g., by Lemma 1.5 in [16]). 

3. Moreover, (1.5) immediately implies that the family 

M = { # y  ...... r k e N ,  f1 . . . .  ,fke V} 

of probability measures is consistent. Therefore, by Lenard's theorem (see e.g. 
I-7]) M is the system of marginal distributions of a uniquely determined linear 
process P over V. This proves the theorem. [] 

In the following we consider linear processes which have continuous realiza- 
tions. Let V be a linear topological space and let V* be its conjugate equipped 
with the strong topology. For  feV, #eV* we set ~f(/z)=~t(f) and denote by 
N o ( V * ) = u ( ~ f ; f s V  ) the a-algebra in V* generated by the functions ~ ,  feV.  
A probability measure P on (V*, No(V*)) is called a state over V A sequence 
(P~) of states over V converges weakly to a state P over V, and we write P~=*-P, 
if P, (~o) ~ P (q)) for each bounded continuous real function 9) on V*. 

In view of the last theorem one may look for conditions on V and (P~) 
which imply (1) that the limiting process P is a state over V, i.e., supported 
by the subspace (V*, No(V*)) of (V, Tg, No(V*)), and, moreover, one may ask 
(2) whether cylindrical convergence of (P~) to P implies even weak convergence 
P~=*-P. These problems are well known and are treated in the literature. 

We consider these problems in the case when No(V*) concides with the 
a-algebra N(V*) of Borel subsets of V*. This is assured in the following situation 
which will be assumed from now on: V is separable, i.e., in V there exists a 
dense subsequence, and V is costandard i.e., V* is standard (with respect to 
strong topology). In particular this is fulfilled if V is a Fr6chet-Montel space 
or the strict inductive limit of a sequence of Fr6chet-Montel spaces 4. Examples 
of such spaces are the Schwartz spaces @(iRa), deN,  of infinitely differentiable 
functions on IRa of compact support or the spaces ~(~e) ,  deN,  of infinitely 
differentiable functions on IR a, which together with all their partial derivatives 
decrease more rapidly than any negative power of Ix [, x eIR d. States over ~ 0 R  d) 
or ~(IRe) are called generalized random fields in IRe. 

4 This si tuation was considered in [17] 
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The  s i tuat ion where  V is separable  and  cos t anda rd  is par t icular ly  nice be- 
cause states over  V are R a d o n  measures  on (V*, N(V*))  ([7], T h e o r e m  1.3.2). 

T o  answer  p r o b l e m  (1) posed  above  we use Minlos '  t heo rem which states 
tha t  a l inear process  P over  V is probabi l is t ical ly  equivalent  to a state over  
V if we assume also tha t  (e) V is a locally convex  space which is conuclear  
(i.e., V* is nuclear) and  quas i -complete ,  (fl) P is p -cont inuous  for some p > 0 ,  
i.e., there exists p and  c > 0 and  a con t inuous  semi -no rm q on V s.th. 

(1.6) P(l~flP)t/p<=c.q(f), f~V.  (See [13]) 

Therefore  one condi t ion  on (P,) which in the s i tuat ion of T h e o r e m  1.1 ensures 
(1.6) for the l imiting state P is the following: 

(1.7) there exists p > 0  s.th. (P,) is uniformly p-continuous, i.e., there exists c > 0  
and  a con t inuous  semi -no rm q on V s.th. for each n. 

P~([~ylP)l/P<=c.q(f), f~V. 

F o r  the second p r o b l e m  we refer to a t heo rem of Boul icaut  ([2], T h e o r e m  4.5) 
which states tha t  each separable  nuclear  locally convex  space E has  the p rope r ty  
in quest ion,  name ly  tha t  cylindrical  convergence  of a sequence of R a d o n  mea-  
sures on E implies weak  convergence.  

T o  summar ize  we have  found the following general izat ion of T h e o r e m  2.1 
in [17]:  

Theorem 1.3. Let V be a separable, quasi-complete locally convex space which 
is conuclear and costandard. Let (P,) be a sequence of states over V uniformly 
p-continuous for some p > 0  s.th. (1.3) and (1.4) are satisfied. Then there exists 
a unique state P over V o f  infinite order s.th. vk=v~, k e N ,  and P~=~P. 

Remark 1.4. I m p o r t a n t  examples  of  spaces V satisfying the a s sumpt ions  of  the 
t heo rem are the spaces of  dis t r ibut ions  over  Nd: ~ (Ne) ,  ~0Rd) .  This follows 
f rom wel l -known results on topologica l  vec tor  spaces. 

We  now discuss the p r o b l e m  of weak  convergence  to a Gaussian state. By 
this we m e a n  a state over  Vs.th. for each f e  Vthe  r a n d o m  var iable  i s  is Gauss ian .  

Corol la ry  1.5. Let V be a space satisfying the assumptions of Theorem 1.3. Let 
(P,) be a sequence of states over V satisfying (1.3) and (1.7). Assume furthermore 
that the limiting moments v", nr  appearing in (1.3) obey 

t 

(1.8) vk(f~ . . . . .  fk )=  ~ ~ V #s'((f~)j~ji ) 
J={J1 . . . . .  J r}  i = 1  

( keN ,  f1 . . . . .  fkeV),  where #Ji  denotes the number of elements in Ji, and J is 
summed over all pair partitions of {1, . . . ,  k} 5. Then there exists a unique Gaussian 
state P over V with first moment v t and second moment v 2 s.th. P , ~ P .  

s By a pair partition we mean a partition {J1 ..... J~} of {1 ..... k} into disjoint subsets J~, s.th., 
in the case when k is even, each J~ has two elements, and in the case when k is odd, exactly one 
J~ has a single element and the rest have two elements 
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The proof  is the same as in the special situation of [-17], Cor. 1.1. 
We now reformulate this result in terms of cumulants which will prove 

more useful than moments in the situations considered in Sect. 3. The cumulant 
7~ of a linear process P over V of k-th order is given by 

l 

(1.9) 7~(f~, ' " , fk)  = ~ (--1) z - l ( / - 1 ) !  ~I *~S~ 
J = { J 1  . . . .  , J ~ }  i =  1 

(fl  . . . .  ,fkE V), where J is summed over all partitions of {1 . . . .  , k} into disjoint 
non-empty subsets. The moments of a linear process P over V of k-th order 
can be expressed by its cumulants 7p ~, ..., 7 k in the following way" 

l 

(1.10) vk(f~ . . . .  ,fk)---- • l--[ eJ~ 
J={J1 . . . .  , J t }  i = 1  

(fl  . . . . .  fkEV) where J is summed over all partition of {1, ..., k} into disjoint 
non-empty subsets. Thus Corollary 1.5 can be reformulated in the following 
way: 

Corollary 1.6. Let V be as above and (P,) a sequence of states over V uniformly 
p-continuous for some p > O. I f  furthermore for each k e N ,  f l  . . . . .  fk E V the limits 
7k(fl, . . . , fk)= lira 7k ( f l ,  ...,fk) exist s.th. 7k(fl, . . . , fk )=0  for k>->_3 and k = l ,  

n ~ o o  

then there exists a unique centered Gaussian state P over V with covariance 7 2 
s.th. P, =*- P. 

Combining Theorem 1.1 and 1.3 we obtain: 

Corollary 1.7. Let V be as in the Theorem 1.3 and (P~) a sequence of  states over 
V uniformly p-continuous for some p > 0 s.th. 

(1.11) sup P,({}k) < + O0 (fEV, keN).  
n 

If furthermore P,,~s converges weakly to a Gaussian distribution with mean 
value v a ( f )  and variance v z ( f  f )  s.th. vl: V~IR is linear and vZ: V ~  V is bilinear, 
symmetric, and nonnegative definite, then there exists a unique Gaussian state 
P over V s.th. @=v 1, v2=v 2 and P , ~ P  and 

(1.12) @,( f l ,  . . - , fk )~@(f~  . . . .  ,fk), f l  . . . .  ,fkEV, k e N .  

Proof It is well known (see e.g. [-4]) that there exists a unique linear Gaussian 
process P over V s.th. v l = v  1 and vg=v 2. On account of Theorem 1.1 in view 
of (1.11), the convergence of all moments of P, to the corresponding moments 
of P follows. Since P is Gaussian it satisfies Carleman's uniqueness condition 
(1.4). Thus we are in the situation of Theorem 1.3 and the theorem is proved. []  

We now give a condition for relative compactness of sets of states taking 
into account that V* is also regular, i.e., for each closed subset F c V* and 
each xCF there exists disjoint neighborhoods of F and x. 
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Corollary 1.8. Let V be as in Theorem 1.8. I f  ~ is a family of states over V 
satisfying 

(1.13) there exists c > 0  and a continuous semi-norm q on V s.th. for each k, 
P e ~ , f ~ V  

P([ ~I[k)l/k < c. q(f) ,  

then ~ is relatively compact with respect to weak topology. 

Proof. It is well known that the space of all states over V with weak topology 
is standard regular since V* is standard regular. Thus ~ is relatively compact 
if and only if each sequence (P,) of elements of ~ contains a convergent subse- 
quence. (See [73.) Thus we consider a sequence (P,) in ~ .  Using HSlder's inequali- 
ty, the assumption (1.13) implies 

(1.14) there exists c > 0  and a continuous semi-norm q on v s.th. for each 
k e N ,  f1 . . . . .  f k e V  

k 

sup I rk ( f1 , . . .  ,f,)l <= ck" ]-[ q(f~). 
n j = l  

Separability of V combined with Cantor's diagonal procedure and (1.14) gives 
a subsequence (P,,)l of (P,) s.th. for each k, f l ,  ... ,fk6 V the limits 

v k (fl  . . . .  , fk) = lim v ~  (fl . . . .  , fk) 
l 

exist and the same bound as in (1.14) hold in the limit. Therefore Carleman's 
uniqueness criterium (1.4) holds for the limit moments. Thus we are in the 
situation of theorem (1.3) and the results follows. [] 

2. Cumulant Measures of Simple Point Processes 

We now consider special linear processes called simple point processes and 
give a detailed analysis of their cumulants, based on ideas and results of Brillinger 
[3] and Krickeberg [9], whose notations we use throughout. 

Let X be a locally compact space with a countable base. Denote by ~ (X) 
the set of all continuous functions f on X with compact carrier. N(X) resp. 
N0(X ) denotes the class of all Borel resp. relatively compact Borel subsets of 
X and J~'(X) is the set of all simple Radon point measures in X. In J~'(X) 
we consider the vague topology. A probability measure P on the ~-algebra 
N(J//'(X)) of Borel subsets of X is called a simple point process in X. 

Let now P be a simple point process in X. We assume that P is of k-th 
order for some integer k and that P has correlation functions up to order k. 
By this we mean that 

(2.1) @~pt ,  1=1, ..., k, 
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for some diffuse Radon measure p in X. Here p~ denotes the k-th power of 
p and 9~, denotes the restriction of v~, to 

2 *-- {(Xx . . . .  , x , ) eX~[ j l  + j 2 ~ x j ,  =~xj2 }. 

The results below are based on the following 

Lemma 2.1 (Krickeberg [9]). For each partition J =  {J1 . . . .  , Jm} o f  {1, ..., k} and 
Borel set C in Dj={(x l  . . . . .  xk)eXklVj= 1, . . . ,  mVi, i' ~Jj x i =  xi,} the simplicity 
o f  P implies 

(2.2) v~ (C) = v'~ (H j C). 

Here I I  s denotes the projection of Dj onto the space X ~ defined by 
11j (x l ,  . . . ,  Xk)=(Yl ,  . . . ,  Ym), where y j = x i  for all ieJj. 

We show now that Lemma 2.1 has an analog for cumulants. 
For a partition J of {1 . . . .  , k} we define the set Ej  of all (xl  . . . .  , Xk)eDs 

s.th. i~Jj, i'~ Ji, andj=~j' imply xi#:xi , .  

Lemma 2.2. Let  P be a simple point process in X satisfying the assumptions above 
and J =  {J1 . . . .  , J~} a partition o f  {1 . . . .  , k}. Then 

(2.3) 7~ (C) = 7~ (ff/J C) 6 C e N (Ej). 

Proo f  To simplify the notations we consider the case where j < j '  and ieJj, 
i'eJj, imply i < i'; the general case can be reduced to this one by a permutation 
of the axis of X k. Furthermore, to prove (2.3) we have to consider only sets 
C of the form 

km C = E j  r~ (C] ~ x . . .  x C~ ), 

where C1, . . . ,  C ~ s ~ o ( X )  are pairwise disjoint and k i=  ~J~, i=  1 . . . .  , m. Observe 
that C = C a  x ... x C,, with Ci={(z, ...,z)~Xk, lzeCi} and that H j C = C a  x ... 
x Cm. NOW 

(2.4) y~(C) = Z ( _  1)t- 1. (1- 1)! 
K = {K1 ..... Kz} 

" ~ lc((Xj) jeK . . . . . .  (Xj)jeKz) V ;  K1 (d(x j ) jeKa) ' ' "V;  Kz (d(xj)jeK,) '  
X k 

where K is summed over all partitions of { 1 . . . . .  k}. 
Consider two different kinds of summands: 

Case 1. If J is the subpartition of K given by the partition 5e = {5fl . . . . .  ~ }  
of {1, ..., m}, i.e., 

Ki= 0 J~, i=l,. . . , l ,  
j ~  

then the corresponding integral in (2.4) equals 

6 Note that in the case of a point process v~ and 7~ may be considered as a (signed) measure 
on X k (see [9]) 
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X C j)..... X e j), 
j e ~ l  je~f  t 

which by Lemma 2.1 equals 

j e -s  j e L f l  

Case 2. Suppose J is not a subpartition of K, i.e., there exists K i which is no 
union of certain Jj. We show that the integral corresponding to K vanishes. 
Consider the smallest set ~L~ : { 1 . . . .  , m} which satisfies 

K,= U4. 
j e ~  

In this case the integrand of the corresponding integral in (2.4) contains the 
factor 

H %((x.).,j) 
j e ~  

je.~ JsnK~,O 
FI 

j e f f  
. i , j  ~ K i 

Here C)= {(z . . . . .  z)eX~SJ\K~: zeCj} and x~ is any element of (Xn)neJj\K i. 
Thus, using Fubini's theorem, the corresponding integral in (2.4) contains 

the factor 

j e ~  j e ~  j e ~  je.L~ 
,IjnK~:#O J j c K i  Jjc~K~:#O J j ~ K i  

In the case xjeCj, which we have to consider only, the integrand A in this 
last integral is a subset of X cJ and thus of X#J, which satisfies p ~ ( A ) = 0  

j e s  

on account of p being diffuse. Since we assumed also that P has correlation 
functions up to order K we obtain v~-V(A)=0. 

To summarize we have shown that 
l 

7~(C)= • ( -1 ) ' -~ ( l  - 1)! ]-I vgV'( X Cj) 
(-s = {s 1 . . . . .  -LPt} i = 1 je,L% 

where ~q~ is summed over all partitions of { 1 . . . .  , m}. 
On the other hand the rhs equals 7~(Ct x ... • Cm)=y~(FIjC). This proves 

the lemma. [] 

Observe that u j E j = X  k, and the set E s are mutually disjoint. Thus in the 
situation above we can decompose ~,kp in the following way: 
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For A ~ N ( X  k) Lemma 2.2 implies 

J 

=ZTU(2   n A) 
J 

We denote by ~e *s the restriction of 7e* to 2 #J. 
If we now express the ~).s in terms of the moments of P and use that 

P has correlation functions up to order k, we immediately get: 

Corollary 2.2 (Brillinger [3], Theorem 3.2). Let p be a diffuse Radon measure 
in X and P a simple point process in X of k-th order s.th. 

?~, ~ pt with density pip, l=  1 . . . .  , k. 

Then for A e B ( X  k) 

(2.5) S r (xl . . . .  , x , , ) p ( d x O . . . p ( d x , , , )  
J = { J 1  . . . . .  Jm} H j A  

where J is summed over all partitions of { 1, ..., k} and 

l 
# K ,  (2.6) r~(x 1 . . . .  ,x , , )= ~ (--1)1-1"(l--1)! �9 ~ p~, '((xj)j~K,) 

K = { K 1  . . . . .  Kl} i = 1 

In (2.6) K is summed over all partitions of {1, ..., m}. 

3. Convergence to Equilibrium and Fluctuations of the Free Motion 
in the Hydrodynamic Limit 

We now use the methods developed above for the study of the time-asymptotic 
behaviour of the free motion and its fluctuations. Let Y=]R e and denote by 
2 the Lebesgue measure in Y On the space X =  y 2 =  y x Y we consider the 
family of homeomorphisms Ot defined by 

(3.1) Ot(q,v)=(q+tv,  v), (q ,v)eX,  ts]R. 

(Ot)tE~ is called free motion in X. Let p = 2 |  denote the Lebesgue measure 
in X. 

We first study the time evolution of a large class of initial states under 
the free motion and prove an ergodic theorem. The main assumption for these 
initial states is a condition concerning the correlation decay in the space variables 
due to Brillinger [3]. We shall see later that this condition also guarantees 
the existence of the associated fluctuation process in the so-called hydrodynamic 
limit of this time evolution. 

Denote by Pi: X ~ Y, i-- 1, 2, the projection onto the first resp. second coordi- 
nate, and consider the following two families of translations: 
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(3.2) Tq:X--*X,  Tq(q',v')=(q'--q,v'), (q ' ,v ' )eX,  qeY;  

(3.3) tq: Y ~ Y ,  tq(q')=q'--q, q , q ' e Y  

We now consider an initial point process/5 in X which satisfies the following 
conditions: 

(3.4) /5 is simple; 

(3.5) P has moments and correlation functions of all orders; 

(3.6) /5 is stationary up to infinite order, i.e., for each k v k is (Tqk)q-invariant, 
where rqk(ql, Vl, ... , qk, Vk)= (Tq(ql, vt) . . . . .  rq(qk, Vk)); 

k 

(3.7) there exists a non-negative function gear1 (2) s.th. for each k p~ < @ g ~  
pk a.e. j = i 

Before we formulate a further condition for /5  we note some consequences of 
(3.4)-(3.7) for the time evolutions (Pt)t in X and (Pt), in Y, given by Pt=/~op11 
and Pt= P o 0t-1. Observe that in general Pt is not a point process in Y. But 
in the situation considered here each Pt is even simple: 

Simplicity of P implies simplicity of each /~, t eN.  Thus given a bounded 
Borel subset A of Y w e  see that k k k - vl,t(A )=vpt(p 1 l(A)k) is a sum of integrals 
of the form 

p}~tdp, = ~ , t pr, oOtdp z, l= 1, ..., k, 
Pl I(A)t Pl- I(A)Z 

which are all < 2(A) 1.2(g)t< + oo on account of (3.7). 
Therefore each Pt is of infinite order. Combining this with the fact that each 

/~ is simple implies simplicity of each Pt (see [16], last remark). Since /5 is of 
infinite order each/~ is of infinite order. 

Furthermore, each/~  resp. Pt is stationary up to infinite order with respect 
to (T~)q resp. (tq)q. This follows from the stationary of/5 and the fact that Tqo 0t 
=0~o Tq, t eN ,  qe Y. Finally we remark that each /~ has correlation functions 
of all orders with respect to p resp. 2, namely 

(3.8) pkt(qa, Vl, ..., qk, Vk)=pk(ql - - t v l ,  V l , . . . ,  qk--tVk, Vk) resp. 

(3.9) pk (q l , . . .  , qk) • ~ pk(ql -- tv l ,  Vl . . . .  , q k - -  t lYk ,  Vk) X(dVl).--d,(dVk). 
yk  

We finally assume the basic condition of correlation decay in the space variables 
of the initial state Po: 

(3.10) (Brillinger [-3]) the reduced factorial cumulant measures/(~'o, m 
= 2, 3 . . . .  , of Po 7 are of bounded variation, i.e., for m > 2 

I r~o(ql, . . . ,qr , -a ,O)12(dql) . . .2(dq, , -1)< +oe .  
y , n -  1 

7 reduced with respect to (tq)q, using as reference measure 2 
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We now show that this condition in the situation above guarantees an ergodic 
theorem for (/~)t as well as (Pt)t: Consider for k =  1,2 . . . .  , f l  . . . . .  fkeYd(X), f 

�9 "=fl  | 1 7 4  

(3.11) ~)~t ( / )  = E f i  3)~tJ' ((fJ)~s,) �9 
J = ( J 1  . . . . .  Jm} i = 1  

We show that ~ [ t ( f ) ~ ( Z 2 |  as t--,oo, where z =  ~ p1(0, v) 2(dv) and 
Y 

= 1--p~(0,.).2. Then by the method of moments we know that /~:::~p,x| 8 as 
Z 

t ~ o e  (see [16], Theorem 4.1 for a proof). Now the summand corresponding 
to J =  {{1} . . . . .  {k}} on the rhs of (3.11)is given by 

v~, ( f  O.. ... vl~ (fk) = (Z 2 | k(f),  

using the (Tq)q-invariance of v-~. We thus have to show for m>2,  f e W ( X " )  
that 

~tn ?p,(f) 0 as t o o e .  

But by Corollary 2.2 

7;,~1f) = [, f (x l ,  ..., X " ) ' r ~ t ( X  1 . . . . .  X " )  p(dxl ) . . .p(dx") ,  
X m 

(3.12) 

where 
r"~t(xl, ..., X m ) = r ~ ( q l -  tVl, Vl, ..., q m - - t y r o ,  t)m)" 

Here and in the sequel we often write xi = (qi, v~). 
Now by the stationarity of/5 one can choose a version r~ which is invariant 

under (Tq")q, where Tq" = (Tq, 'a" Tq). Thus 

(3.13) ~)/,%(f) = j f ( x l , . . . ,  x"). r"~(ql- t @1-  Vm)-- q m ,  V l . . . .  , q " - l - -  t (v"_l - -  Vm) 
Xrn 

- - q " . v " _ l , 0 ,  v") p (dx l ) . . .p (dx")  

= ~ [ ~ f ( q l - t - t ( V i - - V " ) - t - q " , V l , . . . , q " - i + t ( v " - l - - V " )  
yrn ym 

+ q", v"_ 1, q", v") r~ ( x l , . . . ,  x"_  1, O, v") 2(dVl)...2(dv")] 2(dqO...2(dq") 

Observe now that Brillinger's mixing condition implies that the absolute value 
of [. . .] in (3.13) is dominated by a 2"-integrable function of the form 

[I f 11 ~" 1K(q")" ] ~ r'~(ql, v l , . . . ,  qm-1, Vm-1, O, Vm) 2(dvO...A(dvm)[ 
ym 

m 
= [1 f 1] ~'  1K (qm)" I reo (qx . . . . .  qm- 1, O) I 

for some K c Y compact (uniformly in t). 

s Here as usual P~z| denotes the Poisson process in X with intensity measure z. 2| 
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On the other hand [...] in (3.13) a.s. converges to 0 as t ~  on account 
of Lebesgue's theorem combined with (3.7)�9 Thus 

~)~<(f) -~ 0 as t ~ .  

To summarize we have shown the following: 

Theorem 3.1. Let P be a point process in X satisfying (3.4)-(3.7) together with 
(3.1o). 

Then 

(3.15) / ~  P~a| as t ~ .  

From this theorem we obtain the following ergodic theorem for the time evolu- 
tion (P~) of simple point processes: 

Theorem 3.2. In the situation of the theorem 

(3.16) Pt~  8~ as t ~oo .  

We now consider the time evolution (/~)t in the hydrodynamical limit. By this 
we understand the following limit: Consider the measure-valued process given 
for fE~(X),  #~J / / '=  J//'(X), e>0, on (Jg', ~(J{'),/5) by 

(3.17) X~: # ~ ( f ~  ~/2. [ ~ f ( e  .q, v) - v~,/~ (fD]) 
(~/, v) E 0t/~ {u) 

Here f~e~(X) is defined by f~(q, v) ,=f(e.q,  v). 
Let Pt ~ be the image of P under X~. We are interested in the limiting behaviour 

of/~ ~ as 8~0 .  

Theorem 3.3. Let /5 be a point process in X satisfying (3.4)-(3.7) together with 
(3.10)�9 Then for each t there exists a centered Gaussian state Qt over ~ ( X )  with 
covariance 

(3.18) 7 ~ ( f ) = ( z 2 |  ~ f (q2+tVl ,Vl ,q2q-tv2,V2)  
Xz 

�9 r2(q~, v~, O, vz) 2(dr0 2(dr2) 2(dqD 2(dq2) 

(fe~(X2)), s . t h . / ~  Qt as e ~ 0 .  Here (z2| denote the image of z2 |  with 
respect to x ~ (x, x). 

Proof We shall use Corollary 1.6. Using a well-known property of cumulants 
d 

.k ^k.~ .k we obtain for k>2,  8>0, t ~  that /pT=6 .yf~p where Q~ is the image of 

P under # ~ ( f ~  ~ f (e .q ,  v)). 
(q,v)eOt/~(#) 

Note that each Q~ is simple and has moments and correlation functions 
of all orders with respect to p, namely 

k k d t~ [ l  . . . . .  l ( q k _ t V k ) , V k ~  PQ~(ql, vl . . . . .  qk, Vk) = e- " " p p ~  (ql -- tvD, vl ~ ] 
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Thus by Corollary 2.2�9 

(3.19) k __ ~ - m . d  " . . ,  Y o ~ ( f ) -  ~ i f ~  Xm) 
J = {Ja . . . . .  Jm} X m 

�9 r~' (qx -- tVl), v l , . . . ,  7 (qm-- tyro), vm p(dxl) . . .p(dxm) 

( f e ~ ( x k ) ) .  Proceeding exactly as in the proof of the ergodic theorem, by using 
stationarity of P up to infinite order, we see that this equals 

Z g-m'd I f ~  H f l  (x 1 , . . . ,  Xm).r, ~ ( l ( q l _ t ( v l  - Vm ) __ qm),V, 
J X m 

1 
--(qm-l--t(vm--l--Vm)--qm),Vm--l, 0, Vm) p(dxl) . . .p(dxm) 
g 

which in turn equals 

~ e - m ' d . e  {m-1)'d ~ f ~  +t(vl--Vm)+qm, Vl . . . . .  e'qm--l +t(vm--l--Vm)+qm, 
J X m 

Vm- 1, qm, Vm) r~(ql , V, , . . . ,  qm- 1, Vm- 1, O, Vm) p(dxO. . .p(dxm) 

To summarize, we have shown that for each fe  ~ (X k) 

(3.20) 70~(f) =~-d" ~. I [ I f ~  
J = { J 1  . . . .  , J m }  y m  y m  

+ qm, vl . . . .  , e 'qm- 1 + t(Vm- 1 -- Vm) + qm, Vm- 1, qm, Vm) r~(ql,  v l , . . . ,  qm- 1, Vm- 1, O, Vm) 

�9 ~ ( d u 1 ) . . . ~ ( d v m )  ] 2(dqO...2(dqm) 

Arguing as above in the proof of the ergodic theorem, by Brillinger's mixing 
condition the terms [.. .] in (3.20) satisfy 

r ra . . .  1[�9149149 Po(ql, qm-1,0)l 

for some K c Y compact, and the rhs of this inequality is 2"-integrable. On 
the other hand by Lebesgue's theorem combined with (3.7) [-...] converges as 
~-~0  to 

I f ~  --Vm)' Vl . . . . .  qm+t(Vm-1--l)m), Vm-1, qm, Vm) 
y m  

�9 r~(ql,  vl . . . . .  qm- 1, vm- ~, O, vm) 2(dv0...2(dvm). 

Thus we obtain for e -+ 0 

(3.21) 

and 

(3.22) 

7k~(f) ~ 0 if k > 2  

72f(f) ~ z. ~ f ( x ,  x) 2(dq) z(dv) + ~ ~ f (q2  + t(vl - v2), vl, q2, v2) 
y 2  y 2  y 2  

�9 rZ(ql, va, O, v2) 2(dr1) )~(dt~2) 2(dql) ~.(d q2). 
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To complete the proof of the first part we show that each family (/~"), is uniformly 
2-continuous or equivalently that the family f ~  X~(f, .), E > 0, of linear mappings 
from N(X) in Lz(P) is uniformly continuous. It is sufficient to show that for 
each C ~ X compact the family f ~  X~(f ' ) ,  e > 0, of linear mappings from Nc(X) 
in L2(P) is uniformly continuous. Here Nc(X) are the functions in ~ (X)  with 
compact support  in C. No w there exists K c  Y compact s.th. for f ~ c ( X )  by 
the argument above 

P ( i x ~ ( f , . ) [ 2 ) =  ~ 2 e " 7 ~ ( f |  
<= z. ~ f(x, x) 2(dq)'c(dv)+ Itfll 2 .2(K)- ~ [r2o(ql, 0)] 2(dql ) 

X Y 

<=(z.p(C)+2(K). I Irgo(ql, 0)l 2(dql)). l/f I[ 2.  
Y 

Thus by Corollary 1.6 for each t there exists a centered Gaussian state (~t over 
N(X) with covariance 7 -2 given by the limit in (3.22) s.th. for each t /~"~(~t Q~ 
as e,~0.  []  

Theorem 3.3 implies the following structure of the Gaussian time evolution 
((~t)t which is inherited from the underlying time evolution (/~)t: ((~t)t is guided 
by the free motion in the sense that (~t=(~oo0; 1, t eN .  This means, that the 
law which governs the fluctuations at time t (in the hydrodynamic limit) is 
given by the initial law developed under the free motion. Moreover, an ergodic 
theorem is true for ((~)~. To be more precise, we have 

Corollary 3.4. In the situation of Theorem 3.3 we have O~t= Qoo071 for each t 
eN. Furthermore Qt=~Q as t--*oe, where Q is a centered Gaussian state over 

(X) with covariance ~ = (z 2| 

Proof. The ergodic theorem immediately follows from (3.18) combined with Cor- 
ollary 1.6 using the arguments above. For the first assertion note that the theo- 
rem shows that for k=~ 2, f e N ( X  k) 

k k oO k 0 7(~(f)=Tf2o(f t) = , 

and if k = 2 ,  we have from (3.18) that 

7~,(f) = 2 o 2 vo_~(f or ). 

On the other hand 7~o(fO0 k - k t ) - -  7Qoo ocl (f) for each k. Therefore (~t and (~o o 0t- 1 
have the same cumulants and consequently the same moments. But since Gaus- 
sian states are determined by their moments (see [-17] e.g.), we see that Qt 
=(~oO0t - 1 , t ~ .  []  

Corollary3.5. The stationarity up to infinite order of each Pt implies translation 
invariance in the space variables of each Ij t, i.e., Qto Tq-1= (~t, and thus also 
of Q. This follows in the same way from the theorem as Corollary 3.4. 

Remark 3.6. If in Theorem 3.3 we take an equilibrium state as initial state, for 
example a Poisson process P~.a| where z > 0  and g > 0 ,  2 (g )= l ,  then for 
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each t/~=:~(~ as e--* 0, where  Q is the cen te red  G a u s s i a n  s ta te  over  ~ ( X )  wi th  
covar i ance  7-~ = ( z 2 |  Thus  Q descr ibes  the  law of  the  equ i l ib r ium f luctua-  
t ions.  There fore  C o r o l l a r y  3.4 says tha t  Qt converges  weak ly  to tha t  cen te red  
G a u s s i a n  equ i l ib r ium s ta te  (~, which  is de t e rmine d  by  the inva r i an t s  of  the  
unde r ly ing  free mot ion ,  n a m e l y  by  the par t ic le  dens i ty  and  the p r o b a b i l i t y  dis tr i -  
b u t i o n  o f  the  single par t ic le  veloci ty.  

Remark 3.7. If  we on ly  l ook  at  the  f luc tua t ions  process  of  the  par t ic le  number ,  
given by  the image  Pt ~ o f /5  u n d e r  the  m a p p i n g  

# ~ (f--" ed/2" [ E f(e. q)-  ed.z- 2 ( f ) ] )  
q~pl oOt/~(l t) 

( # ~ J g ' ( X ) ,  f ~ ( Y ) ) ,  we o b t a i n  f rom T h e o r e m  3.3 the existence of  a t ime evolu-  
t ion  (Qt)t of  t r ans l a t i on  inva r i an t  cen te red  G a u s s i a n  states  over  ~ (Y) wi th  covar i -  
ance 

(3.23) 7~(f)=z.2o(f)+ ~ f(q2+tvl,q2+tv2)rg(ql,vt,O, v2) 
X 2 

�9 2(dr1)  2(dr2) 2(dq~) 2(dq2 ) 

( f ~ N ( y 2 ) ,  s.th. Pt~Qt as e ~ 0 .  Here  2 o ( f ) =  S f(q, q) 2(dq). F u r t h e r m o r e ,  
Y 

Qt~Q as t ~ c ~ ,  where  Q is a t r ans l a t i on  inva r i an t  cen te red  G a u s s i a n  s ta te  
over  ~ ( Y )  with  cova r i ance  7~ = z .  20. 
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