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Summary. Let l < p <  oe and  let x=(x.).>=o be a sequence of  scalars. The 
s t rong p-variat ion of  x, denoted  by Wp(x), is defined as 

t k=l  

where the sup remum runs over all increasing sequences of  integers 0 = n o  

~_~ H1 ~--- F/2 =_~ . . . .  
Let  1 < p < 2 and let M = (M.).  > o be a mart ingale  in Lp. Our  main  results 

are as follows: If  SEIM.--M._II~<oo, then Wp(M) is finite a.s. and  we 
have 

IEWp(M)P ~ C(IEIMolP + ~. IEIM.-  M.-  l l p) 
n > l  

for some cons tant  C depending only on  p. On  the other  hand,  let ((p.) be 
an arbi t rary  o r t h o n o r m a l  system of functions in L2, consider x = (x.).>o in 
l 2 and let S. = S~ xi (Pi and S = (S.).>= o- We prove that  if S,]x. I p < oe (1 < p < 2) 
then Wp(S(t)) < oe for a.e.t and [1Wp(S)ll 2 < C(SIx. IP) 1/p for some cons tant  C. 
Each  of  these results is an extension of  a result p roved  by Bretagnolle for 
sums of  independent  mean  zero r.v.'s. The case p > 2 in also discussed. Our  
proofs  use the real in terpola t ion me thod  of  Lions-Peetre.  They  admit  exten- 
sions in the Banach  space valued case, provided  suitable assumpt ions  are 
imposed on the Banach  space. 

O. Introduction 

Let 1 < p < oe and let x = (x.). > o be a sequence of  elements of a Banach space 
B. 

* Partially supported by N.S.F. Grant No. DMS-8500764 
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The strong p-variation of x, denoted by Wv(x), is defined as follows 

W~(x) =sup  ((llxolF+ ~ ,p,~/,~ ]lx.~--x,,~_, ) 3 
i>=l 

where the supremum runs over all increasing sequences of integers 0 = n o < n 1  
=_n2"~ . . . .  

Let Vp= {xEN~I Wp(x) < oo}. More generally, let vp(B)= {xeB~l Wp(x) < oo}. 
The spaces v v and vp(B), equipped with the norm Wp, are clearly Banach 

spaces. 
In this paper, we study the following problem: given a sequence X = (X,),_?_ o 

of random variables (r.v.'s in short), when is X a.s. in Vp? Or equivalently when 
is Wv(X ) a.s. finite? 

To answer this question, we have found it useful to study another family 
of Banach spaces which are defined using the K-method of interpolation. We 
recall all the necessary facts in Sect. 1 below. 

Our main results on the above problem are the following: Let 1 < p < 2 .  
There is a constant Cp such that every martingale M = (M,), >= o in Lp satisfies 

(0.1) EWp(M)P<=Cp(EIMoV+ ~ IEIM.--M.-~IP) �9 
n>=l 

Note that the converse inequality is trivial since for any x in N~ we have 

(IXoT+ ~ IX.--X,-17)l/P~WAX)- 
n>=l 

Let Sp(M)=(IMoIP+ ~.. IM,-M,_IIP)  lip. More generally, for any l ~ r < c ~  
n > l  

there is a constant Cp~ such that every martingale M in L, satisfies 

(0.2) ]l Wp (M) [l ~ --< Cp~ II Sp(M)H~. 

These results extend to the martingale case a result of Bretagnolle [B] who 
essentially proved (0.1) and (0.2) in the case where the increments (M, - -M,_  1) 
form a sequence of independent mean zero r.v.'s. A weaker form of (0.2) was 
proved by L6pingle [L] using an embedding of the martingale into Brownian 
motion (cf. also [Br] and IS]). Essentially, L6pingle obtained (0.2) but with 
the left hand side replaced by II Wp, (M)l[r with PI >P  and a constant depending 
on Pl. Related earlier results appear in [BG 1, BG2, Mi, and M] in the particular 
case of stable processes or processes with stationary independent increments. 

For  p > 2, these inequaIities are no longer valid. We will obtain (in the case 
p > 2) a new proof of the following inequality of L6pingle I-L]. 

For  2 < q < oe and 1 < r <  oe, there is a constant C~r such that every mart- 
ingale M = (M,), > o in Lr satisfies 

(0.3) I[ Wq(M)llr<Cqr I[sup [M.I Ilr. 
n 
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Our method is quite different from L6pingle's. Actually, (0.3) and (0.2) are both 
derived from a single basic idea (see Lemma 2.2 below). Our method has the 
advantage of extending with no difficulty to the Banach space valued case. 
This is considered in Sect. 4 where we prove that (0.2) remains valid (with the 
obvious changes) for martingales with values in a Banach space B under the 
assumption that B is po-uniformly smooth for po>p. Similarly, (0.3) extends 
if we assume that B is qo-uniformly convex for some qo<q. The scalar (or 
Hilbert space) case corresponds to p o = q o = 2 .  One can give a rather striking 
interpretation of (0.2) and (0.3): for 1 < p < 2, the p-variation of M can be comput- 
ed - on the average - using the finest subsequence nk = k, while for p > 2 it 
is the coarsest subsequence no =0,  nl = + ~ which plays a similar r61e. 

In Sect. 3, we extend (0.1) for the partial sums of orthogonal series of the 
form S,=f,"oeiq)i where ((P0 is an or thonormal  sequence in Lz and (cq) is a 

GO 

sequence of coefficients. Let S = (S,),=>o. We prove that ~ l e ,  lP< oe implies that 
o 

Wp(S) is in L2. The case of series S, with coefficients in a Banach space is 
also considered in Sect. 4. The present paper is a continuation of our earlier 
publication [PX]. 

1. Background on Interpolation Spaces 

We will recall here the basic facts from interpolation theory which are used 
in the sequel. We refer the reader to [BL] for more information. 

Let (Ao, At) be a "compat ible"  couple of Banach spaces. By "compatible",  
we mean that A o and At are continuously embedded into a large topological 
vector space so that we can form the sum Xo+Xl of elements Xo in Ao and 
xt in At.  

For  an element x in Ao+A1, the so-called K-functional is defined for t > 0  
as follows: 

Kt(x; Ao, A1)=inf{ llXolIAo + t [IXlllA1 [X= Xo + Xl} 

We will denote it by Kt(x) when there is no ambiguity. For  0 <  0 <  1 and 1 < q  
< oo, the interpolation space (A0, At)oq is defined as the set of all those x in 

dt 
Ao + A1 such that S (t-o Kt(x))q_ < oe. We equip this space with the norm 

o t 

oo 

xj =(o, 
We make here the usual convention: for q = oe, this becomes sup t -~ Kt(x). 

t > 0  

Let (f2, s~', #) be an arbitrary measure space and let B be a Banach space. 
Throughout  the paper, the space Lp(/t, B) (or briefly Lp(B)) denotes the comple- 
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tion of Lp(#)| with respect to the usual Lp-norm for B-valued functions. 

It is classical that if 1 < Po, Pl --< oo and if 1 1 - 0  0 - + - - ,  0 < 0 <  1, then 
P Po Pl 

(Lvo, Lv,)o v = Lp with equivalent norms. 

More generally, if (Ao,A 0 is a compatible couple, the spaces Lpo(/~;Ao) and 
Lm(#;A 0 also form a compatible couple. We will use the well known fact 

1 1 - 0  0 
that if - ~ then 

P Po Pt 

(1.1) Lp ((Ao, A 1)Op) = (Lpo (Ao), Lv, (A1))ol, 

with equivalent norms (cf. [BL] p. 123 and p. 130). 
It is rather easy to check and well known that (Ao, At)opt (Ao, A1)oq if q >p  

and this inclusion is bounded. 
We will use several times "the interpolation theorem". This is the following 

fact (immediate from the definitions): 

(1.2) Let (Ao, At) and (Bo, B1) be compatible couples of Banach spaces, let 
T be a linear operator from Ao + At into Bo + Bt,  and assume 

VX~AollTx][Bo~I[X[IAo and VxeAt IlTxllm~l[X[IA1. 

Then T is a bounded operator from (Ao, Aa)oq into (Bo, B1)oq with norm =< 1. 
(cf. [BL] p. 41). We will also use the following result, known as "the reiteration 
theorem" (cf. [BL] p. 50). 

Let (Ao, A1) be a compatible couple of Banach spaces. Consider 0o, 01 in 
]0, 1[ and Po, P, in [1, oo]. Let Bo=(A o, A1)oopo and Bt=(Ao,  At)ol m. Then 
(Bo, B1) naturally forms a compatible couple so that we may consider the space 
(Bo, B1)op for 0 < 0 <  1 and 1 =<p=< oo. 

The reiteration theorem says that 

(1.3) (Bo, B1)ov=(Ao, A t),p 

Moreover, we have 

for ~ / = ( 1 - - 0 ) 0 o + 0 0 1  . 

and 

(1.5) (Bo,A1)@=(Ao,AOo, p for ~o=(1--0)0o + 0. 

The important fact about these formulas is that the preceding interpolation 
spaces (1.3), (1.4) or (1.5) do not depend on Po or Pt- 

Of course, all the identities (1.3)(1.5) correspond to equivalent norms on 
the spaces under consideration (the constants involved in these equivalences 

(1.4) (Ao, B1)op=(Ao, At)ap for 3 = 001 
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do depend on Po, Pl, 0 and p). This implies that the same formulas are true 
if Bo and B1 are only assumed to satisfy the following continuous inclusions 

(1.6) 

(1.7) 

(Ao, At)0o 1 c B o  c(Ao,  AI)Oo~ 

(Ao, A1)o,1 =B1 ~(Ao,  A1)o~ ~o. 

Let B be a Banach space. We have defined in the introduction the spaces % 
and %(B). For p =  1, v~ is the space of sequences of bounded variation and 
Wx(x)=lXol+ Z [x.-x.-il for all x in vl. Similarly for vl(B). As usual, we 

n>l  

will denote by loo (resp. lo~(B)) the space of all bounded sequences of scalars 
(resp. elements of B) with the norm Ilxll~ =sup Ix.I (sup IIx.ll). We will denote 
by c (resp. c(B)) the closed subspace of l~ (resp. c) formed by all the convergent 
sequences. Clearly v 1 ~ c ~ l~ so that we may view (vl, lo~) or (v~, c) as a compati- 
ble couple of spaces and consider the interpolation space (vl, loo)oq. For simplici- 
ty, we denote 

Aoq=(vl,loo)o q ( 0 < 0 < 1 ,  l__<q__< oo). 

The reader can check easily that since v l c c  and c is closed in lo~, we also 
have Aoq=(v~, C)o q with identical norms (indeed xeAoq implies K t ( x ) ~ 0  when 
t ---, oc hence x ~ c). 

In the case of sequences of elements of B, we again have v~ (B)~ c(B)c  loo (B). 
We denote 

Aoq(B ) = (v 1 (B), Io~ (B))oq. 

As before, this space coincides with (vl(B), c(B))oq and the norms are identical. 
Now let (f2, d ,  P) be a probability space and let (s],),_>_o be an increasing 
sequence of o--subalgebras of ~4. Let us den6te simply by Lp (resp. Lp(B)) the 
space Lp(f2, ~], P) (resp. Lp(Q, ~ ,  IP; B)) in what follows. We will study the 
interpolation spaces associated to the couple (Ll (vz), L~ (l J ) .  We note immedi- 

a t e l y t h a t f o r O < O < l a n d p = ( l _ O ) _ l ( i . e .  1 _ 1 - 0  ~ )  p 1 +- , we have 

(1.8) (L1 (vt), Lo~ (l~))Op = Lp(Aop) 

with equivalent norms. 
Indeed this follows from (1.1). 
The reason for the importance of Aop in our study of the strong p-th variation 

lies in the following fact: 

(1.9) If l < p < o Q  and 1 - 0 = - , 1  then Aop(B)cvp(B ) and this inclusion has 
P 

norm bounded by a constant K(p) depending only on p. 

This is easy to prove (cf. [BP]). Indeed for any fixed sequence 0=no  < n l  _-< ... 
we introduce the operator T: v~ (B)~  It (B) defined by 

T(x) = (Xo, x , ~ -  x o . . . . .  x,, k -  x,, k . . . . . .  ). 
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This has clearly norm < 1. On the other hand, considered as operator from 
loo(B) into l~ (B), T has norm < 2. Therefore it follows from the interpolation 
theorem (cf. (1.2) above), that T has norm < 2  as an operator from Aop(B) 
into (la(B), l~(B))op. By (1.1), this space can be identified with Ip(B) with an 
equivalent norm. This yields (for some constant K (p)) 

(Ikxoll~ + z IIx.k--x.k_ll[~)~/v~g(P)IIxlIAo~<~, 

and (1.9) clearly follows from this. 

2. Martingales 

Our main result is the following statement which was proved in [B] for sums 
of independent mean zero r.v.'s. A similar but weaker inequality appears in 

ILl.  

Theorem 2.1. Assume 1 < p < 2. (i) There is a constant Cp such that all martingales 
M = (M.). >= o in L v satisfy (with the convention M_  1 =- O) 

EWp(M)v<=Cp]E( 2 IM.--M--~IP)  �9 
n>O 

(ii) More generally, if 1 < r < ~ ,  there is a constant Cpr such that every mar- 
tingale M =  (M,),>=o in L~ satisfies 

II Wp(M)ll. ~ C v, I1( ~ IM,-M._t I~)~/Pli,. 
n>_0 

Throughout  the sequel, we will set by convention M_ 1 = 0  whenever M 
= (M,),>__ o is a martingale. All the r.v.'s are assumed to be defined on a given 
probability space (f2, d ,  IP). We will need the following key lemma. 

Lemma 2.2. For any martingale M in L 2, we have 

IIMII(L~(~),L~(/o~))+~ < 2( ~ lIE [Mn--M.-112) 1/2. 
n=>O 

Note that by orthogonality we have 

(2.1) ~ IEIM, - -M,_  x 12 = s u p ] E l M ,  I 2. 
n__>0 n>0 

Proof of Lemma 2.2. Given a sequence of r.v.'s X=(Xn)n>o, w e  denote simply 
by K,(X) the Kt-norm of X with respect to the couple (L~ (v0, Lo~ (l~o)). Explicitly, 
we have 

(2.2) IIX. -X._llL1 + t sup ]IX. ~ H ~} K,(S)=inf{ l lSOll ,+ ~, o o 
n > l  n 

where the infimum runs over sequences of r.v.'s X ~ and X 1 such that X , - -  X,~ 
+ X,  ~ for all n > 0. 
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Let (M,) be a martingale, relative to an increasing sequence of a-algebras 
(d,),__>o, and let 0 <  To__< TI< . . .  be a sequence of stopping times (relative to 
(d,),>__o) with values in N u  {oo}. We assume that (M,) is bounded in L2, hence 
M, converges a.s. (and in L2) to a limit denoted by M~ which is in L2. Moreover, 
we have M,=IE(Mo~I~4~) and MT=II~,(Moo[~CT) for any stopping time T with 
values in Nu{oo} .  (For more details, cf. e.g., [N]). Therefore, the sequence 
(Mr~)k >-_ 0 is a martingale, and (2.1) implies 

(2.3) IE(IMTo[2+ ~ [MT~--MT~_~Ie)<suplE[MT~[ 2 
k=>l 

<IEIM~I 2-- ~ E I M n - M , - a [  2. 
n>0 

To prove Lemma 2.2, we may assume for simplicity that [[M~[I2__<l. Then we 
define by induction starting with To = inf{n > 0, [M. [ > t -  1/2}, 

T~=inf{n> To, [M,-  Mro[ > t -1/2} 

~ =inf{n > rk_l,  ]M,--MT,_~ I>t -1/2} 
and so on. 

As usual, we make the convention inf0 = + oo, i.e., we set T k = + oo on the 
set where 

sup IM~-Mrk_,]<__t -1/2 
n > = T k - 1  

Clearly {Tk} is increasing sequence of stopping times so that (2.3) holds. We 
note that if T o (co) < ~ then I Mro(o,)(co)] > t -  1/2 and 

(2.4) if Tk(co)<oo and k > l  then (MTk--MTk_I)(CO)>t-1/2. 

Moreover, we have for all k > 0 

(2.5) sup [Mn--MTk[<=t" 1/2 a.s. and sup [Mnl<=t -1/2. 
T k  <=n < T k +  1 rt <5 TO 

Hence, we can write M n = X ~ + X 1, with X ~ X 1 defined as follows 

X~ ~, ltTk<=.<rk+l}MTk 
k > o  

k>o 

By (2.5) we have ]]sup [X~ I l] oo ~ t -  1/2 
On the other hand, 

let Ao=[MTo ] and Ak=]MTk--MTk_,] for k=>l. 
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We have 

(2.6) 
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IXo~ + Z I x ~  o - - X , - I [  = l{ro=o}Ao+ ~, Ak l~r~<~. 
n=>l k > l  

This can be estimated as follows. We have by (2.4) 

(2.7) t-a/Z(l~ro=o~+ ~ l~r~<~o~)<Ao l{ro=O~+ ~, Ak l~r~<o~. 
k__>l k->l 

Let N = l~ro=O~ + ~, l{r~< oo~. By Cauchy-Schwarz, (2.7) implies 
k>-i 

(2.8) Nt-1/Z~N1/2(lAo[2 + ~ [Akl2) 1/2 
k>=l 

Clearly N is finite a.s. (since M,  converges a.s.) and (2.8) implies 

hence by (2.3) 

(2.9) 

N ~/2 ~ tx/Z(lAo 12 + S IAkI2) ~/2 

(EN)I/e~=tl/2 ILMoo[12 <=t I/2. 

Now going back to (2.6) we find again by Cauchy-Schwarz 

E ( i x O [ +  y. iXO o - X n -  11) < (EN)  1/2 [l(I A o 12 + Z lAk 12) '/2 ]12 
n>=l 

~ t 1/2, 

hence by (2.3), (2.9) and (2.2), this yields KI(M)<= 2 t '/2 so that 

II Ml[tLl(vl),L~(,~)a~o~ <2. 

By homogeneity, this completes the proof of Lemma 2.2. 

Proof of Theorem 2.1. Let (tin),__> o be a fixed increasing sequence of o--subalgebras 
of d .  All martingales below will be with respect to (d,),>_o. For  l < p < o o ,  
we will denote by Dp the subspace of lp(Lp) formed of all the sequences ~o = (~p.)~__> o 
such that ~o, is tin-measurable for all n > 0  and /E(~o,1~r for all n > l .  

1 1 - 0  0 
We first claim that if 1 --<Po, PI ~ o(3 and i f - =  + - -  then 

P Po Pl 

(2.10) D e = (Dpo , Dpl)0e. 

This is quite easy to check using a known argument. Indeed, to check this, 
we first note that by (1.1) we have 

(2.11) (Lvo(Ipo), Lp, (ll))op = Lp(le), 

with equivalent norms. 
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We can clearly identify isometrically Lp(lp) and l,(L,). There is a projection 
P: Lp (Ip) ---> Dp defined by 

VX=(X,),>=o~Lp(lp) P(X) = ((p,),=> o 
with 

(po=lE(Xo[~do) and (p,=IE(X,[~d,)-IE(X,]~,_0. 

Clearly, P is a bounded projection onto D, and 

IIP(X)[Io.< 2 JlXIIL.r 

and consequently IlP(X)llr By (2.11), this 
implies that for some constant C=  C(po, Pl, O) 

II P (X)ll<..o,O,,)o. <-_ C IfXIIL,<~,). 

Applying this for X in Dp, we find 

(2.12) IIX I1<O~o, ~,,~o, --< C ]lX[Io~. 

On the other hand, we have trivially 

[IXIIL~:%.)= < IIXIID~. for i=0, 1 

hence by interpolation 

(2.13) [IXllL.,p> ~ C' IIXIl<~,o.opl)op 

for some constant C'= C'(p o, Pl, 0). 
Combining (2.12) and (2.13), we find the above claim (2.10). 
We can now complete the proof of Theorem 2.1 (i). 
Let us denote by T the operator which associates to any ~p in D 1 the mart: 

ingale (M,),>o defined by M , =  ~ ~pi. Clearly II T((P)[]LI(v,)~ [](Pl[D," On the other 
i<_n 

hand, Lemma 2.2 implies that Tis bounded from D 2 into B1 = (L1 (v0, Loo (loo))~o, 
with norm <2. Therefore if 1 < p < 2  the interpolation theorem (1.2) implies 
that T is bounded from (D1, D2)op into (L 1 (vO, B1)ov. By the reiteration theorem 
(cf. (1.4) above) we have (Ll(Vl), B1)op=(L~(vl), Loo(loo))~p with 6=0/2. Now if 

0 is chosen so that 1 =  1 -6 ,  we have by (1.1) and (1.9) 
P 

(L 1 (v,), L oo (l~o))ap = L v (Aap) = Lp (vv). 

On the other hand, by (2.10) we have (since 1-01 0 .,1\ D ~ - 2 = ~ ) (  1, D2)op=Dp" Reca- 

pitulating, we find a constant C=C(p) depending only on 1 < p < 2  such that 
for all ~p in D, we have 

II T(~P)HL.(v~)=< C IlcpllD . 

This establishes the first part of Theorem 2.1. 
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The second part follows from the standard arguments used to prove the 
Burkholder-Davis-Gundy inequalities. We skip the details and refer the reader 
instead to [Bu], [-BDG], [-G] or [LLP]. 

The next result is an immediate consequence of Theorem 2.1. 

Corollary 2.3. Let 1 =<p<2. Let M=(Mt)t>=o be a martingale in Lp. Assume that 
the paths of M are right continuous and admit left limits and that the continuous 
part of M is 0. Let 

and 

%(M)= sup (IMol~+ ~. IMti-Mt,_llP) lip 
0 = t o = < t l  --< . . .  i__> I. 

Sp(M)=( ~ I M t - M t  IP) ~/p. 
t ~ [ O ,  o0[ 

Then, for all 1 < r < co, we have for any martingale M in Lr 

(2.14) /I Wp(M) L ~ cp~ I[ S.(M) II. 

Remark. There are also inequalities similar to Theorem 2.1 (ii) or (2.14) with 
a "moderate" Orlicz function space instead of Lr, cf. [Bu, BDG]. 

Our method gives (with almost no extra effort) a new proof of the following 
result of L6pingle [L]. 

Theorem 2.4. Assume 2 < p < o~ and 1 < r < oe. Then there is a constant Cp, such 
that every martingale M = (M,),~o in Lr satisfies 

Ib Wp(M)ll,~ Cpr l[sup l Mnl Lit. 
n 

Proof We first consider the particular case r = p. With the above notation, con- 
sider the operator 

S" L ~  L.(I~o) 

defined for q~ in L~ by S(rp)=(lE(~old,)),_>_o. Clearly II811~1. Let Bo 
=(Ll(vl), L~(lo~))~oo. By Lemma 2.2, S is bounded from L 2 into B o. By (1.2), 
S must be bounded from (L 2, L~)op into (Bo, Loo(l~))op (0< 0< 1, 1 <__p__< oe). 

1 1-0  0 
Now assume that - =  + - - .  Then, by (1.1), (L2, L~)op=Lp. Moreover, by 

p 2 oo 
1 - 0  1+0  

(1.5) (reiteration) (Bo, Loo(l~))op=(Lt(vO, Loo(l~)),op for c o = ~ - - + 0 =  2 

1--co e) 1 
Note that ~ i ~  + ~ - = - '  hence by (1.1), the last equality implies (Bo, L~ (lo~))op 

P 
=Lp(A~,p). Recapitulating, we find that S is bounded from Lp into Lp(A,op) 
with norm =< CI(p) for some constant C1 (P) depending only on p. 

Let qoeLp and let M,=IE(cp Id,). Applying (1.9) again we conclude that 

[[ M [I L~(~ ~ K (p ) [[ M ]E L~(A,ov) <= K (p) C ~ (p) I[ q~ [] p. 
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This proves Theorem 2.4 in the case r =p.  
The general case follows from this by a standard argument (cf. [-Bu]) and 

we leave the details to the reader. 

Remark. Of course, there is also a version of Theorem 2.4 in the case of a 
continuous parameter martingale (Mt)~> o- 

Remark. One can easily derive from Theorem 2.1 and 2.4 the following analogous 
"almost  sure" statements. 

Let (M,) be a martingale such that IE sup [ M , -  M,_ j ] < oo. 
n > l  

a .s .  

If 1 < p < 2 ,  then {Wv(M)< oo } = { Z [ M , - - M , - 1 ] P < ~ 1 7 6  �9 
n _ > l  

a .s ,  

Moreover if 2 < p < oo, then { W v (M) < oo } = {sup ] M, ] < oo }. 

Indeed, this follows directly from Theorems 2.1 and 2.4 and a classical stop- 
ping time argument. 

Remark. The almost sure finiteness of the strong p-variation has been also studied 
for a general Gaussian process in [JM] and also in [PX]. However, no simple 
necessary and sufficient condition is known in that case. 

Note  that we prove a little bit more than is stated in Theorems 2.1 and 
2.4, namely we prove all these results with Aop (0 = 1 -  i/p) instead of v v. The 
space Aop is studied in detail in [PX], using some ideas from [-BP]. To describe 
this space, we introduce more notation. 

Let B be a Banach space. For  each integer k and each x in B N, let 

Wpk(x)=sup((llXo[lP-+ - ~ Irx. ,-x . . . .  [IP) I/P} 
l <- - i~k  

where the supremum runs over all k-tuples of integers 0 = n o < n~ < . . .  < n~. Note 
the obvious identity Wp(x)= sup wpk(x). The next lemma is crucial in the paper 

k 
EPX], it follows immediately from EBP]. 

Lemma 2.5. Let  B be a Banach space. Let  1 < Po < or. There is a constant C > 0 
such that for  every x in B N, and every k >_ 1 

(2.15) if  tP~ k + l ]  C 1Wpko(x)<Kr(x;%o(B), loo(B))<CWpko(x). 

Moreover, we have for  Oo = 1 - 1/po, 

(2.16) (v ~ (B), lo~ (B))oop o ~ Vpo (B) = (v ~ (B), loo (B))oo ~o . 

Note.  The inequality (2.15) can be proved similarly as the above Lemma 2.2. 
Recall the notation Aoq(B ) = (vl (B), Io~ (B))oq. 

By the reiteration theorem (1.5), (2.16) implies that if 

(2.17) Oo=l - -1 /Po ,  0 o < 0 < 1 ,  l < q < o o  
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then Aoq(B)=(Vpo(B ), l~(B)),q with 1--O=(1--q)/po. 

This implies, using (2.15), that the following is an equivalent norm on Aoq(B) 

(2.18) ( Z (Wko( X))q k-1 --liq/p~ 
k>=l 

1 
In particular, i f - -=  1 - 0 ,  we find (for 1 <po <p) 

P 

II x II ,4o, ~ ~ ( ~ (k - l /po W ;  ~ (x))p) 1 Ip. 
k > l  

Finally, let us state a result from [-PX] which we use in the next section (cf. 
[PX] Theorem 3 and Lemma i0). 

Theorem 2.6. Let B be a Banach space, 0 < 0 < 1, 1 < q <= oo. 
Let Aoq(B) = (v 1 (B), I~o (B)oq as above. 

L e t p o = ( 1 - O ) - l ( s o t h a t l - l - O  ~ )  
Po 1 ~- " 

Let ((~, #) be any measure space. Let us denote simply Lp(B) instead of  
Lp(f2, #; B). Then: 

(i) I f  p < Po and p <= q, we have 

(2.19) Lp (Aoq (B)) c Aoq (Lp (B)). 

(ii) I f  r > Po and r >_ q, we have 

(2.20) Aoa (L, (B)) c Lr (Aoq (B)). 

(iii) I f  Po < t <= oo and s = inf(p o, q), we have 

(2.21) l, (Aoq (B)) c Aoq (lt (B)). 

Moreover, all these inclusions are bounded operators. 

Remark. Note that (2.19) follows easily from (2.18). Then (2.20) follows by duality. 
1 1 

Indeed, it is proved in [PX] that if 0 < 0 <  1, 1 < q <  oo, - +  1, the dual q 7 = 

of Aoq(B) can be identified with A 1 _oq,(B*) in a natural way. We refer to [PX] 
for more details on the spaces Aoq(B ). 

3. Orthonormal Series 

We will obtain here a generalization of the Bretagnolle result in a different 
direction. Let c~=(en)n>_ 0 be in lz and let (q0,) be an orthonormal  sequence of 
functions in L2(f2, #). (Here (O, #) is an arbitrary measure space). Let S, = ~, ei ~ol 
and let S=(S.) .~  o. i~. 
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Theorem 3.1. With this notation, /f 1 < p < 2 ,  there is a constant K'p (depending 
only on p) such that for any ~ in Ip 

(~ ~p(S)  2 d~)  1/2 "~ K~(X I ~~ I") ~/". 

Remark. This applies in particular to Fourier series. If ~ I f (n)  l ~ < oo (1 < p < 2) 

and if S,=X"of(k)e ikt then S(t)=(S,(t)),~o belongs to vp for a.e. t and Wv(S ) 
is in L2 (d t) (and similarly, of course, with n running over the negative integers). 

We do not know a reference even for the trigonometric case, although we 
feel that this should be known. Note however that (at least intuitively) the 
case of ~0, = e int contains the Bretagnolle result: The latter corresponds roughly 
to the very particular case of a lacunary sequence such as ~o,(t)=e i2"t. The 
above Theorem 3.1 is somewhat implicit in our previous work [PX], but is 
not stated there. 

Proof of Theorem 3.1. We will use Theorem 2.6 with l < p 0 < 2 .  Let P=Po and 
0<0<�89 

By (2.21) with s = p = q  and t=2 ,  we have 

(3.1) Iv (Aov) ~ Ao p (12) 

Now, let T: 12 --~ L 2 be the operator  defined by 

oo 

V ~ I  2 r(oo=Eo:iq) i . 
1 

Clearly II Trl = 1. This operator  T induces an operator  T from (12) N into (L2) N 
simply by setting 

Vx =(x,) ,> 0~(I2) N T(x)=(T(x,)),>=o. 

Obviously, 7" is bounded from Io~ (/2) into Io~ (L2), but also from v 1 (12) into v I (L2). 
By the interpolation theorem, T is bounded from Aop(12) into Aop(L2). But by 
(2.20), Aop(L2)~ L 2 (Aov). Therefore, by (3.1) there is a constant C such that 

(3.2) Vx=(x.).~o~(Aop) N [] T(X)IIL2(Aop)s 

Here T(x) is identical to the function t ~ S q ) , ( t ) x ,  considered as an element 
of L 2 (Aop). 

Hence, by (l.9), we have 

(3.3) IlZ q~,(t)x, lrL2,,,> s C;(~ I[x,[l~op) lip 

with C~ depending only on p. 
(Note that by (3.2) if x is in lp(Aop), the series No,  x . converges in g2(Aop ) 

and a fortiori in L 2 (%).) Now let (e,) be the canonical basis of IR ~. Let ai = ~ e,. 

We take xi = ~i (51. Then T(x) = 2 ~i ~i (Pl = X e, S,. "~ i 
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Note that {6i} is bounded in vl, hence, a fortiori, it is bounded in Aop. 
Therefore (3.3) implies 

(~ II {s.} [I ~. did) x/2 ~ K'p( ff' l c~i IP) lip 

! for some cons tan t  Kp. q.e.d. 

4. The Banach Space Valued Case 

Let l < p < 2 .  
We will say that a Banach space B is p-smoothable if there is an equivalent 

norm Ill 111 on B and a constant C such that 

Vx, yeB 2-1(l[Ix+YlllP+lllx-YlllP)~lllxlll~+ClllYllf. 

It is known that this holds iff the modulus of smoothness p(t) of (B, ][I lID is 
O(t p) when t ~ 0 .  Moreover, it is known that B is p-smoothable iff there is 
a constant C such that all B-valued martingales (M,), > 0 satisfy 

(4.1) suplE[IM, IIP~C(IE[[MoIf + ~ IE[IM,--M,-1 liP). 
n>=O n >  l 

We refer the reader to [-P 2] for more details. 
The Banach space version of Theorem 2.1 is the following. 

Theorem4.1. Let l < p o < 2 .  Assume that B is a po-smoothable Banach space. 
Then for each 1 < p < p o  and each 1 <__r< oo there is a constant Cpr such that 
all B-valued martingales M = (M,)n>=o in Lr(B) satisfy 

(4.2) II Wp(M)ll~ f p~ II(llMolf-l-~ HM,,- M,,- ~ IIP)*/P[[~. 

Proof As earlier, it is enough to check this for r=p. Note that if T o__< T t < . . .  
is an increasing sequence of stopping times and if M,=IE(Mo~ld,) with Moo 
in Lpo(B ) then the B-valued version of (2.3) is simply 

(4.3) lEl lMr~-MTk_,l f~ Clg ~ I l M . - M . - x l f  ~ 
Tk l<n~<Tk 

Indeed this immediately follows from (4.1) (taking P=Po) applied to the mar- 
tingales (Mrk ~ n-- Mrk . . . .  ). 

Once (4.3) is clear, the rest of the proof of Theorem 2.1 remains valid with 
routine changes. 

Let 2=<q<oo. 
We will say that a Banach space B is q-convexifiable if there is an equivalent 

norm I[1 Ill on B a constant C>O such that 

q q Vx, yeU [llxlll~+Cl[lYlll~2-~(lllx+ylll +lllx-Ylll  ). 
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It is known that this holds iff the modulus of uniform convexity 6(e) of (B, 111111) 
satisfies a lower estimate 6(e)> K~ q for some K > 0. Moreover,  it is known that 
B is q-convexifiable iff there is a constant C such that all B-valued martingales 
(M,), __> o satisfy 

(4.4) EllMollq+ ~ E I I M n - - M , - ~  IIq~Csuplgl lM, II q. 
n >  l n > O  

We refer again to [-P2] for more information. It is rather easy to show that 
1 1 

B is p-smoothable iff B* is q-convexifiable for - + - =  1. The B-valued version 
of Theorem 2.4 is as follows. P q 

Theorem 4.2. Let 2 <= qo < oo and 1 <= r < oo. 
Let B be a qo-convexifiable Banach space. Assume q o < p < o o .  Then there 

is a constant Cv~ such that all B-valued martingales (M.). >= o in L~ (B) satisfy 

(4.5) ]t Wv(M)[[~ < Cw Ilsupll M~ 11L. 
n>0 

Proof Let (Tk) be as above. Then (4.4) for q = qo implies 

~, EJIMT~-- MT~ , l lq~ jj q~ 
k > l  n>--O 

Using this inequality, the argument for Theorem 2.4 remains valid with routine 
changes. We leave the details to the reader. 

In the Banach space case, it is known that martingale inequalities such 
as (4.1) or (4.4) are stronger than the same inequalities restricted to sums of 
independent mean zero variables. The latter sums are better understood within 
the framework of the notions of type and cotype. Let (8,) be an i.i.d, sequence 
of r.v.'s on (f2, d ,  IP) with IP(~ = 1) = IP(~, = - 1) = 1/2. 

Let l__<p__<2__<q< oo. 
A Banach space B is called of type p (resp. cotype q) if there is a constant 

C such that for all finite sequences (xi) in B we have 

IIZ ~ xilIL2(B~ ~ C(Z  IlxillP) ~/~ 

(resp. ( ~  Ilxillq)lJq ~ C IIZ ~, x,IIL2~B~). 
Equivalently, this holds iff there is a constant C such that all B-valued mar- 

tingales M=(M,)n~o with independent increments (i.e., (Mn-M~_I)~_>_o is an 
independent sequence) satisfy (4.1) or (4.2) (resp. (4.4)). We refer the reader to 
[MP],  [HJP],  [P 1] for more information on these notions. 

We state next a result already observed in [PX]. 

Theorem 4.3. Let 1 < p o < 2  (resp. 2___<po < oo). Assume that B is of type Po (resp. 
cotype qo) and let 1 < p < Po (resp. qo < q < oo). Then for all 1 < r < oo there is 
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a constant Cpr such that all B-valued martingales (M,).>= o with independent incre- 
ments satisfy (4.2) (resp. (4.5)). (Moreover, if the increments are independent and 
symmetric, the result is valid also when 0 < r < 1). 

Proof Let x = (x.), >= o be in Ipo (B), let S, (x) = 22~ ei xi and let S (x) = (S, (x)), >__ 0. 

1 1 - 0  0 
Let 1 < P < P o ,  - - -  ~---, 0 < 0 <  1, and let 0 < r <  oo. We first claim that 

p 1 Po 
S is a bounded linear operator  from Ip(B) into L~(vp(B)). 

To check this, we may assume (without loss of generality) that r__> 2. Then, 
S is bounded from lpo(B ) into V~o(L~(B)) (since B is of type Po) and from 11 (B) 
into vl (L~(B)) (trivially). Hence, by (1.1) and (1.2), S is bounded from lp(B) into 
(va(Lr(B)), Vpo(L~(B))op. By (2.16) and the reiteration theorem (1.4), the latter 
space coincides with Aop(L~(B)) for 6 =  1 - 1 / p .  Moreover, by (2.20) and (1.9) 
A~p (L~ (B)) ~ L~ (A~p (B)) ~ L~ (vp (B)) (since r > 2). 

Recapitulating, we find that S is bounded from lp(B) into L,(vp(B)), as 
announced above. 

Let (d,),~o be a sequence of independent and symmetric B-valued r.v.'s. 
By the preceding claim, we have for any fixed e)' 

II w~({~ 8~(~) d~(d)})ll.~o~))~ C(Z II dn(d)II~) I/~ 

for some constant C. 
Taking the Lr-norm with respect to co' of both sides of this inequality and 

observing that (di) and (el(CO) di(o)')) have the same distribution, we obtain 

(4.6) II w~ ({x7 d~})tl~=< C Ir(x IId.ll')~/" L. 

When d~ is only assumed mean zero (instead of symmetric), we can prove (4.6) 
for 1 __< r < oo by a classical symmetrization argument. Thus, in the case of type, 
the proof  is complete. 

Now assume that B is of cotype qo. 
Let 0 < r <  oo and let x=(x , ) ,>o  be a sequence in B such that S,(x)=Z] e~x~ 

converges in L~(B). 
We will use a result of Kahane which ensures that all the Lr-norms are 

equivalent on sums of the form S, (cf. [LT]  p. 74). 
In particular this implies that there is a constant C such that 

IIS(x)llvqo<L~<B>>~ C IIZ~ ~.X. IIL~<~). 

(Note that this is obvious for r=qo, hence by Kahane's result it is true is 
general). 

Now if q>qo and O=l-1 /q ,  then (by Lemma 2.5) Vqo(Lr(B))cAoq(Lr(B)) 
hence if r > q by (2.20) and (1.9) we have 

IIS(x)IILr~vq~B>) ~ C' IIZ~ 8nX. I[Lr<B> 

for some constant C'. 
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By Kahane's result this must be valid for all 0 < r <  oc. We then extend 
this inequality easily for sums of independent symmetric (or mean zero) r.v.'s 
by the same argument as above, q.e.d. 

We can give also a Banach space version of the results of Sect. 3. We will 
say that a Banach space B is of H-type p if there is a constant C such that 
for all orthonormal sequences (cp,) in L 2 and all finite sequences (x,) in B we 
have 

[IF. ~0. x .  [I g2<~) < c(Y~ [I x .  II') 1/p. 
We can then state: 

Theorem 4.4. Let l<po=<2. Assume that B is of H-type Po. Then Jor l < p < p o  
there is a constant C such that for all (~o,) as above and all sequences (x,) in 

B, the partial sums S, = ~ Ok Xk satisfy the inequality 
k= l  

[I w~({s.})l[ z ~ c ( ~  IIx.[Ip) 1/p. 

This can be proved exactly as we did in the preceding proof with (e,) in the 
place of (%). 

Remarks. (i) A Banach space is of H-type 2 iff it is isomorphic to a Hilbert 
space (cf. IN]). 

(ii) The notion of H-type p can be connected easily to the geometry of 
Banach spaces. Indeed, for any n dimensional spaces E, F let 

d(E, F) = inf{ IF T[I [I T -  111 [ T: E ~ F invertible}. 

For an infinite dimensional Banach space X, let 

dn(X) = sup {d(E, l"2)[E c X dim E = n}. 
1 1 

Then if X is of H-type p, there is a K > 0  such that d,(X)<Knp 2 for all 

n (This follows from a result of [TJ]). Conversely, it is rather easy to prove 
1 1 

that if d,(X)<Knp 2 for all n, then X is of H-type Pl for all pl<p. Thus 

( Log d,(X)Log n 3) -1 sup {p IX is H type p} = \ l i n sup  ~- . 

(iii) The above inequality (3.2) shows that if 1 < p <  2 and 0=  1 -  lip then 
Ao, is of H-type p. (In fact, every space of cotype 2 and of type p is of H-type 
p). 
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