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ABSTRACT

The main types of models related to the origin of
biological asymmetry are reviewed and new models are
proposed. It is shown that in polymerization (in con-
trast to Yamagata's hypothesis) only a temporary am-
plification of asymmetry occurs. Models have been con-
structed in which always the same enantiomer survives,
independently of any fluctuations or asymmetric ini-
tial conditions. Therefore, the question of the "by
chance" or the causal origin of biological asymmetry
remains still open, although with a slight preference
for a causal origin.

1. ORIGIN OF CHIRALITY: CHANCE OR CAUSALITY ?

In the attempts to elucidate the origin of the asym-
metry of biosphere two basic questions became obvious.

First, whether the present asymmetry is result of
a historical accident, or is it due to some underlying
physical asymmetry.

Second, at which stage of the chemical or bjo]o—
gical evolution the (almost) perfect optical purity
was attained.

A Tot of experimental and theoretical work has
been done (mainly in the Tast two decades) toc answer
these questions.
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It is commonly accepted that optically pure sys-
tems are more advantageous than mixed ones: all-L or
all-D polymers are formed faster and are more stable
than mixed polymers (1,2), the genetic code would
have been more complicated if the handedness of the
building blocks {(e.g. amino acids) were also coded,
etc. Thus it seems clear why the organisms became op-
tically pure. The question is the choice between the
two opposite chiralities.

Laboratory work has been devoted mostly to the
search for possible asymmetric agents. Circularly po-
larized light (3-5) and weak interactions (6-8) are
the most often assumed sources of external asymmetry,
although a number of other sources are also suggested
(9). Weak interaction is at present the only physical
agent, for which an asymmetric effect is firmly es-
tablished. Its contribution to the intra- and inter-
molecular interactions is, however, very small (Rein
claimes that the intramolecuylar effect is not greater
than 10-13 (10) or even 10720 (11), therefore, the
primary effect must be efficiently amplified in order
to have any significant role in chemical evolution,
Such amplification was looked for in synthesis or de-
composition of molecules, in polymerization and crys-
tallization, and even in oscillating reactions. Most
of the experiments could not demonstrate any asym-
metry in the products. (For a review of these experi-
ments see e.g. (8, 12)).

The minuteness of the physical asymmetry led a
number of researcher to the denial of its importance
in the origin of the handedness of the biological ma-
terials. They assume that L-systems are quite as good
D-systems, and the preference for one particular han-
dedness has been decided by mere historical chance.
This chance might operate in several ways. Perhaps
some step of the (prebiological or biological) evolu-
tion is very improbable, and therefore rare, event,
which occurred only once on the Earth (13-16). This
event may be the organization of the reproductive sys
tem, or the photosynthetic apparatus, or some other
key step. It is also possible, that - perhaps follow-
ing a partial territorial separation of the enantio-
meric species - a single catastrophe destroyed the
majority of one of the populations; the other there-
fore could easily overcome (15,24). A most intriguing
possibility is the existence of systems with multiple
steady states, only the highly asymmetric ones being

as
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stable. Then an initial fluctuation is amplified until
the favoured species becomes dominant (2, 16-24). It
is claimed that in such multistable systems a slight
asymmetry in the "fitnesses" of the two competing
species only slightiy modifies the basins (domains of
attraction) of the stationary states, therefore a ran-
dom fluctuation will outfit the small difference (24,
25).

In this contribution we review the main types of
models related to the origin of biological asymmetry.
A number of new models is also presented which show
that this question cannot be decided on the basis of
formal models. A real resolution of the dilemma re-
quires a more precise reconstruction of the evolution-
ary timetable in order to see which models remain
compatible with the actual events.

Single events are not taken into account in the
models. Therefore we are confined to the physical a-
symmetry: does it have any possibility to grow up in
spite of fluctuational or random disturbances ?

Not only models yieiding a perfect optical purity
will be considered but also those in which one species
gains a relative predominance, as the optical purity
might evolve in a long sequence of reactions each of
them shifting somewhat the ratio of the enantiomers.

2. CLASSIFICATION OF THE MODELS

The models developed in the study of optical purity
may be clssified according to several criteria. Some
of these criteria will be listed in this paragraph.

2.1. Complexity of the reaction system.

The simplest models do not contain any reactions of
higher order nor chains of reactions.

More complex are the models describing polymeri-
zation and/or crystallization, with long iterative
sequence of reaction steps.

A qualitatively different level of complexity is
reached in systems with autocatalytic steps of dif-
ferent order. Instead of an autocatalytic reaction
selfinstructing cycles may be involved, where the
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cycle as a whole is reproduced autocatalytically (26).

One aspect of the complexity of the system is the
growth rate of the compounds of interest: it may be of
linear, exponential, or hyperbolic type { the latter
conrresponding to autocatalysis of second or higher
degree) (27).

2.2. Interaction between the enantiomers

The enantiomeric objects may have no influence on each
other at all, thus behaving as independent competitors
(27). The simplest possible effect of one enantiomer
on the other is through racemization or other para-
sitic reactions inducing the transformation of the en-
antiomers into each other. More pronounced interaction
of the enantiomers may be through the constraints im-
posed on the whole system (27,28), or through direct
collision (e.g. fight in the biological phase of evo-
lution). This type of interactions is called hetero-
chiral cooperative interaction by Morozov (25).

2.3. Constraints

In the majority of models the number of enantiomers is
allowed to grow unlimited. Since in any real system
there are limits for growth, different constraints are
involved in the models. Eigen and Schuster (27) in-
vestigated the case of the constraint of constant
overall organization (when the quantitiy of building
blocks in the system remains constant), and briefly
mentioned the constraint of constant fluxes. There

may be, however, other realistic constraints too, e.g.
the number of building blocks may be 1imited, and the
system does not necessarily use all of them (28).

2.4. Ideality

In an ideal system the enantiomers are not directly
transformed into each other (25,29). Therefore, the
models that aim to describe chemical evolution are

bound to be non-ideal as racemization should always
be taken into account.

2.5. Underlying physical asymmetry

Some models try to explain the appearance of handed-
ness regardless of any basic physical asymmetry. These
models, with symmetric rate constants for both enan- -
tiomers, are called "free" by Morozov et al. (25).
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They refer exciusively to the hypothesis of by chance
origin. In the models including physical asymmetry,
("perturbed” models of Morozov), some rate constants
are asymmetric. This type of models 1is appropriate for
simultaneous study of the effect of both the physical
asymmetry and the initial conditions or fluctuations.

2.6. Evolutionary timing

Logically several stages of evolution should be dis-
tinguished (26):
prebiotic “chemical" phase,
phase of selforganization to replicating "individuals"
evolution of individual species.

These phases are temporally not necessarily separated.

The optically pure state might in principle be
selected at any of these stages. Therefore the models
to be discussed refer also to different evolutionary
environments. Spontaneous formation of different sub-
stances is mainly characteristic of the chemical phase.
Autocatalytic growth may refer to all phases: chemical
as well as purely biological. Polymerization is thought
to bear significance in the first and especially in the
second phase. Racemization refers only to the prebio-
logical evolution, while sexual behaviour (30) clearly
is related to the third phase.

In all of these phases there are models which ac-
count for the amplification of asymmetry. Therefore
these models at the present are not suitable even for
an approximate evolutionary timing.

3. MATHEMATICAL MODELS

In the following presentation we proceed from the
simplest models to the more complicated ones. The ad-
vantages and limitations of the various models will be
shown. (Our scope is lTimited to the discussion of the
main types of the relevant models, not the enumeration
of each of them.)

The enantiomers and their concentrations are de-
noted by the same symbol (L and D). Although the models
may deal with chemical reactions or with changes of
pcpulation sizes, we always refer to L and D as to con-
centrations,
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In perturbation models some analogous rate constants
are different for the L and the D species. This will be
indicated by the subscripts L and D. The general con-
vention is that if there is an asymmetry e in the rate
constants, then k; =k{(1+e) and kp=k(1-g). (Usually €>0
is assumed.) The resulting asymmetry in concentrations
is L-

n = +——=

L+D

e}

3.1. Monomers

The simplestmodels treat the formation of the enantio-
mers in a single step, from a precursor present in
great excess, and their destruction. The system of dif-
ferential equations describing such a model is as fol-
Tows: .
L

vi - kpb - r(L-D)

. (1)
D

vp - kpD + r(L-D)

The formation of complex molecules from the primordial
athmosphere caused by radioactivity, lightning, wultra-
violet 1ight, etc. might show similar behaviour.

In these models (either with or without destruc-
tion, as well as implying racemization or not) asym-
metry is never amplified (29). Even if starting with
unequal initial concentrations the asymmetry tends to
a 1imiting value which does not exceed the sum of the
asymmetries of the rate constants,|e,| +[ey].

For the case of B-particles Keszthelyi_ (31). pro-
posed_actyal values of v and k (equal to 1010 s*1 and
5.10°19s-1, resp.) Using ideal system (no racemization)
he calculated the time necessary for the concentration
difference to grow, starting from zeroc, above the level
of statistical fluctuations. This time proved to be
relativily short (around 104 vears), even for
small asymmetries in the rate constants. In the non-
ideal system, however, racemization makes the process
sTowdown and the asymmetry can never exceed the sta-
tistical fluctuations, unless

ex > 2r+k (2)

VK(Zv+2r+k)

(for the case when only the decomposition is asymmetric

(32)).
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With Keszthelyi's data this means that for e,<5.10715
the asymmetry will never exceed the noise. For Targer
e's at any given racemization rate the concentration
shift reaches m times the Tlevel of statistical fluctu-
ations in T years if and only if e>Z, (Zy/mvs. r is
shown in Fig. 1.)

Ig';nn
o} 7=10°
T=10
1 { T=100
1=10°
? T= oo

L0 e o p 1 e
B - -3 -2 -u -p -y -8 -7 4r

Figure 1. Dependence of the minimal
required asymmetry in the decomposi-
tion rates on r, for several values
of T.

At any rate, such systems may at the best preserve the
physical asymmetry, but never amplify it.

3.2. Polymerization

Yamagata (33) was the first to point out that a sig-
nificant amplification of asymmetry may,in principle

at least, be attained through a very long sequence of
consecutive reactions, each of them having a small pre-
ference toward one of the enantiomers. He claims that
if in each step of the sequence >A~>B~>(C=>D=> ..
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there 15 a relative difference e in the rate constants
of the L and D molecules, then the asymmetry of the
nth product will be

El+€%” ;(1-g%n (3)

which (for small e ) may be in the order of ne.

The most appealing possibility for such long reac-
tion sequences is polymerization, Considering e.g.DNAs
with n=10%, this indeed may give a remarkable amplifi-
cation. (Another possibllity is crystallization (34)
with even greater number of steps, but its relation to
biology is Tess obvious.)

To check Yamagata's hypothesis, we constructed a
few simple models. One of them will be outlined here
(a detailed description will be published elsewhere

(35)).

Let us consider the synthesis of a linear poly-
mer in the presence of a great excess of monomers.
Suppose the formation of the dimers be characterized by
rate constant k,, whereas the rate constant of addition
of each subsequent monomer to a chain be k, indepen-
dently of the chain length. Then, denoting the concent-
ration of the nmer through a _7, the system is descri-
bed by the following set of differential equations:

él = ko-kal
a, = kap-kap (4)
a, = kan_rkan

(constant concentration of the monomer is included in
k and kg).

Then starting from zero initial values, a,(0)=o0, the
solution of equation (4) is the follawing:

k

= 9%
an—k

-kt %
=N JI (5)
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It is easy to see, that a, monotonically increases and
tends to kg/kK.

Eguation (4) may be put separately for the L and
for the D molecules. If there is a relative difference
e both in k, and k, then the asymmetry in the nth
product,

, is a monotonic function of time.

oD gOoS o

At t=o0 it equals to the value given by Yamagata {see
Equ. (3)), and monotonically decreases thereafter,
approaching zero,

The time courses of the a,.'s and their asymmetries
are shawn in Fig. 2., for e=0.81 and several values
of n.

an

n=10 n=50 ! n=100

asymmetry

0051

0014

80 90 100 10 120

Figure 2. Time course of polymerization and
the asymmetry of the nth products. (n=10, 50
and 100). ky=k=1, e=0.01.
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It is apparent from Fig. 2. (and also from Equ.
(5)) that_the asymmetry in the k'E causes a retarda-
tion of aD relative to a“-, i.e. a, at time t is the

same as ap at time l+e

U1

Thus if aL(t) goes through a maximum (which is
the case in some models), the asymmetry changes its
sign in the vicinity of this maximum (and, generally,
around each extremum) of the function.

Hence, it seems justified that asymmetry may in-
deed be amplified temporarily in reaction chains, but
lTarge amplification occurs only at the beginning of
the process, when the quantity of products of interest
is negligible. At the Tater,more consolidated phases
of the reaction the amplification decreases, and even
may change sign.

It is interesting to note, however, that one of
the most convincing demonstrations of the effect of
physical asymmetry is the series of crystallization
experiments by Kovacs (36), which would be most easily
explained on the basis of Yamagata's hypothesis. Pro-
bably, the experiment does not allow to neglect the
decrease of the concentration of the monomers, and,
more generally, such a simplified treatment.

3.3. Autocatalysis, without heterochiral interaction

This type of models assumes the autocatalytic forma-
tion of the enantiomers from a symmetric precursor.

The simplest example is the so-called Jordan-Kuhn
scheme (16):

L = k L-r(L-D)
. (6)
D

1}

kDD+r(L-D)

In the ideal system (with r=0) both concentrations in-
crease exponentially. If there is an asymmetry €>0 in
the rate constants, the asymmetry of the concentration
will monotonically increase and tends asymptotically
to unity. That is, in spite of the infinitely large
pool of the handicapped enantiomer, its relative abun-
dance tends to zero.
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In a system involving also racemization, any ini-
tial asymmetry vanishes if kj=kp. If there is a dif-
ference, e in the rate constants, the concentration
asymmetry tends to

€
n o= — . (7)
+v/(£)2 y el

r
K

This asymmetry may, with appropriate rate constants,
significantly exceed the original asymmetry . (E.g.
for e=10-13 and r/k:10"6, n will be 5.1078.

If there is a second order autocatalytic reaction,
the system of differential equations becomes (20, 25):

L = kLLZ

] 8

D = koD? 8)
D

In this system both cancentrations have singu-
larities in finite time,_ i.e. the concentration reaches
infinity at time {(k Ly)"' and (kDDO)‘1, respectively.
Thus, if, e.g., k Lo> kpDy then as time approaches
(kiLo)~!, L becomes infinitely large whereas D remain
finite, therefore the asymmetry tends to unity. If
the rate constants are equal, only a difference in
the initial concentrations may lead to a perfectly a-
symmetric final state, whereas in the case of per-
turbed systems, the effect of the difference in the
rate constants may be balanced or even reversed by the
difference in the initial values. This Tatter differ-
ence may result from fluctuations, or from some catas-
trophic event, etc.

As to the fluctuations, their standard deviation
is usually assumed to be equal to the square root of
the number of molecules (see e.g. Morozov (25) whose
reasoning is used hereafter). Let the average number
of L and D molecules be Ny= Np = N. If the fluctua-
tions in the initial state are distributed according
to a certain function f(x) then the probability, that
kiLo < kpDgys or, which is the same, that k| N_ <kpNp,
is equa? %o
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Prin=+1}  f(x)dx (9)
—eVN

This is, at the same time, the probability of the final
asymmetry being equal to +1. The complementary probabi-
lity of a final statewith asymmetry n=-1 will be

-evN
T f(x)dx (10)

The probability of n=+1 substantially exceedsl/2
only if /N is large enough. If, e.g., f(x) is a
Gaussian normal distribution, then the probability
Prin=+1} =erf(e /N) exceeds1/2+e only if _2_  InN
' , N

which at e=107'2 is fulfilled for N >1028 - quite a
large number of molecules to start with. This means,
that although the system always reaches a completely
asymmetric state, the direction of asymmetry is not
very much influenced by the asymmetry of the rate con-
stants.

This model is instructive in that it cliearly
shows the drawbacks inherent in the models with un-
limited growth. At some finite moment in time all the
available resources are exhausted by the two enantio-
mers and we are left without any hint as to the sub-
sequent evolution of the system which can no more obey
the previocusly used equations.

3.4. Models with heterochiral interactions: The role
of the initial concentrations

In these models there is direct interaction between
the enantiomers. This interaction is mostly thought
of in terms of mutual antagonism, leading to the
elimination of both enantiomers from the system.

The investigation of these models started with the
paper by Frank (17) describing what he called "specific
mutual antagonism":

Il

(k=k2D)L

11
(k-koL)D th)



MATHEMATICAL MODELS FOR THE AMPLIFICATION OF CHIRALITY 155

Although this model seems to be more adequate for
the description of the co-evolution of two competing
biological populations, it may also be interpreted as
a chemical reaction system in which both enantiomers
are autocatalytically synthesized from a constant pre-
cursor pool. In this system the symmetric stationary
state L=D=k/k, is unstable . One of the forms grows
exponentially. The asymmetry, obviously, tends to %l.
It depends solely on the initial conditions, which
form dies out and which survives.

This model was thoroughly reinvestigated by Hoch-
stim (24), and Tater by Morozov et al. (25). They have
shown that even if there is a difference in the rates
of synthesis, i.e. k # kp, this asymmetry has prac-
tically no influence on the chances of the favoured
enantiomer. If we were to start the system from the
ideally racemic state, the more rapidly synthesized
enantiomer would be the winner. If, however, one takes
into account the fluctuations around the racemic state,
the surviving species will be determined by the direc-
tion of the initial fluctuation alone.

This result is one of the main arguments against
any role of the physical asymmetry in the origin of
handedness.

If in the free system (k_=kp=k) racemization is
also taken into account, i.e.

L

(k-kpD)L-r(L-D)
. (12)
D

(k-k,L)D+r(L-D),
the behaviour of the system changes dramatically (29).

The qualitative phase portrait of the system for
different racemization rates is shown in Fig. 3.

For large rates of racemization (r > k/2) the sys-
tem tends to a symmetric stationary state L=D=k/k2.
For small racemization rates (r <k/2) one form grows
infinitely, and the asymmetry tends to *1, but the
handicapped enantiomer does not disappear completely,
rather it tends to a positive value r/k,. In case of
r=k/2 the asymmetry increases or decreases, depending
on the initial concentrations, but it cannot reach the
value of 1.
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(<)

Fig. 3. Qualitative phase portrait of Frank's model of
specific mutual antagonism with racemization.

a/ r>k/2, b/ r = k/2, ¢/ r<k/2

More sophisticated models of this kind with iden-
tical rate constants for the mirror image reactions
were devised by Seelig and coworkers (21-24) and by
Decker (18-20). Some of their works avoid the un-
pleasant aspects of the models of unlimited growth.
Ffor some values of the involved parameters they have
two absolutely asymmetric stable stationary states, in
which the concentration of one enantiomer is zero,
while the other has a finite value. Such is e.g. the
model of Decker (18)., If, however, racemization is
also taken into account, these stationary states - al-
though remain asymmetric - cease to do absolutely so and
both enantiomers have non-zero values (29).
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3,.5. Models with heterochiral interaction: The role of
physical asymmetry

If in the model of specific mutual antagonism the
enantiomers are formed with constant rates (instead of
being produced autocatalytically), the following sys-
tem of differential equations results:

L kL—kzLD

kD—kzLD

5 (13)

H

If the rates of formation are equal, the system be-
haves exactly as shown on Fig. 3b. If, however, one of
the enantiomers is formed more rapidly, the concentra-
tion of this enantiomer will grow above any limit,
while the other vanishes, The phase portrait of the
system for kL >kD is shown in Fig. 4.

Fig. 4. Phase portrait of the model
of specific mutual antagonism with
spontaneous formation of the enan-
tiomers.
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In this system, however small the difference in the
rates might be and however large excess of the com-
peting enantiomer be present initially, always the mo-
lecule with the higher synthesis rate will survive,
and the other dies out. It is an example of the ex-
treme amplification of a physical asymmetry in spite
of any fluctuations or other deviations from the sym-
metric starting conditions.

This model still contains the unattractive as-
sumption of unlimited growth. This difficulty will be
avoided in the following model,.

Frank in the same paper which describes his wide-
ly cited model dealt with above, proposed also another
model for "unspecific mutual antagonism" of the enan-
tiomers. The enantiomers are formed autocatalytically
from an apparently infinite precursor pool, and the
collision between the asymmetric molecules - irres-
pective whether they are of the same or opposite chi-
rality - Teads to the elimination of the colliding
molecules from the system. In the original model the
rate constants of synthesis were taken equal, and the
asymmetry did not change in time.

I[f, however, the rate constants are different,
the model is described by the following equations:

L

il

K, Lk, (L+D)L
LL-kp (L+D) (14)

D = kpD-k,(L+D)D

The phase portrait of this system for kL> kD is shown
in Fig. 5.

Starting from any initial non-zero concentrations,
the system always tends to the absolutely asymmetric
state in which K

. L -
L = o and D = 0.

2
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Figure 5. Phase portrait of the model
of unspecific mutual antagonism

4. TYPES OF SELECTIVE BEHAVIOUR OF SEVERAL COMPETING
SPECIES

The occurrence of optical purity may be sought of as
a special case of selection between alternative fea-
tures as well. Special because on the one hand there
are only two alternatives, and on the other hand,
there is no or only a very slight difference in the
fitnesses of the two alternatives. Moreover, there
exists racemization, i. e. spontaneous interconver-
sion of the enantiomers (at least atthe Tevel of small
molecules; in the case of macromolecules and selfrep-
roducing systems such interconversion does not seem
to take place).

Eigen (26,27) thoroughly investigated different
types of selection between selfreplicating entities.
It was shown that supposing unlimited growth an ini-
tial asymmetry will not be amplified in the case of
linear growth, whereas it will tend to unity if
autocatalytic processes are involved. However, 1in
exponentially growing populations even the "defeated"
species will have an infinitely great population size,
while in hyperbolic growth (autocatalysis at least of
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second order) one species grows infinitely while the
other remains finite in number.

For the more realistic case of limited growth they
studied mainly the case of the so called "constraint of
constans organization”. Under this constraint linear-
1y growing populations coexist, while among several ex-
ponentially growing species the fittest wins. The out-
come of he competition between hyperbolically growing
populations will be again the survival of only one
species, but it depends on the initial conditions which
of them is preferred. The fitness here determines only
the size of the basin (domain of attraction) of the dif-
ferent pure stationary states.

Although these models have been constructed for
the second stage of evolution (selforganization to rep-
lTicating "individuals"), they equally may be applied
to the chemical evolution.

Only a few of the models aimed to study the op-
tical asymmetry fits into this scheme of selection.
Another constraints are to be taken into consideration,
interaction of the enantiomers as well as racemization
also should be included. The analysis of Eigen and
Schuster, nevertheless, is very important for us, be-
cause it also leads to the conclusion: We have a great
number of possible models for supporting any of the
concurring hypotheses:

- that the two forms may coexist;

- that the form with any small "physical" advan-

tage wins;

- that the winner is determined by chance.

5. CONCLUSIONS

The evaluation of different types of models describing
the origin of asymmetry does not allow a choice 1in
favour of either of the two concurring hypotheses. In
some models an underlying physical asymmetry cannot
overcome the statistical noise, unless this asymmetry
is much higher than expected from theory, or the system
starts from an unrealistic large population of mole-
cules, In other models fluctuations and initial condi-
tions do not play any role, and physical asymmetry alo
alone govems the outcome of the process.

Nevertheless, one is tempted to ascribe greater im-
portance to the physical asymmetry. It is conceivable
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that during some periods of the evolutionary process
there was a preference for "fluctuational amplifica-
tion", while in other periods for “causal effects".
According to the above considerations, however, the
‘tausal periods" could produce asymmetry even by rever-
sing the asymmetry reached by fluctuations, while in
the "fiuctuational periods" the JTevel of asymmetry
reached causally had to be further amplified.
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