
Probab. Th. Rel. Fields 73, 351-367 (1986) Probability 
Theory " ~  Related Fie Id~ 

�9 Springer-Verlag 1986 
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Summary. In a previous work, the author obtained the strong Markov 
property of a process from conditions on its excursion process. The Ray 
and right properties are obtained here under similar conditions, using the 
Ray-Knight compactification. 

1. Introduction 

Let (Xt),>=o be a right process, with a point a which is both recurrent and 
regular. Let P0 b be the law of (Xt) started at b and stopped upon hitting a. Then 
(Xt) has a local time (L~) at a. Using (Lt), K. It6 showed in [8] how to obtain 
the PPP (~) of excursions of (Xt) away from a. Its law is determined by its 
characteristic measure n. It6 obtained a list of conditions (involving (pob)) that n 
must obey. 

In [-13], the author showed that under slightly modified conditions, one can 
reverse the procedure. That is, given (Po b) and n satisfying the new conditions, 
together with any PPP (Yt) having n as its characteristic measure, one can 
construct a right continuous strong Markov process (Xt) having (Yt) as its 
excursion process. Our object here is to show that if (Po b) are the transition laws 
of a right process or a Ray process, then (X,) inherits the same property. 
Moreover, in this case, the proof of the strong Markov property of (Xt) can be 
simplified. We will thus actually reprove some of the results of [13], under 
these new hypotheses. As well, we will treat the simpler case, that a is recurrent 
but irregular. 

Section 2 deals with the background to the problem. Section 3 covers some 
preliminary results, and is followed by the main argument in Sect. 4. Section 5 
includes the results on the Ray property, together with an application to 'skew 
Brownian motion'.  

2. Definitions 

The following will be our standing hypotheses: E is a universally measurable 
subset of some compact metric space, (~, ~,  ~t  ~ is a filtered measurable space, 



352 Th.S. Salisbury 

and (X ~ is a right continuous process with values in E, which is adapted to 
G~ The lab are probabilities on (O,~-), universally measurable in beE. As 
usual, we assume that 

o~-0 
'-gc't + = ~ t  ~ = (-~ ~ ~  

where ~o,u is obtained by adding to G ~ all the null sets in the laW-completion 
of ~.. 

We assume that (X ~ is a right process, that is; it is strong Markov (with 
respect to (~t ~ and (lab)), X o = b lab-a.s, for each b, and 

(2.1) for each e-excessive function f, f(X.) is laU-indistinguishable from an 
(~~ process. 

[-For example, this latter condition is well known to hold if lab is Borel 
measurable in b]. 

We will assume that (X ~ is recurrent at a holding point a. That is, writing 

o-~=inf{t >0;  X~ 
(and also r .= in f{ t>O;  X~ 

we have that 

lab(a. < o0) = 1 for every b, 
and 

la"(X ~ = a for every t) = 1. 

Write d for the given metric on E. Define a second metric d' by 

d,(x,y)=fl+d(x,y), x=a~y or y=a~x 
 d(x y) , otherwise. 

Notice that (X ~ is still a right process, in the d'-topology. Form the Ray- 
Knight compactification (/~, p) of (E, d'). Thus (/~, p) is a compact metric space 
containing E as a universally measurable subset, and (X ~ is a Ray process on 

The reason for introducing d' is that we obtain the following fact, which 
will be useful later; for every c~ > 0, 

(2.2) x~EX[e . . . .  ] extends to a p-continuous function on /~ (it is the 
e-potential of the d'-uniformly continuous function le\~, and hence lies in the 
Ray cone; see Getoor [5]). (Alternatively, we could have produced/~ by killing 
Xt ~ at o-a, deleting a from E [as it has become a branch point], forming the 
Ray-Knight compactification of the killed process, and then sewing a back in 
as the (unique) branch point to the cemetary (or as an isolated point if no such 
branch points exist]). 

In the following, "open" or "right continuous" will always mean "d-open", 
or "d-right continuous". Let U be the set of right continuous u: [0, oe)--.E 
which are p-right continuous on (0, oo). Let (Wt) be the coordinate process on 
U. Writing g for the universally measurable o--field on E, let ~'~(0__<t< oe) be 



Right Processes from Excursions 353 

the universal completion of 

V W/~(~). 
s<=t 

S< oo 

Write q{ for ~#~. Let Po b be the /~-law of (X ~ on (U,~). (Note that our 
notation is different from that used in [13]. There, the definition of U involved 
only right contihuity with respect to d, not p. Our present choice is dictated by 
the following technical consideration; if (X~) is any right continuous strong 
Markov process with the same laws (P~), then it too will be a right process 
[that is, satisfy (2.1)] iff it is a.s. p-right continuous. It is still an open 
question 1, whether this extra condition is necessary (see Sharpe [15]). How- 
ever, by our choice of U, we obtain immediately that 

(2.3) (W t, Po ~ is a right process.) 

We will use the notation aa, va for the appropriate (~t) stopping times (on U, 
rather than Q). We will make use of the shift operators 0 t on U as well. 

If (Xt) is any right process agreeing with (X ~ for t__<aa, K. It6 showed in 
[8], how to obtain the excursion process (Y~) of (Xt) from a. If (Xt) visits a at a 
discrete set of times, then Yk, (k > 1) is the U-valued random variable consisting 
of the k-th excursion away from a. If, on the other hand, a is regular for itself, 
then there is a canonical local time at a (the CAF with 1-potential 

(2.4) /~XEe-"~ 

and Yt is defined to be the excursion starting when the local time is t. Thus 
Y~U for countably many t, a.s. (as usual, 'a.s.' means /3"-a.s., for every #), and 
otherwise equals some auxilliary point 3. In this case, (Y~) is a Poisson point 
process (PPP). We write n for the common law of the Yk in the first case, and 
the characteristic measure of the PPP in the second. The law of the extension 
(Xt) is characterized by n. 

The reverse of this procedure was considered in [13]; that is, one wishes to 
start with a PPP (or a sequence of random variables) with characteristic 
measure (law) n, and to find conditions on n such that the resulting process 
(X~) is a right process. 

It6 obtained six necessary conditions on n ((i)-(vi) below). In [13], these 
conditions were shown to be not quite sufficient. The addition of two slightly 
different necessary conditions [(ii'), (vi') below] was however shown to yield the 
strong Markov property and the right continuity of the reconstructed process 
(X~). In the present paper, we will consider the remaining of the 'hypothSses 
droites', namely condition (2.1). We will show that under the new conditions, 
(2.1) must in fact hold (Theorem (4.1)). We will translate (vi') into a statement 
about the Ray-Knight compactification /~ (Proposition (3.5)) and will discuss 
what else can be said when (X ~ is a Ray process (Corollaries (5.2), (5.3); the 
latter shows that (Xt) is Ray as well). 

1 No longer; in a paper to appear in Ann. Probab., the present author shows that the condition 
may not be dispensed with 
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The arguments of [13] applied to certain processes (X ~ not satisfying (2.1). 
These arguments are in some sense the correct ones, as they generalize to the 
situation where excursions away from a set (rather than the single point a) are 
considered (see [14]). However, in the present context, it turns out that the 
Ray-Knight compactification may be used to advantage, giving a shorter proof 
of the strong Markov property of (X,). Since the present assumptions should 
meet the needs of all but specialists, we shall reprove the key parts of the 
results of [133. We will be able to do this fairly concisely by dealing only with 
the essentials, leaving many technicalities (measurability arguments ...) to [13]. 

This approach to the construction of strong Markov processes has a long 
history (e.g., Ikeda Watanabe [7]). See [133 for a discussion. We should 
however mention Kabbaj [10], and Getoor and Sharpe [6], where similar 
techniques to ours appear. Even more closely related are Blumenthal [1] and 
Rogers [11]. The latter essentially obtains our Corollary (5.3), by resolvant 
techniques. The former obtains a similar result when E--[0,  oo), a=0 .  It should 
be emphasized that the general insufficiency of conditions (ii) and (vi) does not 
present a problem in this case; by Corollary (5.2), there are no 'counterex- 
amples' coming from the class of Ray processes. 

This work formed part of the author's Ph.D. dissertation [12], under the 
supervision of J.B. Walsh, to whom many thanks are due. 

3. C o n d i t i o n s  on n 

In what follows, n is a positive measure on (U, q./). It6's conditions are: 

(i) n is concentrated on {u; 0 < a,(u) < oo, u(t) = a for t > aa(u)}. 

(ii) n {u; u(O)r V} < c~ for every open neighborhood V of a. 

0ii) f(1 - .e-~)dn< 1. 

(iv) n{u; r > t, ueA, Ot(u)eM } = ~ Pg~~ 
for t>0 ,  Aeq.l~, Me~.  An~o>t~ 

(V) n{u;u(O)eB, ueM}= ~ Pg(~ 
{u; u(0)~B} 

for Meq/, and Beg such that a(dB. 
(vi) Either (a) n is a probability measure concentrated on Ua={u;u(O)=a} 

(discrete visiting case); 
or (b) n is finite, n(Ua)=0, and ~(1-exp(-aa))dn<l (exponential holding 
case); 
or (c) n is infinite and n(U~)=0 or ~ (instantaneous case). 

The conditions introduced in [13] are: 

(ii') n{u;u leaves V} < oe for every open neighborhood V of a. 

(vi') Either (a) n is a probability measure concentrated on U a. 
If n >_ n'>_ 0 and n' satisfies (iv), then n' is a multiple of n; 
or (b) as in (vi)(b); 

or (c) n is infinite. If n>-n'>O and n' satisfies (iv), then n'(Ua)=O or oo. 

We will also make use of the following conditions: 



Right Processes from Excursions 355 

(vi"a) There is a point ce/~ such that 

n(Wo=a, p -  lim Wt 4=c)=O 
t ; o  

(vi"c) n(W o = a, p - lira W t + a) = 0. 
t$0 

We start with a technical lemma: 

(3.1) Lemma. Let n satisfy (i), (iv), and (v), and suppose that n(a~>e)<oe for 
every ~ > O. 

(a) Let R be a (~lt+) stopping time such that n(U",R=O)=O. Then the 
coordinate process (Wt, ~llt, Po b) is strong Markov at R under n. 

(b) n((Wt) leaves V)< oe for every p-open neighborhood V of a. 

Proof By (9.4) of Getoor  [5], together with (iv) and (v), we have (for f bounded 
and measurable), that U;f(W.)/is  n-a.s, right continuous on (0, ~) ,  and is n-a.s. 
right continuous at 0 on U \ U  ~ (here U~ is the resolvant of (Pob)). Thus, it is n- 
a.s. right continuous at R, so' that (a) follows as in (8.11) of Blumenthal and 
Getoor  [2]. To show (b), we have by (2.2) that 

V~={beE;Ebo[1-e-~~ e > 0  

defines a nested family of p-open neighborhoods of a. Since the resolvant of 
(X ~ separates points of/~, we have that 

(3.2) Pob(U~) = 0 for b+a, 

hence their intersection is {a}. Thus if V' is any other p-open neighborhood of 
a, 

{v'} u { E \ V ~ ; e > 0 }  

forms a p-open cover of/~. Since /~ is compact, this shows that the V~ form a 
base of p-open neighborhoods of a. Thus, it suffices to show that 

n((Wt) leaves V~)< oQ 

for each e > 0. Fix e > 0, and let 

z(u) = inf{t > 0; u(t)r V~}. 

Then W~r on {z< oe}, since V~ is p-open. Also, for bsE\V~ and v > 0  we have 
that 

e< Ebo(1--e-~ l - - e  V + Pob(a,>v), 

so that by part (a), 

oo > n(aa__> v)> n(z < ~ ,  ao__> v + z) 

{~ < co} 

> ( e -  (1 - e-V))n(~ < oe). 

Choosing v small, we obtain that n(z< ~ ) <  oe. [] 



356 Th.S. Salisbury 

Next,  we relate (vi") to (vi'): 

(3.3) Proposition. Let n be as in Lemma (3.1). Then 

(a) n ( p -  lira W t does not exist)= 0 
t$o 

(b) Suppose that n is a probability measure concentrated on U ~. Then (vi'a) 
and (vi"a) are equivalent. 

(c) Suppose that n(U ~) >0.  Then (vi'c) and (vi"c) are equivalent. 

Proof. By (v), 
n(Wo ~=a, p - l i m  Wt:~ Wo)=O, 

t$o 

so that  wi thout  loss of generality, we may assume that  n(U\U")=O. 

(a) Let  V be a p-open ne ighborhood  of a and let 

B = {for every v >0 ,  Wsr V for some se(0, v)}. 

Then  by L e m m a  (3.1)(b), 
pt(A) = n(WtzA, B) 

forms a bounded  system of entrance laws for (Pob), so that  since (W~) is Ray in 
the p-topology,  there is a finite positive measure #o on /~  with 

l~t(A)= P~~ t > 0 .  
Thus 

nlB=P0 ~~ on a (Wt ; t>0 ,  
so that  

n(B, p - lim W t does not  exist) = 0. 
t$o 

N o w  let V =  V k range through a countable  base of p-open ne ighborhoods  of a. 
Then  

U \  U Bg= {p - l i m  W~= a}, 
k t$0 

showing (a). 
(b) If (vi"a) holds for n, then whenever n_> n' >_0, it also holds for n'. Thus if 

n' satisfies (iv) as well, we have that  

n'= n'(U)P~ = n'(U)n. 

Conversely, as above, there is a probabi l i ty  go on /~  such that  

(3.4) n=P~ ~ on a(Wt; t>0) .  

In fact, #o is the distr ibution of 

p - lim W~, 
t$0 

hence (vi'a) shows that  /~o takes on only the values 0 and 1. Thus it is 
concentra ted  on some point  c, giving (vi"a). 
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(c) Assume condition (vi'c) holds, and let V k be a countable base of p-open 
neighborhoods of a. Then 

Ak= {Wo=a, IJ/@V k for some sequence tj+0}e~o+, 

so that, taking n' to be n restricted to A k we see that n(Ak)=O. Taking the 
union over k yields (vi"c). Conversely, assume (vi"c). If (vi'c) fails, then there is 
a finite nonzero measure n' concentrated on U a, which satisfies (iv). Thus 

/tt(a) = n'(W, eA) 

defines a bounded system of entrance laws for (Pob). 
As before, there is a/t0 on/~ with 

n'=P~ ~ on a(Wt; t>0 ). 

By (vi"c), /t0 is concentrated on a, which is absurd (recall that n '<n,  and n 
satisfies (i)). [] 

Now let (X~) be a right process under the fib, with X t = X  ~ for t < a  a. Then 
a.s. (Xt) has an infinite lifetime, and in [8], K. It6 constructed its excursion 
measure n. He showed (in a slightly different context) that n satisfies (i)-(vi). In 
[13] it was shown that the stronger conditions (ii'), (vi') hold as well. The main 
goal of this section will be to rederive this result (Proposition (3.5)). The 
simplification arises in that in the present situation, we have the Ray Knight 
compactification at our disposal. 

(3.5) Proposition. Let (X~) be a right process under the fib, with X t = X  ~ for 
t < za. 7hen the excursion measure n of (Xt) satisfies (ii') and (vi'). 

Proof. Condition (ii') clearly holds. We know, a priori, that (Xt) is p-right 
continuous at all times t with Xt:t=a, a.s. Thus Lemma(3.1) part (b), and 
Proposition (3.3)(a) show that 

J(t = p -  lim Xs 
s+t 

is well defined for every t, a.s. 
Consider first the discrete visiting case. As in Proposition (3.3)(b), there is a 

probability P0 on/~ such that (3.4) holds. Thus 

(3.6) /~a(J(o e C) =/ t  o (C), 

for C any measurable subset of/~. If go is not concentrated on some single 
point c, then there is a C ~ / ]  with 

0</ to(C)< 1. 
Let 

T=in f { t  >O; X~=a,f(~eC}. 

Then T is a.s. finite, and X r = a ,  X T e C  a.s. By (3.6), this contradicts the strong 
Markov property of (Xt) at T. Thus (vi"a) holds, and hence so does (vi'a). 
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Now suppose that a is regular for itself. In n is finite then It6 showed that 
(rib) holds, hence we may assume both that n is infinite and that n(U")>0. If 
(vi"c) were to fail, we could use (b) of Lemma (3.1) to find a measurable Cc /~  
with aq~ C and 

O<n(U",p-lim Wt~ C) < Go. 
t,Lo 

Thus 
T = inf{t >_ 0; X t = a, 2~t6 C} 

is a.s. finite, and XT---a, XTeC a.s. Therefore T is a stopping time at which 
excursions in U a start. By the regularity of a, this contradicts the strong 
Markov property. [] 

4. Hypoth6ses Droites for (X,) 

We will now consider the 'converse' of Proposition (3.5). That is, we will start 
with n, and show that (Xt) is a right process. We will do this in a pathwise 
manner, hence will in fact start with the 'excursion process' (for the con- 
struction of a PPP  from its characteristic measure, see It6 [81). 

The following will be the conditions in force throughout the rest of this 
section: Recall that (X ~ is a right process. Let n satisfy (i), (ii'), (iii), (iv), (v), 
and (vi'). 

In case (vi'b) or (vi'c), let 

(~,~)t>0 
be a PPP under each pb, with characteristic measure n (not dependant on b). 
That is, for any A with n(A)< oo, the process 

t--*N((O, t] x A, Y)= :t# {s~(0, t]; Ys~A} 

is a is adapted to ( t ) ,  and Poisson process with intensity n(A) and independent 
pb. increments relative to ( t ) ,  under each [Put another way, N((0,t] x A, Y) 

-tn(A) is an (~)-martingale under each pb.] We assume that (~)  is right 
continuous, and that 4 o 

For convenience, write Y0=b. [This notation is different from that of [13]; 
there Y0 was taken to be the process (X~ Set 

m=l-S(1-e-~ 

(This is the appropriate 'delay coefficient', given by the normalization entailed 
in (2.4)), 

S-(s) ~0, s 0 

=(G(X~ ~ G(Y~), s>O 
r K s  

Y~+6 
S+(s)=S-(s+) 
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L t = inf{s; S + (s) > t} 

x , t ~ ~ o ( x .  ~ ) 

/a,  otherwise 

go = No v o%_ v ~(k,_ s-~L~(YL,)) V ~(Xt) 

s > t  

[as usual, k~(u) denotes u killed at time r]. 
Similarly, in case (vi'a), let ~)k>=_0 be a filtration, with 

and let Y k e ~ ,  k > l  be random variables, independent of ~'~-1 and with 
distribution n under each ,fib. Again, take Y0 = 6. Set 

0, k = 0  

s-(k)= o4x.o) + F, ~o(D, k>~ 
j<k 

S+(k)=S-(k+l) 

L t = inf{k; S + (k) > t} 

x ~ , t <  o(X ~ ) 
Xt N 

YL~(t - S-  (L0), o therwise 

.~o = ~to v ffL,- , V a(k,_s-(Lo(YL,)) v a(Xt) 

S > t  

Our main result is the following. 

(4.1) Theorem. Under the above conditions, (X,, %,,fib) is a right process. (Yt) is 
its excursion process. 

We will basically give the proof as a sequence of lemmas. The first should 
soothe the reader's anxieties concerning the existence and measurability of the 
above objects. It combines various results from [13]; the reader should look 
there for proofs. 

(4.2) Lemma. (a) In case (vi'b) or (vi'c), the following hold: 
(S-(s)) is a.s. finite, left continuous, and strictly increasing. It is (~ ) -  

predictable, and 
S - ( L t ) < t < S + ( L t )  for every t a.s. Each L t is an (~,~,) stopping time, and 

(b) In case (vi'a), 
(S- (k)) fs (.~)-predictable. I t  is f inite and satisfies 
S-(Lt)<=t <S+(Lt) for every t, a.s. Each L t is an (~,~)-stopping time, and 
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(c) (X ~ is simple Markov with respect to ((qo) 

(d) (Xt) is a.s. right continuous, and is adapted to (~qt). 

Remark. Of course, (c) could be strengthened, but this is all we will need. 

This Lemma uses only (i), (ii'), and (iii). In [13], the reader will find a more 
precise statement of the relationships between the objects under consideration. 
It is actually shown there, that X. is a measurable function 

F(X ~ Y.), 

for F defined on the product of U with a suitable space of 'point functions'. To 
make this work, an appropriate null set is discarded. In the present situation, 
this set is null with respect to each P", so that no problem arises. The 
modification in the definition of (U, q/) used here also causes no problem.] 

The following is a special case of the key lemma (Lemma 7) of [133. As 
remarked there, a similar result may be found in Getoor and Sharpe [63. 

(4.3) Lemma. Assume that we are in case (vi'b) or (vi'c). Fix t, and let 

R(co, u)=f t -S-(Lt) (co) ,  if O<t-S-(Lt)(co)<a~(u ) and Lt(co)#-O 
otherwise. 

Then 

(a) S- (L t )<t  a.s. on {u 
(b) For any b, and any A s ~  we have 

n{u; usA, R(co, u) < oo} 
Pb(YL*SAL~t-)(CO) n{u;R(co, u)< oo} for /~b-a.e. co 

(with the convention 0/0 = O) 

Proof (a) Since S-  is strictly increasing, L t is accessible on { t=S-(Lt )>O }. 
Also, S-  i's a subordinator, hence quasi-left continuous. Thus S+(L~)=S-(Lt) 
a.s. on {t = S-  (L,) > 0}, showing (a). 

(b) The following formula is well known; let b be arbitrary, and let f (u,  s, co) 
be positive and measurable with respect to the product of q / a n d  the ~r-field of 
(~t) predictable subsets of [0, ~ )  • (2. Then 

[i ] (4.4) /~b[ ~ f (ys ,  s)]=s ~f(u,s)n(du)ds . 
s > 0  
Y~+6 

(The reader unfamiliar with dual predictable projections (see Dellacherie [3]) 
may check this by observing that monotone convergence and linearity allow 
one to take f of the form Z(s, co)lA(u), where n(A)<oo and Z is bounded and 
predictable. In this case (4.4) follows, as the stochastic integral of Z with 
respect to the martingale 

N(~, (0, s] • A ) -  n(A)s 
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is also a martingale, hence has expectation zero.] Now let B ~ .  

s L,>r, YL~A] =Eb[B, ~ 1A(Y~)lto,~)(S-(s)+a.(Y~)--t)] 
sE(r,Lt] 
u Lt 

=Eb [B,! n{u;u6A, aa(u)>=t-S-(s)}ds] 

- E b [B, }' , { u ; u ~ A ,  ~o(u) >__ t - S -  (s)} 
- t ~ 7 { ~ T g ~ ( u Z E _ t ~ s ~ } -  n{u;~o(u)>=t-S-(s)}ds] 

[ n(A, aa(u)>=t-S-(s)) ] 
=~b B, ~ n(aa(u)>t_S_(s)) l[o,~o)(S-(s)+aa(Ys)-t ) 

s~(r,Lt] 
Ys~-6 

= gb [B, L t > r, YL, * 3, n(A, %> t -- S - (Lt)).] 
n(er a > = t - S - ( L t )  ) J 

= eb [B,L,> r, n(A'_ R < ~176 ] 
n(R<oo) ] by part(a). 

This suffices. [] 

The discrete time version is 

(4.5) Lemma. Assume we are in case (vi'a). Fix t and let 

R(c~ S-(Lt)(cO)' otherwise.if t-S-(L,)(oo)<a.(u) and Lt(oo)4:0 

Then for any b, and any Acdg we have 

n(A,R < oo) 
fib(YLfiAI~L~- O-- n ( R < ~ )  pb-a.s. (with 0/0=0). 

Proof The proof is essentially the same as that of (b) above, with (4.4) replaced 
by the trivial formula 

~b[ Z f(Yk, k)]=Eb[ Z ~f(u,k)n(du)]. [] 
k>O k>O 

In case (vi'a), let c be the element of/~ given by (vi"a), and set 

Xt = ~c, X t-= a 
( Xt, otherwise. 

In case (vi'b) or (vi'c), let Jft = Xt. 

(4.6) Lemma. (a) (Xt) is simple Markov with respect to (Nt~ 
(b) (J(, Nt, fib) is a Ray process. 

Proof To prove (a), consider first case (vi'b) and (vi'c). By monotone class 
arguments, (b) of Lemma (4.3) extends immediately to the following: let f(u, co) 
be bounded and 

~//| ~JLt- measurable; 
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1 
(4.7) /~b [-f (YLt)] = Y n(R(', ca) < ~)  S f (u, ~)n(du)pb(dco). 

{R(.,o~) < oo} 

For A, Be~//and Ce~Lt- we therefore have that 

(4.8) Pb(YL~ (" + t -S-(L,))eA,  k,_s_(Lt)(Ynt)EB, C) 

=/~b [C  ' n(OR1A, kR 1B'R < 
n(R < ~)  ~! j "  

] 
By definition, R is nonzero, so that by (iv), 

n( O R(1.,~) A, kR(~,o,) B, R (', c~) < oo) 

= ~ 1 P~(R("'~'))(a)n(du)" 
{R(.,r co}c~kR (.,~)B 

Thus by (4.7) again, (4.8) equals 

Eb[ C, kR(rLo( YL)~ B, Por~(R(r~O)( A) ] 

= Eb[ C, kt_S_(Lt)(YL)CB, PX~(A), L, > 0] (by Lemma (4.3)(a)). 

fro By definition of ( t ) ,  we obtain that 

(4.9) fib(YLt(" + t -- S-  (Lt))~A [ ~ ~ = PX~(A) = Px~(x~ EA) 

Pb-a.s. on {L~>0}. 

Recall that following Lemma (4.2) we observed that the construction of (Xt) 
could be formalized as 

X. =F(X ~ Y.). 

for F an appropriate measurable function. Also, by construction, 

Xt+.=F(YL,(.+t--S-(Lt)),YL,+. ) on {Lt>0 }. 

The strong Markov property of Poisson point processes (see It6 [8]) shows 
that 

(YL~+~)~>o is independent of ~L,. 
Since 

YL~('+t--S-(L,))6ffL~, and ~o~j~L~ , 

it follows that 

(4.10) pb(X,+. 6AJ~ ~ = fiX'(A) 

Pb-a.s. on {L,>0}. On {L,=0} we argue similarly, using Lemma (4.2)(c) and 
the fact that 

Xt+.=F(Xt~ on {L,=0}. 

This yields (a) in case (vi'b) and (vi'c). 
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Now consider case (vi'a). For A, BeO# and Ce,~L<_ 1, we still have that (4.8) 
holds. We may argue as before (using (iv)), that (4.9) holds Pb-a.s. on 

{S-(L,)<t,L,:I=O}. 

As above, this yields (4.10) Pb-a.s. on this set. Similarly, we use Lemma (4.2)(c) 
to obtain (4.10) on {L,=0}. Finally, consider 

{S- (L,) = t, L t > 0} = {X, = a}. 

Since this set belongs to -'~<-1, we have from Lemma (4.5) that for AE~//, 
Ce.~<_l, 

fib(YL<sA, Xt=a, C) 
= n(A)Pb(Xt = a, C). 

That is, 

Pb(YL~AIN~ ) Pb-a.s. on {Xt=a  }. 

Since by construction, 

F( X~ Y.)=F(Y1, I11+.) P"-a.s., 

we argue as before, obtaining (4.10) on {Xt=a }, and hence completing the 
proof of (a). 

Because the correspondence between X~ and J?t is one-to-one, it follows 
from part (a) that (7(~) is simple Markov with respect to (fit~ Lemma (3.1)(b) 
and Proposition (3.3)(a), together with (vi'b) and (vi") show that ()~t) is a.s. p- 
right continuous. We therefore need only show that the resolvant U ~ of (Xt) 
preserves the p-continuous functions on/~. 

Since Y. is independent of ~ o ,  we have that 

17~<f (b)=/~b ['~176 (XO)dt] + Eb[e . . . .  (x'~ U~<f (a). 
L 0 ._1 

Also, writing U 0 for the resolvant of (X~ 

r,o(x.o) ] 
U•f(b)=Eb[ ! e-~tf(X~ +Eb[e  . . . .  (x~ 

The latter is by definition p-continuous whenever f is, so that by (2.2), the 
same will be true for U=f, showing (b). [] 

Proof of Theorem (4.1). By (a) of Lemma (4.6), we need only show that i f f  is e- 
excessive for (Xt), then t-+f (X,) is a.s. right continuous; in fact, we need only 
show this for f of the form U=g, where (U =) is the resolvant of (X,) (see Getoor 
[5], (9.4) and (9.6)). Extend g to g on/~, and let y - -  0=g. By (b) of Lemma (4.6), 
(and (5.8) of Getoor [5]) t--+f(Xt) is a.s. right continuous. 

In case (b) or (c) of (vi'), we have J? .=X. ,  so f = f  on E, hence the 
conclusion is shown. 
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In case (vi'a), J~;=X t for all but countably many t, so that f = f  on E once 
more. Since f ( a ) =  f(c),  we have that 

f ( X t ) = f ( X t )  for every t, 

which again yields the conclusion of the theorem. [] 

It seems worthwhile to point out where the above proof fails, if instead of 
(vi'), we assume only (vi). Part (a) of Lemma (4.6) still works, and if we define 

X t = p  - l i m X  s 
sSt 

(c.f. Proposition (3.5)) then ();t) is a.s. p-right continuous. By Lemma (4.3)(a) we 
have X t = Xt a.s., for each t. Thus the proof of (b) of Lemma (4.6) still applies. 

The difference comes when we apply Lemma (4.6); we may not be able to 
recover the hypoth6ses droites of (Xt) from those of (Xt), since we may not 
have that J{t = Xt for every t, a.s. In fact, with our new definition of ()~t), there 
may be more than one point a' in/~ for which we can have 

) ( t=a '  and Xt=a.  

The strong Markov property fails at stopping times at which this occurs. The 
reader may wish to examine example 2 of [13] in this light. 

5. Further Results 

In our haste to cut a straightforward path through the proof of Theorem (4.1), 
we have avoided pointing out two further consequences of our arguments. 
We'll start by rectifying this situation. 

A natural question is that of what happens to our results when we start 
with stronger assumptions on n? In particular, what can we say when (Xt ~ is 
moreover a Ray process (hence E is compact)? We will (for the moment) retain 
our earlier assumptions, so that by normality (Xt ~ has no branch points. If, in 
addition, we assume that for each c~, 

(5.1) x~ f fS[e  . . . .  ] is continuous 

(or, what is the same thing, that (X ~ killed at aa is a Ray process) then the p 
and d topologies coincide, so that U consists merely of the d-right continuous 
functions. 

(5.2) Corollary. Let (Xt ~ be Ray, and satisfy (5.1). Let n satisfy the conditions of 
Lemma (3.1). Then n satisfies (ii'). I f  n(Ua)>0 then n also satisfies (vi'c). [In 
particular, there are no 'discrete visiting extensions', as in (vi'a).] 

Proof. The first statement is merely (b) of Lemma (3.1). For  the second, 
suppose that n(U~)>0. If n is finite, or (vi'c) fails, then there is a finite non zero 
measure n' concentrated on U" and satisfying (iv), so that 

~(A) = n'(W, eA) 
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defines a bounded system of entrance laws for (pb). Because (X ~ is Ray, there 
is a finite measure /~0 on E such that p~=P0~~ Thus n'=P~ ~ which is 
impossible, as n' is concentrated on U". Thus (vi'c) holds (and (vi'a) is va- 
cuous). [] 

As a consequence of this, and of (b) of Lemma (4.6) we have 

(5.3) Corollary. Let (X ~ be Ray, and satisfy (5.1). Let n satisfy (i), (iii), (iv), (v). 
I f  n(U")=0 and n is finite, assume also that (as in (vib)) 

~ ( 1 - e - ~ ~  

Then there is an (Xt, Nt) as in Theorem (4.1), which is a Ray process. [] 

That is, if we start with a Ray process, we end up with a Ray process. 
In fact, we could obtain slightly more. So far we have dealt with right 

processes. When dealing with Ray processes, however, it is useful to allow 
branch points; that is, to not insist on having X ~  Pb-a.s. One can easily 
check that Corollary (5.2) and Corollary (5.3) hold in this situation as well, 
provided we assume also that 

(5.4) P0b(Ua)<l for each b:t:a. 

This condition replaces the use of (3.2) in the proof of Lemma (3.1). The 
following example shows that we can't eliminate (5.4); 

(5.5) Example. Let E =  [0,1] x {0,1}, a=(0,0). Make a absorbing, and on 
[0,1] x {1} let (Po b) correspond to uniform motion to the left, with (0,1) a 
branch point to a. On (0, 1] x {0}, let (Po b) correspond to uniform motion to the 
left, except that there is a jump from (v,0) to (v, 1) at rate g(v), where g(v)-,oo 
fast enough as v$0 so that 

P0b((Wt) hits [0, 1] x {1})= 1 

for every beE\{a} .  Then we can find # on E\{a}  such that n=P~ satisfies (i), 
(ii), (iii), (iv), (v), and (vi'), but not (ii'), even though (P~) is Ray. 

Our final result of this type will involve a condition weaker than the Ray 
property; the reason we built p-right continuity into the definition of U was to 
obtain that ()(t) was a.s. p-right continuous. If we had taken U to consist of all 
d-right continuous paths, then in general we don't know whether (X ~ fib) being 
a right process implies that the coordinate process (W, Po b) will be one as well 2. 
With this new simpler U, one condition that will guarantee this (see Sharpe 
[15]) is that all e-excessive functions f be nearly Borel. That is, for each #, 
there are Borel functions f t , f2 with fx < f =< f2, and 

P;'(fz(X ~ . f2(X ~ for some t)=0. 

We will show that if the e-excessive functions for (X ~ are nearly Borel, 
then so are those for (Xt); 

2 See the remark preceding (2.3) 



366 Th.S. Salisbury 

(5.6) Corollary. Assume the conditions of Theorem (4.1) (with our new U). 
Assume that all a-excessive functions for (X ~ are nearly Borel. Then (Xt, fft, pb) 
is a right process, with nearly Borel a-excessive functions. 

Proof. As indicated above, the nearly Borel assumption guarantees the p-right 
continuity of (J~t), so that the proof of Theorem (4.1) applies to show that 
(Xt, ~t, pb) is a right process. 

Now let f be a-excessive for (Xt), for some a > 0. Then 

f o  = f .  l~\(a) 

is a-excessive for (X~ hence is nearly Borel. Using (iv) and (v) we can find 
Borel functions f l and f2  with f~ ~ fo  X f2  and 

n(fl(W~)+f:(Wt) for some t=>0)=0. 

It follows that fo  is nearly Borel for (X~), and hence that so is f. [] 

We conclude with a typical application of our results. In general, our 
conditions are hard to check, unless we are modifying a process already known 
to be strong Markov. In this case, necessity implies that our conditions hold 
for the old process, and if the conditions are preserved under the transfor- 
mation in question, Theorem (4.1) will apply. 

(5.7) Example (Skew Brownian motion). Let n be the characteristic measure of 
the PPP of excursions of Brownian motion on ]R from 0, and let Po b cor- 
respond to Brownian motion started at b, and absorbed at 0. For a~[0, lJ, let 

n+  =2nl(wt=>o for every t} 

n -  =2nl(wt=<o for eyery t} 

n~ = a n  + +(1 - a ) n - .  

Then the conditions of Theorem (4.1), for n~, follow easily from those for n, 
hence the process constructed is a right process. It is easily seen to be the 
'skew Brownian motion'  examined in Walsh [16]. This process was introduced 
by It6 and McKean [9]. They gave a construction in terms of excursions; the 
methods of Theorem (4.1) are exactly what one needs to show the strong 
Markov property of the process they construct (see also the epilogue to [16]). 
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