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In the above titled paper (this Annals Vol. 42, No. 4 (1990), pp. 623-636),
the following is a correction of the proof of Theorem 2.3.

THEOREM 2.3. For k = oo Good’s estimator and Robbins’ estimator are
admissible.

Proor. We prove the result for Good’s estimator and remark that the proof
for Robbins’ estimator is similar. Suppose G is not admissible. Then there exists
an estimator §(X™) which is better. That is,

(2.6) > (G(2") = Un(e",p))*f(z"p) 2 Y (5(2") — Un(a",p))*f(2"; p)

"

where f(z™;p) = (n!/]], z}!) Hfopf? Since (2.6) must be true for all p our
approach is to iteratively examine (2.6) for particular choices of p. We will show
that the validity of (2.6) for each particular p implies the equality of G and §
for certain sample points. Also as we consider all our p choices we will cover all
sample points.

Let p(6,r)=(1—-6,0/r,...,8/r,0,...) be a parameter point and define

Tj:!m”:x?:n—j, zgy=0orl, i=2,...,r+1, Zx?:n},
( 1
i=0,1,...,n.

For any sample point u™ € T}

(2.7) P{X™ = u"} = (nl/(n — 5))(1 = 0)"~(6/r).

,
Since T} contains ( ) points we have
J

28 P =t/ (7 ) a-oyiogy — (M) s oy,

as r — 0OQ.
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Thus
(2.9) PIUTL| -1 a r—oc

Hence (2.6) and (2.9) imply (when r — co) that

(210)  lim Z Z 2", p(0,)’p(X" = &™)
> lim Z Z 2", p(0,r))*P(X" = a™).

It follows from (2.7) that if (2.10) holds for some function é(x™), (2.10) will also
hold for some function of the form

sy - J0) et eT)
6°(@") = {6(m”) otherwise.

This latter fact follows by virtue of sufficiency of j on T};. Furthermore,

. n 6 ifeneT;,j=0,1,.. ,n—1
A Un(z ’p(e’r))_{1 if 2" €T,

which is constant (as are G(z™) and 6*(2")) on each T}. Hence (2.10) reduces to

(2.11) i]/n 9)2 (?)0%1—0)”'%(1—0)2(7171)9”—1(1—9)

=0
z; 1) =07 () 00 = 0+ () - 1

Taking 8 — 1 in (2.11) implies v(n) = 1. Furthermore, set y(n) = 1, divide both
sides of (2.11) by (1 — 0), then let § — 1 again to find y(n —~ 1) = 1. Now with
v(n) =~v{n —1) =1, rewrite (2.11) as

(2.12) nf((j/n)— (j)eu- i (?)99‘(1‘9)"—3‘.

§=0 =0

Divide both sides of (2.12) by #(1 — 6) and recognize that for j = 0,1,...,n — 2,
(j/n) is proper Bayes against a uniform prior which implies that for these sample

points v(j) = j/n.
In later stages consider the sequences of parameter points

1-6  1-09 6,
e e 0
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and sets

o

Tj(wl,...,wk):{w”:x”:wi, i=1,...,k,
o0
it =0orl, i=k+1,...,k+m, fo:n}
1

where wy + -+ +w =n — J. For u” = (u1,us,...) € Tj(w, ..., wk)

k

o n! 1— 0\ 2% 19\
= (5 )

r
Since T (wy,. .., wy) contains ( ) points
J

n! 1—0\"7
' J
P(Tj(wi, . we)) —r—oo wil - wplj! ( k ) 7

Again we find that j is a sufficient statistic for 6 so that to beat Good’s estimator
we need only consider estimators depending on 7.

Let T = {Tj(wy,...,wx) : w; # 0,w; # 1,4 = 1,...,k}. Note that any
estimator which is at least as good as Good’s would have already been (at an earlier
stage) shown to be identical to G(x™) on all Tj(w1,...,wg) ¢ 7. Furthermore,
G(z") = j/n on all Tj(ws,...,wg) € T. Thus (2.6) reduces to

n!

/n — 6)* : _§7(1— )7
j;:(]/” Vo gt = 0)

n!

. 2 : n_

Again using the Bayes argument we have v(j) = j/n. The only sample points
unaccounted for are those which are permutations of sample points already con-
sidered. These permutations would follow the same pattern for suitably permuted
parameter points. Finally note that the number stages k£ < n/2. O



