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The purpose of the present paper is to extend the results of [2] from the 
continuous to the quasi-left continuous case. We are indebted to P.-A. Meyer 
for pointing out that some of the results can be further extended to apply to 
regular processes. Our main goal is to show that any sequence {T(n)} of 
stopping times which does not grow too rapidly admits of a subsequence 
converging, as far as the process in question is concerned, to a finite stopping 
time T. The growth condition is just that limP{T(n)>a} = 0  uniformly in n. In 

a ~ c o  

order to make the result valid it is necessary to enlarge the probabili ty space so 
that there is a random variable with uniform distribution on [0, 11 which is 
independent of the process and also to properly define the notion of con- 
vergence. The proper notion of convergence is easy to state and it is that the 
subsequence { T(n(k))} converges to T as far as the process is concerned provided 
that the distributions of {T(n(k))} and of the process stopped at T(n(k)) converge 
in the usual way, i.e. weakly, to the distributions of T and of the process stopped 
at T. The enlargement of the space which is required is essential since it is easy 
to give examples which show that the result is false without it. This enlargement 
gives rise to randomized stopping times, so that the closure of the space of 
stopping times is the spaces of randomized stopping times. 

A result of independent interest obtained in the course of the proof  is that if 
{T(n)} and {U(n)} are sequences of stopping times which do not grow too 
rapidly in the sense already given and if T(n)-U(n) converges to zero in 
probabili ty then f(Xr(n), Xv(,) ) converges to zero in probabili ty as well, where X~ 
is the process and where f(x, y) is a function which can be taken to be the 
distance between x and y, when one exists, although in general the state space is 
not assumed to be a metric space. 

An overall assumption made about the process is that it is standard, where 
the definition of the standard process is given in the same way as in the Markov  
case. It is not necessary, however, to assume that the process is a Markov  
process. 

Many probabilistic constructions involve a passage from the discrete to the 
continuous. The main theorem in the paper  gives a general method for proving 
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convergence of any stopping times constructed in this way. The result can also 
be used to show that functionals of stopping times attain their extreme values. 

An example which explains some of the ideas and in particular why 
randomization is needed is the following. Consider Brownian motion starting at 
the origin. Consider a sequence 'of non-randomized stopping times {T(n)} 
satisfying the growth conditions such that the distribution of the Brownian 
motion stopped at T(n) has half of its mass uniformly distributed on the sphere 
of radius 1/n and half of its mass uniformly distributed on the sphere of radius 1. 
The stopping time T(n) can be constructed by stopping on the sphere of radius 
1/n until half of the mass is deposited there and then stopping the remaining 
mass on the sphere of radius 1. The main theorem tells us that there exists a 
subsequence converging to a stopping time T in the sense described. The 
distribution of the Brownian motion stopped at T has half of its mass at the 
origin and half of its mass uniformly distributed on the sphere of radius 1. This 
can only happen, in the case that the dimension of the state space is two or 
more, if T equals zero with probability 1/2 and if T equals the first hitting time 
of the sphere of radius 1 with probability 1/2 so that T cannot be non- 
randomized even though the T(n) are not, so that the main theorem cannot be 
sharpened to yield a non-randomized limit in the case that the sequence is made 
up of non-randomized stopping times. 

A selection argument is used by Monroe [4] (in the proof of Theorem 11, p. 
1300) to construct a time change for Brownian motion, in order to embed a 
right continuous martingale. The method used there to prove convergence 
depends on the special form of the time change involved in the construction. 
The methods of the present paper can be adapted to give a selection principle 
and convergence theorem for arbitrary sequences of time changes. This result 
will appear later. The authors would like to thank Professor Monroe for his 
helpful comments. 

The plan of the paper is as follows. In Section 1 the necessary definitions are 
given and the main results are stated precisely. In Sections 2 and 3 the basic 
compactness result for sequences of stopping times is obtained. This is really a 
general compactness principle for random variables, and not merely for stopping 
times. Consider a sequence of extended-real-valued random variables. We can 
say (at the very least) that some subsequence converges in distribution to a 
random variable. This rather trivial selection principle is deficient in two ways, 
first because the convergence is very weak, and second because the limit is 
highly nonunique. However, the basic principle can be made more useful by 
considering a fixed countably generated a-algebra of subsets of the sample space 
and then using the Cantor diagonal process to find a subsequence of the given 
sequence which converges in distribution on every set in the fixed a-algebra (an 
independent example of the same idea applied to a problem in probabilistic 
functional analysis is given by I. Berkes and H.P. Rosenthal in a forthcoming 
paper Il l) .  Let the fixed a-algebra be denoted by ~q and the limit by Z. Z must 
in general be defined on f2 x [0, 1] rather than the original sample space (2. The 
random variable Z is still nonunique, but its conditional distribution on every 
fiber of ~q is determined. If ~q is big enough, the conditional distributions of Z on 
its fibers are all one needs to know about Z. Furthermore, it is shown that under 
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general conditions many quantities associated with the convergent subsequence 
will be preserved in the limit. For  example, it is shown in Section 2 that the limit 
of a sequence of stopping times is again a stopping time. Then, in Sections 4 and 
5, conditions are given such that if a sequence of stopping times for a process 
converges in the sense just described, then the process stopped at those times 
converges in the same sense to the process stopped at the limit time. 

1. Introduction 

Let X = (~?, J/l, ~ ,  Xt, P), 0 _< t < oo, be a stochastic process, where 

(1.1) (/2, .~,  P) is a probability space, { ~ }  is an increasing family of o--algebras 
contained in ~{, and 

(1.2) Xt: ~2---,E is d//t-measurable for each t, where E is a topological space with 
the Borel o--algebra & We will write Xt as X(t) or X(t, co) where convenient. 

A map T: f2~[0,  0o] will be called an .~-time if Tis  Jl-measurable.  An d/l- 
time for which { T < t } e ~  for all t is called an {JClt}-stopping time. Let N be the 
Borel sets of [0, 1], A map T: f2 • [0, 1 ]~[0 ,  oo] will be called a randomized JCd- 
time if it is an ~(  x N-time, and will be called a randomized {JEt}-stopping time if 
it is an {Jd, • N}-stopping time. We shall adopt the convention that all ./~ x N- 
times are required to be nondecreasing and left continuous in the second variable. 
Also, any function on Q will be considered defined on (2 x [0, 1] in the obvious way. 
A probability P on ~{ will induce a probability P • 2 on Jr N, where 2 is 
Lebesgue measure. 

We wish to study the convergence of stopping times and of the associated 
stopped random variables. Let qr be a fixed o--field contained in ~ .  Let T(n), 
1 < n < oo and T be J / / x  .~-times. T(n) will be said to converge weakly to T on ~f, 
written T(n)~ T(qg), if the distribution of T(n) on G x [0, 1] converges weakly to 
the distribution of T on G x [0, 1] for each Geqq. That is, 

(1.3) T(n)~T(~) if and only if T(n)[Gx[O, 1]~T[Gx[O,  1] for each Ge~.  
Naturally T(n)IG x [0, 1 ] ~  T[G x [0, 1] means 

f(T(n))d(Px2)--, ~ f (T)d(P•  as n-~oo 
G x [ 0 , 1 J  G x [0, J.] 

for each f e C ( [ 0 ,  oo]), where C([0, o9]) is the set of continuous functions on 
E0, o9~. 

Let F=F({J{~}) be the set of all {J~tx~}-stopping times. For  any 
Ye~I(O,(r and any feC([0 ,  oo]), let ~b(Y,,f): F--,R be defined by O(Y,,f)(T) 
=E[Y,f(T)]. Let ~b be the set of all such q~. Let -Y-=Y-(N) be the topology on F 
generated by all q? in ~b. It is easy to check that J -  is also generated by those 
maps qS()~G,f), obtained as N runs over an Sm-dense subset of N, and f runs 
over a sup-norm-dense subset of C([0, oo]). In particular 

(1.4) T(n) ~ r(ff) if and only if T(n)--, T(Y-). 

The following result is proved in Section (3): 
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(1.5) Theorem. I f  {Jgt} is right continuous then (F, J-) is compact. 

When (q is countably generated modP, ~-- will have a countable base, and 
hence, if {Jgt} is right continuous (F, Y) will be sequentially compact. 

A stronger notion of convergence is desirable. For any YeSPl(f2,(q,P), 
feC([0 ,  oo]), and he C(E), (C(E) denotes the continuous bounded functions on 
E), let ~b(Y, f, h): F--,R be defined by 4)(Y,f  h )=E[Yf (T)h(X(T) ) ] .  Let ~1 be the 
set of all such ~b. Let J~ =$~l((q,X) be the topology generated by all ~b in ~b 1. 
Clearly J _ c  31.~- 

(1.6) r ( n ) ~  r((q,X) means T(n)~T(Yll).  

By taking J~=J r  we see that both modes of convergence, (1.4) and (1.6), are 
defined for arbitrary ~/~ x N-times. A sufficient condition will be given for the 
two to coincide. For any ~/~ x N-time T, let 

(1.7) T[j] = the smallest function > T of the form k/U. 

(1.8) Theorem. Let X=(~2, JCg, JC4,X,P), O<t<_oo be a stochastic process, and 
let (q be a or-algebra, (q~_JCg, such that Xt is (q-measurable modP for all t. Let 
X.(co) be right continuous for P-almost every co. Let D be a subset of F(J/g), the set 
of all dg x ~-times, such that for each (oe~b 1. 

(1.9) qS(T[j]) ~ q~(T) as j ~oo,  uniformly over all TeD. Then any limit point T of 
D under J-  which is finite modP is also a limit point of D under Jll. 

Theorem (1.8) is proved in Section 4. To give examples where it is applicable, 
in Section 5 we prove: 

(1.10) Theorem. Let X=(E2, J/g,J/4,Xt,P ) O<_t<_oo, be a stochastic process 
talcing its values in a topological space E with a countable base. Let {.~,} be right 
continuous. Let X.(co) be right continuous and have left limits for P-almost every 
co. Let 17 be an {J/4}-stopping time such that if S(n), 1 <n < 0% and S are {d4}- 
stopping times with S(n)T S pointwise as n ~  0% then 

(1.11) X(S(n))~X(S)  pointwise modP on {S<n} as n--*oo. 

Now let gl be the supremum of countably many 17's of the sort just described. 
Let {T(n)} be a sequence of {J/4 x ~}-stopping times such that for any e>0  there 
exists p: (2~[0, oo], p J/g-measurable, such that p < g  1 modP and 

(1.12) P({T(n)>p})<e for all n. 

Let {U(n)} be a sequence of JCgx~-times such that T(n)<=U(n) and 
U(n) -  T(n) ~ 0 in probability as n ~ oo. Let f in C (E x E) be such that f (x ,  x)--- 0 
for all x in E. Then 

(1.13) f(Xr(,),Xv~,))--+O in probability as n~oo.  

Let X be a process with lifetime [. Let X be right continuous and quasi-left- 
continuous (for stopping times <[). For example, X might be a standard 
Markov process as defined in [1], page 45. For any X that is right continuous 
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and quasi-left-continuous, any stopping time r/< { modP will satisfy (1.11). If { is 
a limit of stopping times strictly less than ~ (in particular if { = oc) then F/= { will 
satisfy the assumptions of Theorem (1.10). 

To apply Theorem (1.10) to Theorem (1.8), let X and ~ be as in Theorem 
(1.10). Let D be a collection of {Jgt x .~}-stopping times such that for every e > 0  
there exists p: f2~ [0, m], pX-measurable,  such that p < ~ mod P and 

(1.14) P ( { T > p } ) < e  for all T in D. 

Clearly D satisfies (1.9). 
A process X with lifetime { is a standard process with lifetime ~ if the state 

space has a countable base, the process is right-continuous and the process is 
quasi-left-continuous for stopping times <~. Sequential convergence with re- 
spect to the topology ~ gives us convergence in distribution of the stopping 
times as well as of the process, and the remarks following the statement of 
Theorem (1.10) yield the following corollaries. 

(1.15) Corollary. I f  X is a standard process with lifetime ~= oo and if {T(n)} is a 
sequence of randomized stopping times such that 

lira P({ T(n) > a}) = 0 
a ~ c o  

uniformly in tl, then there exists a subsequence {T(n(k))} and a randomized 
stopping time T such that dist.Xr(n(k))~ dist.Xr and such that dist. T(n(k))~ dist. T. 

(1.16) Corollary. I f  X is a standard process with lifetimes ~ which is the limit of 
stopping times strictly less than ~, and if {T(n)} is a sequence of randomized 
stopping times such that 

lim P({ T(n) > Pro}) = 0 
m ~ c o  

uniformly in n, where {Pro} is a sequence of d/l-measurable functions strictly less 
than ~, then there exists a subsequence { T(n(k))} and a randomized stopping time T 
such that dist.XT(n(k)) ~ dist.Xr, and such that dist. T(n(k)) ~ T. 

2. Representations 

Let T: f2 x [0, l ] ~ [ 0 ,  oo] be nondecreasing and left continuous in the second 
variable. Define Tv: ~ [ 0 ,  oo] for each v in [0, 1] by 

(2.1) T~(co)= r(c~, v). 

It is easy to check that T is an {J//t x N}-stopping time if and only if T~ is an 
{~,}-stopping time for each v. In particular, taking Jdt = Jg for a moment, T is 
an ~f  x ~-t ime if and only if T~ is an J//l-time for each v. 

Define the probability A(co, .) on [0, c~] by 

(2.2) A(co, [0, t]) = sup {vt T(co, v) < t}. 
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Then 

(2.3) T(co, v)=inf{tlA(co,[0, t])>v}.  

T is an {Jg, x M}-stopping time if and only if A(', [0, t]) is ~ -measurab le  for 
each t, and T is an d/l • M-time if and only if A(-, [0, t-l) is ~ '-measurable for 
each t. 

For any probability P on Jr A(co, .) gives the conditional distribution of the 
dg•  M-time T on {co} • [0, 1]. A will be called the co-distribution of T. For any 
Y~SFI(f2,Jg, P), and any bounded Borel function f on [0, o9], let 

(2.4) ct(Y, , f)=E[Yf(T)].  

will be called the distribution map for T. It is easy to check that 

(2.5) c~(Y,,f)=5 Y(co) S f(t)A(co, dt) P(dco). 

For H~Jr write ~(Zi~,f) as ~(H, f )  and similarly for K e ~  let c~(Y,,)~K)=~(Y, K ). 
Clearly if T is an {Jg't • M}-stopping time then 5f(t)A(. ,  dt) is ~s-measurable 

for every bounded Borel function f on [0, m] such that f - 0  on (s, oe). 
Conversely, if 5f(t)A(. ,  dt) is J//s-measurable for every continuous function f with 
support on [0,s] then T is an {~t+ x M}-stopping time. 

For any Jg • M-time T, let us temporarily restrict the distribution map c~ to 
$1(f2, J/g, P )x  C([0, or]). Then c~ has the following properties: 

(2.6) ~ is a bilinear functional on ~l(O,  Jg, P)•  C([0, oe]). 

(2.7) Y>0, f>=0 implies e (Y,f )>0,  e(1, 1)= 1, and [c~(Y,, J)[ < I1YI] []fl[ for all Y,f 
Here It YII means S l -no rm Y,, Ilf[I means sup-normf. 

If T is an {d//t x M}-stopping time then 

(2.8) e(Y,f=c~(E[YlJgt], f)  for all Y~.~,(~l(O, d/', P) 

and any continuous f with support on [0, t]. 

(2.9) Lemma. Let {~t} be right continuous. Let ~ be any map satisfying (2.6), 
(2.7), and (2.8). Then there exists an {J/t x ~}-stopping time T with distribution 
map c~. T is unique modP  x 2. 

Proof. For any Y~I(f2 ,JC/ ,P)  with 0_< Y<I ,  

1 = . ( 1 , 1 )  = c~(~ 1 ) + . ( 1  - ~ 1 ) =  II YII + II1 - YII, 

and IIYII->_I,(Y,,1)I, II1-YII>__~(1-Y;,1). Hence c~(Y,,1)=IIY][. By continuity, 
~(Y, 1) = E [ Y ]  for any Y in 5r Jr P). 

For any YeL, e~(O, dg, P), the map ~(Y,') on C([-0, oo]) defines a bounded 
Borel measure on [0, oe], which we will denote again by ~(Y,-). ~(Y,[0, oe]) 
=ELY], and if Y>=0 then c~(Y,,.)>=0. One may extend c~ to all Y~L~(f2,J~,P) 
and all bounded B orel functions f by defining c~ (Y,, f ) =  ~ f(t) ~(Y,, d t). Clearly c~ is 
bilinear, Y>0, f > 0  implies a(Y,f)=>0, a(Y,, 1)=E[Y] ,  and [a(Y,,f)] < l] Y]I Ilfll- 

Using the right continuity of {~t} and the fact that a(Y,-) is continuous 
under bounded pointwise limits, it is easy to see that (2.8) holds for all 
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Ye 501(f2, d[, P) and any bounded Borel function f such that f =  0 on (t, oe). For t 
rational or t=oe ,  let c(t) be a bounded Jg,-measurable function such that 
cffY,[0, t])=~ Yc(t)dP for each Ye50,(f2,~/,P). We may choose c(t) such that 
c(oo)=i,  c(t)>O. Clearly c(s)<c(t)modP if s<t, so we may also assume 
c(s) < c(t) everywhere, by replacing c(t) by sup {c(s)ls< t}. 

Let A(co, ") be the probability on [-0, oe] such that A(co, [0, t]) = inf{c(s, co)It < S} 
for all real t, A(co, [0, oo])= 1. Let T be the {J/4 x N}-stopping time with co-dis- 
tribution A. Let e' be the distribution map for T. For any Ye~l(12, rig, P) and 
any real t, 

~(Y, [0, t]) = inf{~(Y, [0, s ] ) l t  < s, s rational} 

= inf{~ Yc(s) dPIt < s} = ~ Y(inf {c(s) It < s}) dP 

=~ VA(., [0, t]) dP = ~'(Y, [0, tl). 

Hence c~=c(. T is unique by Lemma (2.14), so the lemma is proved. 
Let F=F({dr be the set of {J4 xN}-stopping times, and let A=A({d4} ) 

be the set of maps c~ satisfying (2.6), (2.7), and (2.8). There is a natural map O: 
F--+A which takes each member of F to its distribution map, 

(2.10) O(T) =c< 

Lemma (2.9) says that if {~t} is right continuous then O is an onto map, and O 
is one-to-one modP x 2. 

Let T be an ~ xN-t ime with co-distribution A. It is easy to check that 
T(co, v) is the inf of all s such that ~f(t)A(co, dt)>v for some nonincreasing f in 
C([0, oe]) with 0<f=< 1 and f = 0  on Is, eel. Let U be another d / x  N-time with 
co-distribution B. Clearly the following statements are equivalent: 

(2.11) T(co,')< U(co,'), 

(2.12) A(co, [0,-])>B(co, [0, .]), 

(2.13) f f( t)  A(co, dt)>~f(t)B(co, dt) for all nonincreasing fE C([0, oe]). 

(2.14) Lemma. Let T and U be ~ • N-times with distribution maps ~ and fl 
respectively. Suppose off Y, f )  >= fi(Y, f )  for every Y> 0 in 50i (f2, J/l, P) and every 
nonincreasing f in C([O, oe]). Then T< U m o d P  • 2. 

Proof Choose a countable dense set D of nonincreasing functions in C([0, oe]). 
Let A and B be the co-distributions of T and U respectively. For any f eD,  

YSf( t )A( . ,  dt) dP>=~ Y~f(t)B(. ,  dt) dP 

for all Y>0 in s ~#,P ). Hence 

fit) A(., dt) > ~ f(t) B(,, dt) modP. 

Let f21 be a set in Jd with P(~2-Q1)=0 such that 

5 f (t) A(co, dr) >-_ ~ f (t) B(CO, dt) 
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for all f eD ,  c0~s Then the same inequality holds on s for all nonincreasing f 
in C([0, oe]). By (2.13), T <  U on s so the lemma is proved. 

(2:15) Lemma. Let T and U be J/t x N-times with distribution maps ~ and fi 
respectively. Let (~ be a a-algebra, fq~_~///l. The following conditions are 
equivalent: 

(2.16) a ( Y , f ) = f l ( Y , f )  forall  Y~ZC~(s f~,P), fecg([0, oo]), 

(2.17) distribution T on G x [0, 1] =distribution U on G x [0, 1] for all G~(~. 

The proof is immediate. 

(2.18) Lemma. Let T be an /gdx~-time. Let (r be a a-algebra, (go_j#. Then 
there exists a fr ~ time U for which (2.17) holds. U is unique m o d P  x 2. 

Proof. Restrict c~ to 5~((2,fq, P ) x  c g([0, c~]). Apply Lemma (2.9) with ~ = J / / t  t 
= ~ to obtain U. Apply Lemma (2.15) to conclude that (2.17) holds. Uniqueness 
follows also from Lemma (2.9) with J/d = Jd, = ~. 

It is easy to check that if T happens to be an {J/l, x N}-stopping time then U 
can be chosen to be an {~tc~fr x N}-stopping time provided that {J#t} is right 
continuous and 

(2.19) E[e[' lf~]l/#t]=E[.IJl,~f~] for all t. 

3. Compactness 

Proof of Theorem (1.5). Let O be the map defined in (2.10). For each Y~ 
~I((2,J/d,P) and each f~C([0,  oo]), let 0(Y,f):  A ~ R  be defined by O(Y,f)(e) 
=e(Y,,f). Let 7 j be the set of all such 0- Let cg be the topology on A generated 
by all ~ in T. It is easy to see that 3 - =  O l((g). (g is compact, by the same 
argument used to prove that unit ball in the dual of a normed linear space is 
compact. Since O is onto, 9- is compact also, so the theorem is proved. 

4. Convergence 

(4.1) Lemma. Let (s J/d, X,, P), 0 < t <_ oo be a real-valued stochastic process. Let 
f~ be a a-algebra, ~ ~/r Let K be a finite set of extended real numbers such that 
Xt is bounded and f~-measurable modP  for each t~K. Let U(n), 1 <n< 0% and U 
be d/d x N-times such that U(n)~K modP  for each n, and U(n)~ U(N). Then 

(4.2) E[YX(U(n))]-~E[YX(U)] as n~oo for each Ye-~I(s N,P). 

Proof By assumption, for each G~N the distribution of U(n) restricted to 
G x [0, 1] has support in K and converges weakly to the distribution of U 
restricted to G x [0, 1]. Given e>0,  choose a finite partition {G(1) . . . .  , G(I)} of G 
such that G(i)~(r for each i, and such that there exist constants c(i, t), 1 < i< l, 
t~K, for which IX( t ) -c ( i , t ) l<~modP on G(i). Let Y=X~ and let 

Y(n, i, t)=XA where A=(G(/)  x [0, 1])c~ {U(n)=t}. 
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Then 
l 

E[YX(U(n))] = ~ ~ E[Y(n, i, t) X(t)] 
i =  i t ~ K  

l 

= ~ ~ c(i, t) P x 2((G(i) x [0, 1]) ~ { U(n) = t}) + v(n), 
i =  1 t ~ K  

where 
l 

[v(n)t < ~ ~ E[g(n, i,t)]X(t)- c(i, t)l] =<E[e Y] =eP(G). 
i =  1 t ~ K  

A similar equation holds with U(n) replaced by U. Since P x 2((G(i) x [0, 1]) 
~{U(n)=t}) converges to Px2((G(i)x[O, 1])• (4.2) holds for Y=ZG, 
and the lemma follows. 

(4.3) Lemma. Let X=(f2, d/[,Jg, Xt, P) be a bounded real-valued stochastic 
process. Let N be a a-algebra, N~_JC/. Let x(., co) be right continuous for P-almost 
every o9. Let T and U be two J x ~-times such that (2.17) holds. Then 

(4.4) E[YX(T)] =E[YX(U)] for all YcL.q~I(f2, N,P). 

Proof For each j let TEj] and UFj] be defined as in (1.7). Let TO) = T[j]  Aj on 
{T<oo}, r ( j )=  T on {T= oo}. Define U(j) similarly. Then r(j) and U(j) satisfy 
(2.17). By Lemma (4.2), with U replaced by T(j) and U(n) replaced by U(j) for all 
n, (4.4) holds for TO') and U(j). Letting j ~  oo proves the lemma. 

Proof of Theorem (1.8). Let T be a limit point of D under Y,, T finite modP. We 
must show that T is also a limit point of D with respect to J;~. To do this it is 
enough to show that any qSE~bl is continuous at T (on Du{T})  with respect 
to ~2. Fix a qSeq~, qS=qS(Y,f,h). Let f#' be the a-algebra generated by Y and 
{X~[t rational}. Clearly Y(N')___J-= J(~#). Thus it is enough to show that ~b is 
continuous at T with respect to fr Since (O, ~ ,  X,, P), f#', and D satisfy the same 
hypothesis as (O, ~4, Xt, P), fq, and D, we may drop the prime and assume from 
now on that N is countably generated modP. Then 3- has a countable base, and 
there is a sequence {T(n)}_ D such that T(n)~ T(fr We must show for any such 
sequence that dp(T(n))~ d?(r) as n ~ oo. Since ((2, Jd, f(t) h (Xt), P), N, and { r(n)} 
satisfy the hypothesis of Theorem (4.4) below, the proof of Theorem (1.8) has 
been reduced to the proof of that theorem. 

(4.4) Theorem. Let (f2, ~ ,  Xt, P)be a bounded real-valued stochastic process. Let 
f~ be a a-algebra, fY~_~, such that X~ is bounded and N-measurable modP for 
each t. Let X( ' ,  co) be right continuous for P-almost every o3. Let {T(n)} be a 
sequence of ~r x ~-tirnes such that for every Y in 5gl ((2, (Y, P), 

(4.5) EEYX(T(n)[j])3~E[ YXfT(n))] 

as j--* oo, uniformly in n. Suppose T is an /d  x ~-time, T finite modP, such that 
T(n) ~ T(N). Then, for every Y in Gfl(f2, ~, P) 

(4.6) E[YX(T(n))]-~E[YX(T)] as n--*oo. 
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Proof Fix Y bounded. It is enough to show that any subsequence of {n} contains 
another subsequence for which the desired convergence holds. Thus it may be 
assumed, by using Theorem (1.5) to choose subsequences and then relabelling, 
that r(n)[j]~r(j)((r as n~oc for each j, where r(j) is some JCL xN-time. By 
Lemma (2.18) it may be assumed that T and all the T(j) are N x d-times. For 
each j and each n, r(n)< r(n)[j]  <= r(n)+ 1/j. Lemma (2.14) with d d = N  shows 
that T< T(j) <_ T+ t/j modP for all j. We have 

(4.7) I E [YX(T(n))] - E [  YX(T)l[< a x + a2 + a3 + a4, 

where 
a~ = IE[YX(T(n))-YX(T(n)[3.])][ is small for large j, uniformly in n, by (4.5), 
a2 = ]EEYX(T(n) [j]) - gX(T(n) [j]/x j)][ < const) P(T(n) [j] >j)  is small for 

large j and large n, since T is finite mod P, 
a3 = IE[YX(T(n)[j] A j ) -  YX(T(j)Aj)]I is small for any fixedj and sufficiently 

large n by Lemma (4.1), 
a,~=IE[YX(T(j)Aj)-YX(T)]] is small for large j by right-continuity of X 

and finiteness of T. Thus by choosing first j and then n we see that (4.7) can be 
made as small as desired. This proves the theorem. 

5. Approximation 

(5.1) Lemma. I f  Theorem (1.11) holds for {J[~}-stopping times then it holds for 
{~{t x N}-stopping times. 

Proof We note first that if a sequence {T(n)} of { ~  x N}-stopping times satisfies 
(1.12) then so does {T,.(n)}, for each v < 1. Indeed, if {T~(n)} did not satisfy (1.12), 
for some v < l ,  then for some ~>0 and every p<F/ the inequality 
P({T~(n)>p})>__e would hold for some n. Then {r(n)} could not satisfy (1.12) 
since P x 2({T(n) > p}) > (t - v) ~ would hold, 

Now let {T(n)} be a sequence of { ~  x N}-stopping times satisfying (1.12), 
and let {U(n)} be a sequence of d t  x d-t imes such that r(n)< U(n), and U(n) 
-T(n)~O in probability as n~oe.  Let f~C(E x E) with f(x,x)=O for all x in E. 
Suppose that f(x(r(n)),X(U(n))) does not converge to 0 in probability. Then 
there exists some e > 0 such that 

P x 2({f(x(r(n)), X(U(n))) > ~}) > 

for infinitely many n. By choosing a subsequence we may assume that the 
inequality holds for all n, and also that U(n)-S(n)~O pointwise ahnost ever- 
ywhere as n~cc .  But then U~(n)-T~(n)--,O p.w.a.e, for 2-a.c. v in [0,1]. Hence, 
by assumption, 

P({f(X(T~(n)), X(Uv(n))) > ~})~0 

as n~c~ for 2-a.e. v in [0, 1]. A contradiction follows, so the lemma is proved. 
Let X,E, tl satisfy the hypotheses of Theorem (1.10). A map T: f2~[0, oo] 

will be called an {JC4}-stopping rimemodP if 

(5.2) {T<=t}~/ZtmodP for all t. 
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It is easy to check that T is an {J~t}-stopping time m o d P  if and only if T is 
equal to an {J~}-stopping time except on a set of P-measure 0. 

Let S(n), l < n < o %  and S be {~t}-stopping times modP,  with S(n)--,S 
pointwise m o d P  as n~oo.  Let tl satisfy (1.11). Then it is easy to see that 

(5.3) X(S(n))~X(S) pointwise m o d P  on {S<=n} as n~oo .  

Because of Lemma (5.1) it will be enough to prove Theorem (1.10) for {J~t}- 
stopping times. Before doing that, some definitions are needed. 

Fix f in C(E x E) such that f(x, x ) = 0  for all x in E. Assume 0 < f <  l. Define 

(5.4) Y(t,s)=sup{f(X(t),X(r))lt<r<=s} for all t,s in [0, oo]. 

Fix a number e > 0. 
For  each number t of the form k/2", where k >  0 and n >0  are integers, and 

each integer m > 0, let 

(5.5) It(t, m) = {El  r(t, t + 1 /ml~ , ]  > ~}. 

H(t,m) is only defined modP.  Choose H(t,m) in J~.  For  any choice, 

H(t, m + 1) ~ H(t, m) rood P. 

Replacing H(t, m) by 0 H(t,j) if necessary, we can make sure that 
j = m  

(5.6) H(t,m+ l)c_H(t,m). 

For any co in ~2, and any integers n > 0  and m>0,  let R(n,m)(co) be the 
smallest number k/2" such that co is in H(k/2", m). If no such number exists, let 
R(n, m)(co)= oo. Clearly. 

(5.7) R(n+l,m)<R(n,m), R(n,m+l)>R(n,m). 

It is easy to check that each R(n, m) is an {~'t}-stopping time. Let R(m) and R 
be those {~'~}-stopping times such that 

(5.8) R(n,m)J,R(m) as n--*o% R(m)~R as m--*oo. 

(5.9) Lemma. P({R<r/})=0.  

Proof. It is easy to check that 

E[Y(R(n, m), R(n, rn) + 1/m)l~(R(n, m))] >e  m o d P  on {R(n, m)< oo}. 

Thus for any {Jdt}-stopping time 4, 

S Y(R(n,m),R(n,m)+l/m)dP>=eP({R(n,m)<~}). 
{R(n, m) < ~} 

By right continuity, 

Y(R(n, m), R(n, rn) + 1/m)--+ Y(R(m), R(m) + 1/m) 
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pointwise modP  as n ~  oe. Hence 

V(R(m), R(m) + 1/m) dP >= 8P({R(m) < ~}). 
{R (m) < ~} 

Let ~ satisfy (1.11). 
Letting ~ approach t /from above, 

(5.10) S Y(R(m),R(m)+l/m)dP>=eP({R(m)<=tl}). 
{R (m) _-< n} 

Let S(m) be the infimum of all r such that R(m)<r<R(m)+l/m and 
f(X(R(m)), X(r))> e/2. If no such r exists, let S(m)= R(m)+ 1/m. It is easy to cheek 
that S(m) is an (z#t}-stopping time mode .  By right continuity, if 

Y(R(m), R(m) + 1/m) > e/2 then f(X(R(m)), X(S(m))) > ~/2. 

By (5.10), 

P({ Y(R(m), R(m) + i/m) > e/2} 

{n(m) ~ t/}) + (~/2) e({R(m) <= ~/}) >_ e n({R(m) <= 17}). 

Thus 

P({f(X(R(m)), X(S(m))) >= ~/2} c~ {n(m) __G t/}) 

>= (~/2) P(n(m) <= t/}). 

Since {R_<t/}= (~ {R(m)_<t/}, (5.3) implies P({R_Gt/})=0, which proves the 
lemma, m= 1 

(5.11) Lemma. Let U be an {/dt}-stopping time. Let z > 0  be as in (5.5), R(m) as 
in (5.8). Then 

(5.12) ElY(U, U + I/m)] GP({R(m) <= U}) + ~. 

Proof. Let U[jl be defined as in (1.7). Let t =  k/2 j. Let Z(j)= Y(U[j], U[j] + 1/m). 
On { V[j]  = t, 

E [Z(j) ] J//(U [j])] = E [ Y(t, t + l/m) [/#t] mode .  

Thus 

{ u u ]  =t} n {E[zu)  I ~ ( u u ] ) ]  >~} 

= {U[j]  = t} c~ {EEY(t, t +  1/m)l~t] >e} modP.  

Let R(n, m) be the stopping time defined before (5.7). Then R(j, m)< t modP on 

{u [ j ]  = t} ~ {E [zo')i ~ ( u  [j])] > e}, 
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by definition. Thus 
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R(j',m)< U[j] modP on 

{E[ Y(U[j], U[j] + 1/m)l~(U[j])] >e}. 

Hence 

E[Y(uu],  uU] + l/m)] <P({RU, m) < UU]}) +~, 
so 

E[Y(U[j], U[j] + l/m)] <P({R(m)< U[j]})+e for all j. 

(5.12) follows by right continuity, so the lemma is proved. 

Proof of Theorem (1.10). Let {r(n)} and {U(n)} be as in Theorem (1.10). Let f 
and e be given, as in (5.4) and (5.5). Then 

E [f(X(T(n)), X(U(n)))] 

<= ~ f(X(T(n)), X(U(n))) dP + P({ U(n) - T(n) > l/m}) 
{U(n)-- T(n) < 1/m} 

<-_ ~ Y(T(n), T(n) + i/m) dP+ P({ U(n) - T(n) > l/m}) 

<= P({R(m) <= T(n)}) + e + P({ U(n) - T(n) > i/m}), 

by Lemma (5.11). By Lemma (5.9), P({R<F/}=0, so by (1.12) the first term 
approaches 0 for large m, uniformly in n. For fixed m the last term approaches 0 
as n-~oo. This proves the theorem. 
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