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Bessel Diffusions as a One-Parameter Family 
of Diffusion Processes 

Tokuzo Shiga and Shinzo Watanabe 

O. Introduction 

By a Bessel diffusion process with index ~ (~ > 0), we mean a conservative one- 
dimensional diffusion process on [0, o0) determined by the local generator 

1 ( d  2 c~--i d )  
L = ~ -  d-~-x z +  x d~ (0.1) 

with the point 0 as 
a trap if e = 0, 

a reflecting boundary if 0 < ~ < 2 ,  

an entrance boundary if 2 < e .  

(0.2) 

When the index e is equal to the positive integer n, this diffusion is just the radial 
part of n-dimensional Brownian motion: i.e. if B~ (t), B 2 (t), ..., B, (t) are n mutually 
independent one-dimensional Brownian motions, then 

X (") (t) = ] /Bf (t) + B2 2 (t) + . . .  + B, 2 (0 (0.3) 

defines a Bessel diffusion with index n. It is clear from (0.3) that, if X(")(t) and 
X (")(t) are mutually independent Bessel diffusions of index n and m respectively 
where n and m are positive integers, then the process X("+")(t) defined by 

X(, + m)(t) = 1 / / ~ }  2 + {X(m)(t)} 2 (0.4) 

is a Bessel diffusion with index n + m. 

Generally, for given two mutually independent stochastic processes X 1 (t) and 
X 2 (t) with probability laws IP 1 and IP 2 respectively, if the stochastic process 

X(t) = ]/X 2 (t) + X~ (t) (0.5) 

is well defined, i.e. the probability law of X(t) is the same for the same initial value 
X(0), we denote the probability law IP of the process X(t) as 

IP = IP I | IP 2; (0.6) 

for a precise definition, see 2, Definition2.3. If we denote by IP (') (e>0) the 
probability law of a Bessel diffusion with index e, then (0.4) implies that the 
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relation 
IP ~ +~) = IP (~) ~ IP ~) (0.7) 

holds when ~ and fl are positive integers and, as we shall see in 2, it holds for all 
�9 , / ~  [0, ~). The relation (0.7) may be regarded as a fundamental property of the 
family {IP r of Bessel diffusions. 

In this paper, we will determine all one parameter families of diffusions on 
[0, oo) having the property (0.7). The family of Bessel diffusions is one of the typical 
examples but besides, there is an example of such a family which contains all the 
radial parts of multidimensional Ornstein-Uhlenbeck Brownian motions, i.e. 
direct products of a one-dimensional Ornstein-Uhlenbeck Brownian motion. 

In 1, we introduce a kind of convolution among stochastic processes on 
R + = [0, oo) and also a notion of an infinitely decomposable process. We shall 
show that a Markov process is infinitelY decomposable if and only if it is a CBI- 
process (continuous state branching process with immigration) in the sense of 
Kawazu-Watanabe [2]. Then, by the results of [2], we can determine completely 
the class of infinitely decomposable Markov processes. 

In 2, we will remark that the study of a one parameter family of Markov 
processes satisfying (0..7) is reduced, by the change of coordinates x ,~ x 2, to the 
result in 1, and will determine all such families. In particular, we see that the 
family of Bessel diffusions is one of typical examples. 

In 3, we will apply the fact that the family of Bessel diffusions satisfies (0.7) 
to obtain an invariance of Bessel diffusions under the inversion of time. Also, we 
apply this invariance to obtain some results on the local behavior of sample 
functions of Bessel diffusions and related diffusions. 

1. Infinitely Decomposable Markov Process and CBI-Process 

Let W be the path space with state space R + =  [0, ~):  

W= {w: [0, ~ ) ~ I R + =  [0, ~) ,  right continuous, 3 left limits} 

and ~(W) be the g-field on W generated by Borel cylinder sets. We denote 
X(t,w)(=X~(w))=w(t) for w~W and t>=0. Let IP={P~,x~R +} be a system of 
probability measures on (W, ~(W)) such that 

x,~P~(B) is Borel measurable in x e R  + for every Be:~(W), (1.1) 

P~(X(0) = x)= 1 for every x ~ R  + (1.2) 

We denote by CO(W) the set of all such systems IP. 

Definition 1.1. CO~(W)={IPeco(W); IP has the time homogeneous strong 
Markov property}, C~ {IPeco(W); IP is a time homogeneous diffusion, i.e. 
IPecoM(W ) and P~(W~)= 1, V x ~ R  + } where We= {w: [0, oo)--* IR +, continuous}. 

In the following IP~CO~(W) is called a Markov process and IPecoo(W ) a 
diffusion process. 

Definition 1.2. Let IP, Q, IR~CO(W). We define 

R = I P , Q  (1.3) 
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if and only if 
for every x, y~lR +, Rx+r=~b(P x x Qr) (1.4) 

where ~b is the mapping W x W ~  W defined by 

c~(wl, w2)=w 1 + w  2. (1.5) 

Thus ~R is the probabili ty law of the stochastic process which is the sum of 
two mutual ly  independent stochastic processes governed by laws IP and Q 
respectively. Note  that  I P .  Q can not  be defined always: in order that it is well 
defined, it is necessary and sufficient that  

q~(PxXOr)=~b(P~,xQy,) if x + y = x ' + y ' .  (1.6) 

Lemnm 1.1. Let  IP 1 and ]P2eN(W).  In order that IPI.IP 2 is well defined it is 
necessary and sufficient that, for every t = (tt , t2 , ... , t.) and ;t = (21,22 . . . . .  2,) such 
that 0 < t 1 < t 2 < . . .  < t. and 2 k > O, k = 1, 2 . . . . .  n, there exist ~ (t, 2) > 0 and ~o i (t, 2) > 0 
(i = 1, 2) such that 

E~)(e-(Z, x(o)) = e-XOtt, ;.) q~i (t, 2), i =  1, 2 (1.7) 

for every x e R +, where (2, X(t))= 21 X ( t t ) +  22 X( t2 )+""  + 2, X(t,) .  Here E~) stands 
for the expectation with respect to IP i. 

Proof  For  t = (ta, t2 . . . . .  t,) and 2 = (21, 22, . . . ,  2,), set 

f~(x)= E~)(e-(X'x(t))), i = 1 , 2 .  

In order that  IP a =IP  1 *IP 2 is well defined, it is necessary and sufficient that 

f l ( x ) f z ( y ) = f 3 ( x + y )  Vx ,  y e l R  +, (1.8) 

where f3 (x)= E~ ) (e-tx, x(t))). It is quite easy to see that  (1.8) is equivalent to 

f i ( x ) = a i e  -bx i = 1 , 2 , 3 ,  (1.9) 

for some a i > 0 and b > 0 with a 1 a 2 = a 3 . 

Definition 1.3. I P e ~ ( W )  is infinitely decomposable (i.d.) if for every n = 1, 2 . . . .  , 
there exists IP(")e~(W) such that  

IV = ]p (n ) ,  Ip(n) , . . .  :¢ IP  (n). ( l .  10) 

n 

Thus, by the above lemma, if IP is i.d., then, for every t = ( h ,  t2 . . . . .  t,) and 
,~ = (2~, 22, . . . ,  2.) such that  0 < t I < t 2 < . . .  < t, and 2i > 0, i = 1, 2, . . . ,  n, there exists 

(t, 2) > 0 and (p (t, 2) > 0 such that  

Ex(e-(~'x(°))=e-~'( t 'z)  cp(t, 2) V x e l R  +. (1.11) 

Generally, it is not  true that  I P e ~ ( W )  having the property (1.11) is i.d. but this is 
true for IPe~M(W ) as we shall see. Following [2], we give 

Definition 1.4. I P e ~ M ( W )  is a CB-process if and onlyif,  for every2 > 0  and t > 0 ,  
there exists ff (t, 2) > 0 such that  

Ex(e-~X~)=e -~'(~'x)', V x e R  + . (1.12) 
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IPENM(W ) is a CBI-process if and only if, for every 2 > 0  and t > 0 ,  there exist 
~0 (t, 2) > 0 and q~ (t, 2) > 0 such that  

E~(e-~Xt) =e-O(~, a)~ qo(t, 2), V x~IR +. (1.13) 

Thus, if a Markov  process IP is i.d., then it is a CBI-process. Conversely, a 
CBI-process is i.d. To  show this, we recall some results in [2]:  there is a one to 
one correspondence between a CBI-process IP and a system of generating func- 
t ions [R, F].  R and F are functions of the form 

oo 

R(2 )=  - a 2 2 + b 2  - ~ (e-a~-l+2u(l+u2)-~)n~(du), (1.14) 
0 

F(2) = c 2 -  ~ (e - a " -  1) n 2 (du) (1.15) 
0 

oo oo 

where a = 0 ,  c > 0  and ~ u2(1 + u : )  -1 nl(du)+ ~ u(1 +u)  -1 n2(dU)<oo such that 
0 0 

[R(2)v0]-ld2=~. (1.16) 
0+ 

Note  that, by the above definition of a CBI-process, we assume always that it 
is right cont inuous and conservative. Finally 

Ex(e-aXt)=e-~O(,, a) ~o(t, 2) 

where ~ (t, 2) is the solution of 

and 

(1.17) 

=R(0) 
~t (1.18) 

~I~=o =2 

r ] (1.19) 

By the Markov  property,  for t = ( t  1, t 2 . . . . .  t,) and ) .=(2  t, 22 . . . . .  2n) such that 
0 < t~ < t 2 < . . .  < t, and 2 i > 0, i = 1, 2 . . . .  , n, 

n 

Ex(e-(~, x(o))=e-X,(~,-~,) ]-[ ~o(tk-tk-1, Ik) (1.20) 
i = l  

where )-k, k = l, 2, . . . ,  n are determined by 

Io=2., 
(1.21) 

ik_~ = 4 - 1  + q,(t~- tk_l, i0.  

Now, a CBI-process is i.d. since, if IP corresponds to [R, F ]  then 

IP = IP (~) �9 IP (') . . . . .  IP ~') 
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where IP (") is the CBI-process which corresponds to [R, n -1F] .  Also, we have the 
following 

Lemma 1.2. Let ~ (i = 1, 2) be CBI-processes corresponding to JR, FJ (i = 1, 2) 
respectively. Then, IP =IP 1 , IP 2 is well defined and it is the C B l-process corresponding 
to JR, F 1 +F2]. 

We can now determine a one-parameter family {IP(')}~ > o of Markov processes 
which satisfies the relation 

IP~'+P)=IP~')*IW ), a , / ~ [ 0 , ~ ) .  (1.22) 

Theorem 1.1. There is a one to one correspondence between a one-parameter 
family {]P(~)}~=>o~t(W) satisfying (1.22) and a system of generating functions 
JR, F] given in the form (1.14) and (1.15) satisfying (1.16); lP ~') is the C B I-process 
corresponding to [R, ~ F]. 

Proof If IP (~) is the CBI-process corresponding to [R, e F]  then the family 
{IP(~)}~eo satisfies (1.22) by Lemma 1.2. 

Conversely, if a family {IP(~)}~0 satisfies (1.22), then clearly IP (') is an i.d. 
Markov process and hence, it is a CBI-process. Let IP (~) correspond to [R~, F~]. 
Since IP('+~)=IP (~) , IP (p) is well defined, R~ is independent of ~ by Lemma 1.1 and 
also F~ + Fe= F, + ~. Thus, F~=~ F 1. 

In particular, a one-parameter family {IP (')} of diffusions satisfying the rela- 
tion (1.22) is determined as follows: 

Theorem 1.2. There is a one-to-one correspondence between a one parameter 
family {IP~')}~=> o of diffusions satisfying (1.22) and a set of three real constants a, b 
and c such that a >= 0, c__> 0;IP (~) is the C BI-process corresponding to JR, ~ F] where 
R (,~) = --  a ~2 _~ b ~ and F(2) = c A. 

The diffusion lP (~) is characterized as the diffusion generated by the differential 
operator 

d 2 d 
L ~ = a x  ~xE + ( b x + c  ~) d ~  (1.23) 

with the domain 
~(L)  = (172 [0, oo), (1.24) 

~o 2 [0, oo) is the space of all twice continuously differentiable functions on [0, ~ )  
with compact support. 

Also, we can characterize IP (~)= {P~)}x~R+ as follows: P~(~)is the probability law 
of a solution of the following stochastic differential equation 

dx~ = ] / ~  (x+) ~ dS~ + (b x~ + c ~) dt 
(1.25) 

X o ~ - X  , 

where x + = x v O. It is well known that the pathwise uniqueness holds for solutions 
of (1.25) (cf. e.g. [6]). 

Using the fact that P~')is the law of a solution of the Eq. (1.25), we can give the 
following direct proof that IP ~) = {P~)} satisfies (1.22). Assume a > 0 and c > 0. Let 
B~ 1) and B~ 2) be mutually independent Brownian motions and consider the 
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following two stochastic differential equations: 

dxl 1) -----1/~ (x~ 1) +)�89 dB~ 1) + (b x~ x) +c o 0 dt, 
XCo~) = x , (1.26) 

dx~ 2) = 1 / ~  (x} ~) + )~ aN ~ + (b x~ 2~ + c ~) at, 
X~o2 ) =Y. (1.27) 

xl 1) and x} 2) are functionals of {B~ *)} and {B~ 2~} respectively and hence they are 
mutually independent. Now, set 

-- O) (2) X~--X~ +X~ and dB~= {x~l)+}~dB-1)+{xr189 
(x:)~ 

Then B~ is a one dimensional Brownian motion, and it is known that P {x~ ~ > 0} = 1 
for all t>0 ,  i=  1, 2. Moreover 

d x , = V / ~  (x~+) �89 dF3, + {b x~+e(~ + fl) } dt, 
(1.28) 

Xo =X+y .  

Thus, the probability law of x, is ut,+a) that is, ~tX+y 

]p(~ + ~) = ]p(~) , ]P(#). 

2. Bessel  Diffusions as One Parameter  Fami ly  of  Diffusions 

Definition 2.1. z is a mapping W-~ W defined by (z w)(t) = w 2 (t). 

Definition2.2. Let ]P, 1Ps i (W) .  We define l ~ = z . I P  if for every x~]R +, 

Definition2.3. Let IP, Q, IRe~(W).  We define R = ] P @ Q  if, for I~=z.]P, 
= z. 0~ and l~ = z. lR, the relation IR =1~.  ~ holds. 

Thus ~ is the probability law of the stochastic process X( t )=1 /~2  (t)+ X 2 (t), 
where Xl(t  ) and X2(t ) are mutually independent stochastic processes governed 
by the laws ]P and 0~ respectively, when X(t) is well defined, that is, the law of X(t) 
is the same for the same initial value. 

Now we want to determine all one-parameter families {lPt~)}~>_o of Markov 
processes or diffusions which satisfy 

IP t~+#) =IPr t~) V ~, fl~ [0, oo). (2.1) 

Since IP t~) = z. IP r satisfies (1.22), IP ~) is a CBI process corresponding to [R, ~ F] 
for some system of generating functions JR, F]. Thus, we can determine all 
{]Pt~)}~>__ o ~ u ( W )  which satisfy (2.1). In particular, for the case of diffusions, we 
have the following 

Theorem 2.1. There is a one-to-one correspondence between a one parameter 
family {]P(~)}~_>0 of diffusions which satisfies (2.1) and a set of three real constants 
a, b and c such that a >= 0, c->_ 0; lP t~) is a diffusion process determined by the local 
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generator 

= 1  a d2 1 d 1 d 
L~ ~-x2 + T  bx ~ x  +~-~x ( 2 c ~ - a )  dx (2.2) 

with the point 0 as 

a trap if c �9 = O. 
(2.3) 

a reflecting or entrance boundary if c ~ > O. 

Proof There is a one-to-one correspondence between a family of diffusions 
satisfying (1.22) and a family of diffusions satisfying (2.1) by the mapping z. Then, 
the theorem follows at once from Theorem 1.2 if we note that if X (')(t) is the 
diffusion given by (1.23) and (1.24) then Y ~ ' ) ( t ) = ~  is the diffusion given by 
(2.2) and (2.3). 

For simplicity, we set a = 2 and c = 1. Then 

L = I (  d2~-SST.2 --5u.d a--1 d )  
2 ,~  + b X u x q  x dx ' o~0 (2.4) 

and thus we have the family of Bessel diffusions when b=0.  When b<0,  IP ("), 
(n= 1, 2, ...) is just the radial part of an n-dimensional Ornstein-Uhlenbeck 
Brownian motion, i.e. the n-fold direct product of a one-dimensional Ornstein- 
Uhlenbeck Brownian motion. Indeed, the generator of an n-dimensional Ornstein- 
Uhlenbeck Brownian motion is given by 

2 i ~-x2 +b i x i  (2.5) 
- -  - i = 1  ~ X /  

and its radial part is just L.. 

3. An Invariance of Bessel Diffusions under the Inversion of Time 
and Its Applications 

We will now apply the property (2.1) of the family of Bessel diffusions to prove 
the following 

Theorem 3.1. Let IP ~) = {P~)} be a Bessel diffusion of index ct, i.e., a diffusion on 

{ [0, oo) given by (0.1) and (0.2). Then the processes {X(t)}~>_o and t X -i- ~>=o 
are equivalent with respect to Po ~). 

Proof The case when e = 0 is trivial and we assume e > 0. Let c~ be a positive 
integer n. If Bl(t ), B 2 (t) . . . . .  B,(t) are n-independent copies of one-dimensional 
Brownian motions (Bd0)=0), then the process X(t) defined by 

X(t) = ]/B 2 (t) + B22 (t) + . . .  + B 2 (t) (3.1) 

has the law Po ~"). As is well known, for a one-dimensional Brownian motion B(t) 

(B(O)=O), the processes {B(t)} and {t B ( + )  } are equivalent: indeed, both are 
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centered Gaussian processes with the same covariance min (t, s). Since 

t X  ( + ) = ] / { t  B, (+)}2-1-{ t  B2 (+)}2- I - . . .  + { t B  n ( + ) } 2  (3.2) 

the assertion of the theorem clearly holds when a = n. 

Now let n and m be two positive integers and Y~(t), Y2(t), ..., Ym(t) be m- 
independent copies of a process with the law ~,/m). Then, since 

IF<") = IP ("/~> | IF ("/~) |  | lP c"/m), 

the process X (t), defined by 

X (t) = ]//Y12 (t) + y2 (t) +... + y2 (t), (3.3) 

has the law ~"). Since 

tX (+)=~{t Y~ (-lt)}2 +{t Y 2 (@)}2 + ... +{t Ym (+)}2, (3.4) 

t . Thus the assertion of the theorem holds when ~ = - - .  Now, the 
rn 

assertion of the theorem follows at one from the continuity of Po (') in a in the sense 
of continuity in a of E(o ") (e- 4, x(,,)- 42 xu2) . . . . .  4. x(,.)) for every 0 < t 1 < t 2 <. . -  < t, 
and 21, 2 2 . . . . .  2 n > 0. q.e.d. 

Of course, there are several different proofs of the theorem; e. g., one can prove 
it by a direct calculation using the following explicit formula of the transition 
probability density (cf. [1] or [3]) 

p (t, x, y) = P~)(Xt~dY)dy - exp[-(x2+y2)/2t]y~-ll~t (x y)2-~-1 ~-1 ( f~- ) ,  (3.5) 

where I v is the modified Bessel function. Also, we can prove it by noting that, if 

Y(t) = , then E x (e - xl r,1)- 4~ r(,2) . . . . .  4, r(~,)) is given in the form (1.20) where 

~9(t, 2)=2(1 +�89 -~ and (p(t, 2)=(1 +�89 -~/2 (cf. [2] ex. 1.1). 
In the following, we will apply Theorem 3.1 to study the local property of 

sample functions of Bessel diffusions and related diffusion processes. The following 
theorem is essentially due to Motoo  (cf. [4] and also [1], where the proof was 
given when e is a positive integer but clearly applies for general e > 0). 

Theorem 3.2. Let IP (~) = {X~, P~(~)} be a Bessel diffusion of index o~ (c~ > 0). 
(i) Let qo(t)Too when t~ oo. Then, 

Po(~){X(t)>l//-[q~(t) i .o. , tToo}=l or 0 (3.6) 
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according as 
GO 

~o(t), e_~e2(~ ~ de = oo or < oo. (3.7) 
t 

(ii) Let tp (t) $ O when t T oo. Then for ~ > 2, 

Po(~) {X  (t)<]// t tl/(e), i.o., tToo}=l  or 0 (3.8) 
according as 

o o  

iO(t)~_ 2 dt =oo or <oo (e>2) 
t 

o~ 1 dt  (3.9) 
Ilog~(e)l t --oo or <o9 (c~--2). 

Now, combining this with Theorem 3.1, we have 

Theorem 3.3. (i) Let  q) (t) Too when t $ O. Then 

Po(~){X(t)>lfff ~o(t), i.o., t $ 0 } = l  or O, (3.10) 
according as 

~ ( p ( t ) ~ e _ r  de = c t ?  o r  < o o .  (3.11) 
0 + t 

(ii) Let  O(t)$ O when t ~ O. Then, Jor a>2 ,  

Po( ' ) {X(e)<l / t r  i.o. t$0}=1 or 0, (3.12) 
according as 

~r  2 dt =or  or <or  (a>2) 
0 + t 

1 dt  (3.13) 
= o o  o r  < o o  (~=2). 

o+ Ilog r t 

Next, let X(t)  be a Bessel diffusion of index ct (a > O) such that X(O) = 0 and set 

Y(t)=(�89 X(t))  2. (3.14) 

Y(t) is a sample path, starting at 0, of the CBI-diffusion on [0, oo) determined by 
the generator 

L = I  / d 2 d x 
2 [ X d ~ x 2 + f i d x x ) '  f l=2 - '  (3.15) 

Thus we have: 

Corollary 1. (i) Let ~o (t) "f co when t ~ O. Then 

P{Y( t )>t~o( t ) ,  i.o. t~O}=l  or 0 
according as 

dt 
~qo(t)~e -z~(O =oo o r < o o .  

0 + t 

(ii) Let ~9(t)+O when t+O. Then for f l> 1, 

P{Y( t )< t tp ( t ) ,  i . o . , t $ O } = l  or 0 

(3.16) 

(3.17) 
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according as 
S @(t) p-1 dt =oo or < oo ( f l> l )  

0 + t 
1 dt (3.18) 

S = ~  or < ~  ( f l= l ) .  
o+ l log , ( t ) ]  t 

Finally, let X(t)  be a Bessel diffusion of index ~ ( 0 < ~ < 2 )  such that X(0)--0  

and set Z (t) = 2 �89 (2 - ~) (2 - ~)-(2 - ~) X (t) 2 - ~. (3.19) 

Then Z(t)  is a sample path, starting at 0, of the diffusion on [0, ~ )  determined by 
the local generator  d 2 0~ 

L = x t - r - -  - -  (3.20) 
d x  2 '  ~ =  2 - ~  

(y ranges over (0, oo)) with the point 0 as a reflecting boundary.  Thus we have, 

Corollary 2. Let cp(t)J,O and ~p(t) 1+~ t - l  "~ ~ when t ~ O. Then 

P{Z( t )>tp( t ) ,  i .o. , t~,O}=l or O 
according as 

_1+2~ [ tp(t)l+, ] 
St l+r q~(t)rexp dt=oo 

o+ t(1 + 72) 
Or, setting 1 

q~(t) = [(1 + Y)2 t log ~ ( t )  ] 1 +'  

where p(t)~ O when t $ O, (3.21) holds according as 

sl(1 
o§ t og 1 t + ~ p ( t ) d t = o o  

Corollary 2 completes the result of Vencel' [5]. 

Or < ~ .  

(3.21) 

(3.22) 

(3.23) 

or < ~ .  (3.24) 
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