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Canonical Representations and Convergence Criteria 
for Processes with Interchangeable Increments 

Olav Kallenberg 

The elements of a finite or infinite sequence of random variables (r.v.) or 
more generally random elements (r.e.) are said to be interchangeable (ich., also 
exchangeable), if their joint distribution is invariant under finite permutations 
of elements. Furthermore, a random process (r. pr.) defined on some real interval 
has interchangeable increments if its increments (incr.) over disjoint sub-intervals 
of equal length are ich. r. v. Interchangeability is one of the most natural extensions 
of the concept of independence, being sufficiently general to provide a unifying 
framework for the theories of infinite divisibility, empirical distributions and 
sampling from finite populations, and yet sufficiently restrictive to admit an ex- 
plicit treatment in terms of canonical (can.) representations. 

Since the classical work of de Finetti [8], characterizations and limit theorems 
have been given by several authors, including Lo6ve [171, Bi.ihlmann [3], Blum, 
Chernoff, Rosenblatt, Teicher [2, 4], Billingsley [11, Davidson [5] and myself 
[12, 13]. Here a unified theory is presented based on representations in terms of 
random measures (r.m.) and point processes (p. pr.), playing the roles of can. r. e. 
and extending the notions of distributions, Poisson spectra and populations in the 
classical theories. The various parts of the theory are connected by criteria for 
convergence in distribution, and also by results on restriction and extension. In 
particular, we generalize results by Prohorov [20] and Skorohod [23] on r.pr. 
with independent (ind.) incr. and by H/tjek [101, Ros6n [22] and Hagberg [91 on 
sampling from finite populations. 

Throughout the paper we write ___a and -~ for equality and convergence in 
distribution of r.e. [1]. The spaces R, R+ and R '= R \ {0} are endowed with the 
usual topologies, D [0, 1] and D [0, oo) with the Skorohod J1 topology [1] and its 
natural extension [16]. Product spaces are taken with their product topologies. 
For any locally compact second countable Hausdorff (lcscH) space S, let 93l(S) 
and 9l(S) be the spaces of R+- and Z+-valued Radon Borel measures on S [121, 
endowed with the vague or weak topologies. Writing ~(S) for the class of bounded 
continuous functions S ~ R +  with compact support, vague convergence, m,~  m, 
means m,f---~mf f ~ ( S ) ,  while weak convergence, m , ~ m ,  means rn, f--~rnf 
fE~(S).  (Here mf=~f(s)m(ds), and S is the one-point compactification of S.) 
Note that, for finite measures, m, -~ m iff rn, -~ rn and rn, S--+ m S, but also iff m, -~ m 
in 93/(S) and m(S\S)=0 .  R.e. in 93/(S) and ~I/(S) in either topology are called r.m. 
and p.pr. respectively [12], and we write va, and wa ~ for convergence in distri- 
bution in the two topologies. In product spaces, this notation refers to the measure 
component. 
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We list some further notations. Let 6~ be the Dirac measure with unit atom at x. 
Let la be the indicator of the set A and put 1 + = 1R +. Write I~ = [ -  e, e] and define 

h(x)=x,  h~=hli~, g l ( x ) - x / ( l + x 2 ) ,  g2(x)=-x2/(l+x2). 

For megJl(S) and measurable f :  S ~ R ,  define the (signed) measure f m  by 
(fro) (ds)=-f(s)m(ds), and put m 1 =hm,  m2= h 2 m. A lattice in R+ is a set of the 
form {a+bz:  zeZ+},  a>O, b>0 ,  and ~ , ~  denote the classes of sets in [0, 1] 
and R+ respectively which are dense in some interval or contain some lattice. For 
1=  [0, 1] or R+, we define Do(I)= {feD(I):  f (0)=0},  and similarly for Co(I). For 
any f :  R ~ R ,  f ( q ,  ..., tk) means the vector (f(el), ... ,f(tk)). 

1. Interchangeable Random Elements 

Throughout this section, let S be a lcscH space with Borel algebra 5(. We start 
with a can. representation, extending and improving a wellknown result by de 
Finetti [8], Lo~ve [-17], p. 365, and Biihlmann [3]. (See also [6, 11, 15, 21].) 

Theorem 1.1. Let ~1, ~2 . . . .  be ich. r.e. in S. Then there exists some a.s. unique 
r. m. # on S which is measurable on {~j} and such that, given #, the ~j are conditionally 
ind. with common distribution #. 

We shall call # the can. r. m. of {~j}. A similar role for finite sequences 41 . . . . .  ~, 
n 

of ich.r.e, is played by the can.p.pr. ~= ~ 6~j on S. 
j=l  

Partial Proof. Suppose that, given some #, the ~j are conditionally ind. with 
distribution #. By the strong law of large numbers, 

Replacing 50 by some countable DC-semi-ring J [12] and applying Dynkin's 
theorem, it follows that # is a.s. unique and measurable on {~j}. 

To conclude the proof, we shall use the following result, extending L.3.1 of 
Ros6n [22]. 

Theorem 1.2. For neN,  let r, e N  and let X n ~ - - ( ~ n l . , ~ n 2 ,  . . . )  be such that ~,j, 
j = l ,  . . . , r , ,  are ich.r.e, in S with can.p.pr, x, .  Suppose that r,-+oo. Then X ,  d ), 
some X in S ~ if f  xn/r . wd ~ some # in 93~(S). In this case, X has can.r.m. #. 

Lemma 1.1. Let $1, $2, $3 be measurable spaces and suppose that $2, Sa are 
metric Borel. Let ~, ~1, ~2 . . . .  and tl, ~11,1~2 . . . .  be ind. sequences of r.e. in $1 and $2 
respectively, and let r ~o~, ~o2, " S~ • $2-~ Sa be measurable. Further suppose that 
i~ n d > tl and that S'2 ~ $2 with t 1 e S'2 a.s. is such that ~0~ (~ ,  Yn) ~ ~o (4, Y) whenever 
Y,--~Y, Yl,Y2, . . .eSE,yeS'2.  Then ~o,(~.,tl, ) d ~O((,q). 

Proof. Let f :  Sa --~ R be bounded and continuous and define ~(y)= Efo ~o (~, y), 
~b,(y)= Efo~o,(~,, y), yeS2,  n e S .  By assumption, y. yeS2 implies ~,,(y,)-*~,(y), 
so Th. 5.5 in [1] yields ~,(~/,) d ~(t /) ,  which in turn implies E~,(t/,)--~E~b(~) 
since the ~,  are uniformly bounded. But by Fubini's theorem, this is equivalent to 
Efo ~%(~,, q,)-~ Efo ~0(~, t/), and the assertion follows. 
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ProofofTh. 1.2 (with X and # related as in Th. 1.1). First assume that n~, nz, ... 
are non-random with n , / r , -  w ,p. We then have to prove that (~,1 . . . . .  ~,k) d , 
(~1,..., ~k), k e N ,  where the ~j are ind. with distribution # (cf. [1], p. 19), and by 
Th. 3.1 in [1], this is equivalent to 

k k 

P ~ {~,jeAj}--~ 1-[#Aj, k e N ,  AjeS, #OAj=O, j = l  . . . . .  k. 
j = l  j = l  

For k = 2  it suffices to consider the cases A 1 = A  2 =A  and A~ c~A z =~, and we get 
respectively 

p{~nleA,~ ,zeA} ~.A  ~ , A - 1  +(izA)Z, 
r, r , - 1  

p{~nleAa,~n2eA2} 7~,A1 7CnA 2 
- -  -' #Aa # A 2. 

r. r . -  i 

The proof  for general k is similar. To extend the result to random {n,}, use L.I.1 
with $2=931(S), S'2={megJ~(S): m S = l } ,  S 3 = S %  and $1 as a suitable space 
supporting the randomizations leading from # to X and from ~, to X,, ne N. 

Conversely, suppose that X, d > X and note that {#, = g,]r,} is vaguely tight 
[12], so that any sequence N ' c N  must contain a sub-sequence N" with #, vd > 
some #, n e N". If P {# S < 1 - e} > e for some e > 0, we get for any compact F ~ S 

liminf P {p, F c > e} = liminf P {#, F < 1 - ~} > P {# F < 1 - e} > P {# S < 1 - ~} > ~, 

since the set { m F <  1 - e}  is open in 93l(S) [12]. But since 

P{~ , l eFC}=Ep,  FC>:aP{p, FC>~}, n e N ,  

this implies liminf P {~, leF c} > e 2, contrary to the tightness of {~,1}, and hence 
n ~ N "  

# S = 1 a.s. The uniqueness of # now follows from the direct assertion and the uni- 
queness in Th. 1.1, so we get #n wa ># by Th.2.3 in [1]. 

End of the Proof of Th. 1.1. From Th. 1.2 it is seen that {~j} is distributed as a 
sequence of the asserted type. We may therefore use (1.1) (with J in place o f ~ )  
to define a r.m. #, which will automatically possess the asserted properties. 

Theorem 1.3. Let r e N and suppose that, for ne N, X,  is an r-sequence of ich.r.e. 
in S with can.r.m. #n (p.pr. 7C~). Then X~ d ~ some X in S ~ iff # , ~  some # in 
9J~(S) (n , -~ -*  some ~z in ~Jt(S)). In this case, X has can.r.m. # (p.pr. n). 

Proof. Proceeding as in the proof of Th. 1.2, it suffices to show that, for non- 
random {#n} ({%}), #, w ># ( n , ~ )  implies X ,  d ,X. But this follows easily 
from the definition of weak convergence for r <  ~ and from Th. 3.2 in [ lJ  for 
r = (Z). 

2. Finite Interval Processes with Interchangeable Increments 

The following can. representation extends results by Davidson [5] and myself 
[12, 13] for r.m. and p.pr. (Compare [7, 14].) 
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Theorem 2.1. I f  a r. pr. on [13, 11 is separated by the binary rationals and has ich. 
incr., then its sample paths are a.s. continuous except for jumps and its equivalent 
version in D [0, 1] has the form 

X ( t ) = X ( O ) + ~ t + a B ( t ) +  ~ , f l j [ l + ( t - z j ) - t ] ,  t~[O, 1], (2.1) 
j = l  

in the sense of a. s. uniform convergence, where 

(i) aeR ,  a~R+,  fll < f13 < "'" <_0<_ ... < f14 < f12 are r.v. with ~f12 < oo a.s., 

(ii) B is a Brownian bridge on [0, 1], J 

(iii) Zl, z2 . . . .  are ind. and uniformly distributed r.v. on [0, 1], 
(iv) the three groups (i)-(iii) oft .  e. are ind. 

The sum in (2.1) is a.s. invariant under non-random permutations of terms, and the 
r.e. occuring in (2.1) are a.s. unique and measurable (except for values of B as tr = 0 
and of zj as flj=O, j e  N, and for the order among zj with equal flj). Conversely, formula 
(2.1) subject to (i)-(iv) determines a r.pr. in D [0, 1] with ich. incr. 

Corollary. A r.pr. on [0, 11 has ich.incr, and is continuous in probability iff it 
is equivalent to some r.pr. X as in Th. 2.1. 

We introduce the p. pr. fl = ~ 6pj on R' and call c~, a, fl the can. r. e. of X -  X(0). 
J 

Partial Proof 1 of  Th. 2.1. Consider non-random ~, tr, fl satisfying (i)-(iv). By 
Th. 3 in [9], the right side of (2.1) converges in distribution to some r.e. Yin D [0, 1], 
and Yhas clearly ich.incr. Since the set of fixed discontinuities of Yis at most count- 
able ([11, p. 124), it must be empty by interchangeability, and so (2.1) holds for 
some X in the sense of a.s. uniform convergence by [14]. Since fl2R < oo, the L 2- 

l imit  exists for each t and is invariant under permutations, so the a.s. limit has the 
same properties, and the a.s. invariance in (2.1) follows by right continuity. These 
results on interchangeability, a.s. uniform convergence and invariance under 
permutations extend to random ~, tr, fl by Fubini's theorem. 

To prove the assertion on uniqueness and measurability, let X be defined by 
(2.1), and note that ~ = X ( 1 ) - X ( 0 )  a.s. and that, by (iii), the pairs (flj, zj) a.s. 
represent the sizes and positions of the jumps, which are dearly measurable (cf.[13]). 
Next reduce by subtraction to the case X---aB, and note that X has a.s. square 
variation a 2 since any Brownian motion has a.s. square variation 1 ([17], p. 559). 
We finally get B = X/tr whenever tr4= 0. Now suppose that X'  is another r. pr. 
in D[0, 1] such that x ' d x .  Starting from X' and proceeding as above, we may 
then construct r.e. X', ~', fl', {T)}, or', B' which are jointly distributed as X, ~, fl, {z~}, 
tr, B, and since (2.1) is a property of this joint distribution, it must hold for X' as 
well. 

To complete the proof, consider r. pr. in D [0, 1] of the form 

X, ( t )=  ~ ~.j, t~[0, 11. (2.2) 
j<--_rnt 

1 My first proof of Th. 2.1 extended the one given in I-13-[. P. Jagers called my attention to the work of 
Hagberg [91. 
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The following theorem extends results by Prohorov ([20], p. 197), Skorohod 
([23], Th. 2.7). Billingsley ([1], Th. 24.2) and Hagberg ([9], Th. 5). (See also [18].) 
To avoid repetitions we introduce the conditions 

(C) X.(t) d ; some( , ,  t e T  k, k e N ,  (D) X(t) d=(, t e T  k, k e N .  

Theorem 2.2. For neN,  let r, eN,  let ~,i, J= 1 . . . . .  r,, be ich.r.v, with can.p.pr. 
~, and define X,  by (2.2). Suppose that r,---~oo and that T~ 9-;1. Then X,  d > some X iff 

(~,1 R, ~Zn)2 wd, some (ot, a26o+flZ)inRx~J~(R), (2.3) 

and also/if(C) holds. In this case, X has can. r. e. ~, a, fl and (D) holds. 

Note that (2.3) is equivalent to 

1 2 vd (o~,t72+f12R, fl) in R x R +  x 91(R'), (~, R, g. R, n.) > some 

or more explicitly 

(~  (,j ,  ~, ~2,~,1,~,2 . . . .  ) d > some (~, a2 + ~fl2,  fll, f12 . . . .  ) in  g ~, 
J J J 

where the ( . j  are obtained by ordering {~,j} just as {fli} was ordered in Th.2.1. 
A similar reformulation in terms of vague convergence is possible in all subsequent 
limit theorems. To appreciate (C), compare Th. 15.1 in [1]. 

Proof We first prove that (2.3) implies X, a ~ X. For non-random {~,} with 
ha, R - 0 ,  this is Th.5 in [9]. If ~zl, R----~,--*~, define X'. as X, but with ~.i replaced 
by ~'.j= ( . j - ~ , / r , ,  and verify that the, corresponding p.pr. n', satisfy (~z'~)l R - 0 ,  
(n,)2 R --~ a2 + fiE R, n, ~ ~ fl, so that X. d ~ X -  ~t h, and hence X', + ~ h d , X by 
Th. 5.1 in [1]. Now 

[X~(t) + ~ t -X, ( t ) [  = [~ t +  ~, [r. t]/r,[ < [~-~.[  + [~.[/r. ~ 0 

uniformly in t, so we get X, d ~X by Th.4.1 in [1]. To extend to random n., use 
L. 1.1 with S2=R • 93l(R), $3 =D[0 ,  1] and S~ as a suitable space supporting B, 
{zj} and the randomizations leading from {n,} to {~,j}. 

Next suppose that X, ~ ;X. Then (C) follows since X is continuous in proba- 
bility, and in particular we get nl, R = X, (1) ---g-*d X (1) = ~. Moreover, n, vd ) some ft. 
To prove tightness of q2 = rc~ R, ne N, suppose on the contrary that the distribution 
of t/. converges improperly [6] as n ~  ~ through some N ' ~  N. Without loss of 
generality [24], we may assume that the n. are all defined on the same probability 
space and satisfy n ,~R~a,  nn ~ ~/~ and ~/ ,~q a.s., neN', where P{~/=o~}>0,  
and that {X,} is defined from {~z.} by ind. randomizations. Since conditioning on 
the set {q = ~ } preserves the interchangeability and tightness of X,, we may assume 
that t/. ~ ~ a.s. By the direct assertion we get X,/tl, d ~ some Y as ne some N" ~ N', 
where P{Y#:0}>0.  By the tightness we get for any te l0 ,  1] 

P { Y(t)+ 0} = ~im ~ P {I Y(t)l > e} < lim~_.o liminf,~N,, p {IX,(t)/t/,I > e} 

< lim limsup P {I X,(t) l > ~- t } + lim limsup P {q, < e- 2 } = 0, 
e ~ O  n~N e ~ O  n~N" 

which yields the contradiction Y=0  a.s., proving tightness of {q.}. Now (2.3) 
follows as in the proof of Th. 1.2. 
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Let us now assume that {X,(t)} is tight for some fixed te(0, 1). If {X,} is not, 
then neither is 172 ~ 2 2 =(~,  R) +~,  R, neN.  As above it then suffices to assume that 
q , ~  a.s. and X,/q,  d ~ y,, n e N " c N ,  where Yhas a representation of form (2.1) 
and satisfies P{Y4:0}>0.  By Fubini's theorem, this implies P{Y(t)4=0}>0, 
which again leads to a contradiction, now proving tightness of {X,}. In particular, 
(C) implies tightness and therefore convergence in distribution of { X,} by Th. 5.3 
below, since any limiting process is continuous in probability. 

End of the Proof of Th. 2.1. Let X be a r.pr. on [0, 1] which is separated by the 
set T of binary rationals and has ich. incr.  Put 

~,j = X(j 2 - " ) -  X ( ( j -  1) 2-"), j = l  . . . . .  2", h e N ,  

and let X, be defined by (2.2) with r,=2", neN.  Then (C) is trivially satisfied, 
so by Th.2.2, X , ~ s o m e  Y of form (2.1) satisfying X( t )dy ( t ) ,  t e T  k, k eN .  
By the proof of Th. 15.8 in [1] it follows that the sample paths of X are a. s. continu- 
ous except for jumps. Since X is continuous in probability, its right continuous 
version is distributed as Y. 

Proof of the Corollary to Th.2.1. If X has ich. incr. and is continuous in proba- 
bility, then there exists an equivalent separable process X' ([17], p. 507) which has 
clearly the same properties, and we may take the binary rationals as the separating 
set ([17], p. 510). By Th.2.2 there exists an equivalent version X" in D[-0, 1] of 
form (2.1). The converse part is obvious. 

Our next theorem extends results by Skorohod ([-23], Th.2.7) and Hagberg 
([9], Th. 4). 

Theorem 2.3. For neN,  let X ,  be a r.pr. in Do[0, 1] with ich. incr. and can.r.e. 
~,, ~n, fin" Suppose that Te ~ .  Then X n d ~ some X iff 

2 6o + f12) ~ some (~, ~2 6o + f12) in R • 9J~(R), (2.4) (~n ~ O'n 

and also iff (C) holds. In this case, X has can. r. e. ~, ~, fl and (D) holds. 

Proof Suppose that (2.4) holds for some non-random an, o'n, fin" For a n y  
t ff,, tTt 2 _~_ fftt 2 = 0.2 such that a n ~ a ,  N ' c  N there exist some N " c  N' and 0-, with 

f l 2 n R - ' + G " 2 + f l Z R  , n e N " .  Let X' and X" be ind. with can.r.e. (e, a',0), (O,a",fl), 
and for heN",  let X', and X~' be ind. with can.r.e. (e , ,a , ,0) ,  (0,0, fin). Then 
X', d ,X, is obvious while X, n, d ~X"holdsbyTh.4in[9],soweget(X'n,X' , ' )  d , 
(X', X") by independence ([1], Th.3.2), and hence xndx 'n+X' ,  ' d , X , + x , , d = x ,  
heN",  since addition is continuous C[0, 1 ] x D [ 0 ,  1]---~D[0, 1]. By Th.2.3 in 
[1] we obtain Xn d ,X ,  neN.  The remainder of the proof is similar to that of 
Th.2.2. 

The following tightness criteria which are implicit in Th. 2.2-3 and their proofs 
will be needed below. Similar results hold in all subsequent limit theorems and 
also in Th. 1.2-3. 

Lemma 2.1. The sequence {Xn} is tight in Th.2.2/ff {nl, R} and {~z2R} are tight, 
in Th.2.3 iff {~,}, {tz,} and {fl2 R} are tight, and in both iff {Xn(t)} is tight for some 
(any) re(O, 1). 
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3. Infinite Interval Processes with Interchangeable Increments 

We recall [6, 17] that a r.v. ~ is infinitely divisible iff 

log Ee i"e=iuF+ S(e i"~-  1 - i ug l ( x ) ) (g2  (x)) -1A(dx), uER, 
R 

for some F e R  and AefOl(R) with A R <  o% i.e. 

logEei"~=iuT~-u2o-2/2+ S (e i "X- l - iuh~(x ) )2 (dx ) ,  uER,  
R" 

for some (any) e > 0. Here and below, (F, A) and (7~, o-, 2) are related by 

F=7~+2(g l  -he) ,  d =o-2 tSo +g2)-. 

For r. pr. with stationary ind. incr. they refer to intervals of unit length. 

The following can. representation improves results by Btihlmann [3]. (See 
also Davidson [5] and myself [12] for the particular case of p.pr.) 

Theorem 3.1. I f  a r.pr. on R+ is separated by the binary rationals and has ich. 
incr., then its sample paths are a.s. continuous except for jumps and its equivalent 
version X in D [0, oo) determines a.s. uniquely and measurably a r.v. F and a r.m. A 
on R such that, given (F, A), X has stationary ind. incr. with distribution determined 
by (F, A). 

This time we take F, A or 7~, o-,2 as our can.r.e. The Corollary to Th.2.1 
carries over with obvious changes. 

Partial Proof To prove the uniqueness and measurability o f f  and A, note that 
they are continuously determined from the conditional distribution of X(1 ) -X(0 )  
([-6], p. 561), which in turn is unique and measurable by Th. 1.1. If X' is distributed 
as X, we may define can. r. e. F', A' through these mappings to obtain the desired 
representation. 

The proof is completed as for Th. 2.1 by means of the following result, where we 
consider r. pr. in D [0, oo) of the form 

X,(t)= ~ ~,j, t eR+.  (3.1) 
j=<r.t 

Theorem 3.2. For n e N, let J~ e R + , let ~nj, j e N, be ic h. r. v. with can. r. m. #. and 
define X ,  by (3.1). Suppose that r,--~oo and that T~J-~. Then X ,  d ~ some X iff 

t;,(kt, gl, g2 #,) wd > some (F, A) in R • 9J/(R), (3.2) 

and also iff (C) holds. In this case, X has can. r. e. F, A and (D) holds. 

Proof By [ 16] and Th. 5.5 in [ 1] we may assume that r, ~ N, n ~ N. Then X, d ~ X 
iff (C) holds, according to L.2.1, Th.5.3 and [16]. For non-random {p,}, (3.2) 
implies (C) and therefore X, d > X by [6], p. 564, and this result extends to random 
{#,} by L. 1.1. Finally suppose that (C) holds with T = N .  Applying Th. 1.3 to the 
increments X,  (j) -- Xn (j -- 1) , jeN,  yields #* r. wd ;, some # in 9J~(R) (. for convolu- 
tion power). For non-random {p,} this implies r, lt, g l ~ F ,  r, g2/~, w >A ([6], 
p. 564), which by [24] extends to random {#,}. 



30 O. Ka l l enbe rg  

Theorem 3.3. For neN,  let X,  be a r.pr. in D O [13, ~ )  with ich. incr. and can.r.e. 
F,, An. Suppose that TE ~'-oo. Then X n d } some X iff 

(In, An) ~d > some (F, A) in R x 9Jl(R), 

and also iff (C) holds. In this case, X has can. r. e. F, A and (D) holds. 

Proof. Proceed as in the last proof except that/t*'~, r n #, g~ and r n g2/In are re- 
placed by #, ,  F, and An respectively, where #, is the r.m. corresponding to F,, A n. 

4. Limit Theorems for Processes on Increasing Intervals 

The following result extends Th.5.1 of Hfijek [101. 

Theorem 4.1. For n~N, let r,~R+ and m, eN,  let ~,j, j e N ,  be r.v. such that 
~,j,j  = 1,. . . ,  m,, are ich. with can.p.pr. ~z,, and let X ,  be defined by (3.1). Suppose that 
r,-~oo and c,=r,/m,-~O, and that Te3-~. Then X ,  a ~ some X iff 

c,(r~, gl, g2 n,) wd~ some (F, A) in R x 9J~(R), (4.1) 

and also iff (C) holds. In this case, X has can. r. e. F, A, and (D) holds. 

Proof. The equivalence of X, a ~ X and (C) is proved as in Th.3.2. Next 
suppose that (4.1) holds for some non-random {n,} with uniformly bounded 
atom positions. For heN,  extending ideas of Hfijek [101 and Hagberg [9], let 
xni, J = 1, . . . ,  ran, be the atom positions of %, let the r.v. zni, J = 1 . . . .  , ran, be ind. 
and uniformly distributed over the set {j/r,: j =  1 . . . .  , m,}, and put 

mn 

Y,(t)= ~ xn j l+( t - z , j ) ,  t eR+.  
j = l  

Furthermore, suppose that the r.v. vni, j~N ,  are such that Vnj, j =  1, ..., m,, have 
a multinomial distribution corresponding to m, trials and equal probabilities 
m21, and put 

Rn(t)= L(t)= teR+. 
j<--rnt j<=Rn(t) 

2 R} is bounded, it follows from Hfijek's L.2.1 [101 that the finite- Since {C,~n 
dimensional distributions of {X,} and {17,} converge simultaneously, and that 
their limits agree in case of convergence. Since the restrictions of Y, and I7n to 
[0, C2 ~] are equally distributed, it thus suffices to prove (C) with Yn in p!ace of Xn. 

For arbitrary m e N  and 0 = t o < t 1  < ".  <tm, define 

~,jk=Xnj[l+(tk--X, j)-- l+(tk_l--%)],  k = l , . . . , m ,  j = l , . . . , m n ,  n e N .  

Proceeding as in w 4 of [10] we get 
m n  

lira ~P{~n jk - -E~ , j k~ l }=( t k - - t k_02 I ,  k = l ,  . . . ,m, (4.2) 
n~oo j = l  

for any ;t-continuity interval I ~ R  which is bounded away from the origin. Further, 
by the uniform boundedness of x,~, 

I / l  n 

lim ~Var~njk=(tk--tk_t)( t72q-A2R),  k = l  . . . . .  m, (4.3) 
n~ oo j = l  
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and also 
E~.jk~(tk--tk_l)C,X,j~O, n ~ ,  k=l , . . . ,m ,  

uniformly in j, yielding for e > 0  and k, le {1 . . . . .  m}, k # I, 

//l n 

limsup ~, P {1 ~,jk-- E ~,jk[ ^ I ~,jt-- E ~.jll > e} 
n ~ o o  j = l  

mn 

< limsup ~ P {1 ~,jkl ̂  I ~,jll > e/2} = 0. 
n ~ o o  j = l  

Finally, by (4.1), 
tnn mn 

y,  C o v  (r ~.j~) ~ - y~ E ~nj~ E ~.~ 
j = l  j = l  

~ --(tk-- tk_l) (h-- h- l )  C2 re2 R--~ 0, k+l.  

(4.4) 

(4.5) 

By [6], p. 585, it follows easily from (4.2-5) that 

ak[Y.(tk)-- Y.( tk -0 ]  d , ~ ak[X(tk)--X(tk_l)], 
k = l  k = l  

a l ,  . . . ,  am~R, 

and so (C) holds by Th. 7.7 in [1]. 

In the case of unbounded non-random atoms, let e > 0 be arbitrary and choose 
a u > 0  with 2 ~Iu=0, 2I~<e. Let X', X~, X~ . . . .  be the r.pr. obtained from X, X~, 
X2 . . . .  by omitting jumps of modulus > u. Let v, v~, v2 . . . .  be the number of such 
jumps in the interval T = [0, 1]. Then 

P {X(t)=X'(t), teT}C= P {v>0} < Ev=2I~<e (4.6) 

by [17], p. 550, while 

E v n = [r,] rc~ I~/m. < c, re. I~ ~ 2 I~ < e (4.7) 
implies 

P {Xn(t ) = X'.(t), tS T} c = P {v, > 0} < E v. < e (4.8) 

for large n. Furthermore, (4.1) clearly remains true for X', X[, X; ,  ..., so we get 
X" d , X' by uniform boundedness. Now (C) follows from (4.6, 8) by Th.4.2 in 
[1]. The result extends to random {n.} by L. 1.1. 

Next assume that X, d ~ X. To prove (4.1) it clearly suffices to show that the 
sequences {c. zck, I,}, k = 1, 2, are tight for arbitrarily large u > 0 and that 

lim limsup P {c. re, I~ > e} = 0, e > 0. 
I t ~ 3  n ~ o o  

(4.9) 

For the first assertion, proceed as in the proof of Th. 2.2, putting 

2 1 qn =(c,~I,)2 +c, Tr2 Iu, neN, (4.10) 

where X has a.s. no jump of modulus u, and observing that {X'Jtln} is tight and 
X', a ~ X'. To prove (4.9), let A~ be the set of functions in D [0, oo) with no jump of 
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modulus > u in [0, 1]. Then 

P {X, e A , [ ~ , } = ( ~ " I " ] / ( m " t  < ( rc"I"--] ~"- 1 - ~ , I ~  <=exp(-c.~,/~,) (4.11) 
\ rn 1 / \  r, I = \ m~ / -- m, 

provided r, e N  (which involves no real restriction), so we get 

liminf E exp ( -  c, ~, I~) > liminf P {X, eA,}  > P {XeAzu}, 

where the right side tends to zero as u ~ oo. 

For the next result, let the can. r.e. of a r. pr. X on [0, s] with ich. incr. be de- 
fined as those of the process X(s t), te  [0, 1]. 

Theorem 4.2. For ne N, let s, > 0 and let X,  be a r. pr. in Do [0, oe) whose restriction 
to [-0, s,] has ich. incr. and can.r.e. %, a,,/3,. Suppose that c,=s~--~O and that 
Te@oo. Then X,  d ~ some X iff 

2 6 o + g z f l , ) ~ s o m e ( F , A  ) in RxgJ~(R), (4.12) c.(~.-~.(h-gO,~. 
and also/ff(C) holds. In this case, X has can. r. e. F, A, and (D) holds. 

Proof. Suppose that (4.12) holds for some non-random ~,, a, ,  ft, such that the 
/3, have uniformly bounded atom positions. Then clearly 

c . c ~ . ~ ,  c.(~2a0+/~2) w,~2ao+,~2 ' 

where ? = lira 7,. As in the proof of Th. 2.3, we may assume that (%, a,,/3,) takes 

either of the three forms (~,, 0, 0), (0, a, ,  0), (0, 0,/3,). The first case is trivial. In the 
second case, X,(t)= ~,B,(c,  t) on [0, s,] for some Brownian bridge B,, so for s < t 
we get by [1], p. 65, 

Coy (x.(s), x . ( t ) )  = ~. c.  s (1 - c.  t)-- ,  ~2 s, 

and hence X, d , a M  where M is Brownian motion. In the third case we have 

X,(t)= ~ / 3 , ~ [ l + ( t - z , j ) - c . t ] ,  te l0,  s,], h e N ,  (4.13) 
j=l 

where, for ne N, ft, = ~ ~Se. J and the z,j are ind. and uniformly distributed on [0, s,]. 
J 

By Th.4.2 in [1] and Cebygev's inequality, we may assume the number of non- 
zero terms in (4.13) to be finite. For fixed m e n  and 0 = to < t~ <. . -  < tm we put 

~,jk=fl,j[l+(tk--%j)--l+(tk_l--%j)--c,(tk--t~,_~)], k = l  . . . .  ,m, j, n e N .  

Then (4.3) (with ~ in place of m,) follows from 

Var ~, jk-  2 --flnjC,(tk--tk_O[1--c,(tk--tk_l)-l, k = l ,  . . . ,m, .],neN. 

Further, for any )~- continuity interval I c R  which is bounded away from the origin, 
we get for sufficiently large n 

P{~.jkeI}---C.(tk--tk_l) li(flnj[1--cn(tk--tk_l)]), k = l  . . . . .  m, 
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uniformly in j e N ,  so by approximation we easily obtain 

(6, - tk_~) 2I  <liminf ~ P {~,jk~I} < limsup ~ P {~,jkeI} <(tk -- tk-a) 21 
n~o~ j n ~  j 

for all k, and (4.2) follows. Finally we get for k # l  and e > 0 

Z p {l~,/k[/X [(,j~[ >e}--~0, Z Cov(~,jk, ~,j~)--~ 0 (4.14) 
J J 

as in (4.4-5). From (4.2-3, 14) we obtain (C) as in the preceding proof. 

The remainder of the proof follows that of Th.4.1, except that formulas (4.7, 
10-11) are now replaced by 

Ev.=c,  fl, g ~ 2I; <e, 
2 2 2 2 q, =(c,~,)  +c,(a, +ft, R), 

P { X ~  Aul fl~} =(1 -c~)~"I~ <_<_exp(-c~ fl~I~i). 

5. Restriction and Extension 

For any r.m. # and p.pr. n, ~', we say that n is a subordinated Poisson pr. 
directed by p if, given p, n is conditionally distributed as a Poisson pr. with inten- 
sity kt. Further, n' is a p-thinning of n, if n' is obtained from n by deleting the atoms 
independently with probability 1 - p  (cf. [19]). For any r.e. (7, a, 2) in R • R+ • 
9~(R') we define the FL-transform ( F L = F o u r i e r - L a p l a c e ) H  by H(u,v,jO= 
E exp(i u 7 - v 0 .2 - -  2f )  for u~R, ve C+ = {x + i y: xeR+,  yeR},  f e f f+  = {f: f meas- 
urable R'~C+ and f ( x ) = O ( x  2) as x-~0.  Write N(0, 1) for the standard normal 
distribution. 

I heorem 5.1. Let X be a r.pr. in Do [0, o9) with ich. incr. and can.r.e. 7~, a, 2, and 
let c~, a', fl be the can. r.e. of its restriction to [0, 1]. Then 

(i) fi is a subordinated Poisson pr. on R' directed by 2, 
(ii) a'=a, c~=a ~9+lim (7~+fll I~) a.s., where 0 is N (O, 1), 

e--* O 

(iii) 0 and the randomization involved in (i) are mutually ind. and ind. of (7~, a, 2). 
The EL-transforms H 1 of (~, a, fi) and H~ of (7~, a, 2) are related by 

Hl(u,v,f)=Hoo(U,V+U2/2, iuh ,+l -e iUh-1) ,  u6R, v6C+, f e ~ + .  (5.1) 

Proof By conditioning, the first assertion is reduced to the case of non-random 
7~, a, 2, for which (i) follows by [17], p. 550. To prove (ii)-(iii), let us first assume 
that 2 I , = 0  for some e>0.  Then X = X 1  +X2 where X1 is a pure jump pr. while 
X2 =7o h + a M  for some Brownian motion M ind. of X1. Now 0 = M ( 1 )  is N(0, 1) 
and ind. of the Brownian bridge B(t)= M ( t ) - t M ( 1 ) ,  t~ [0, 1], since 

Coy [O,B(t)]=Cov [M(1), M(t)] - t V a r M ( 1 ) = t - t = O ,  te l0 ,  1], 

while c~ = 7o + a  0 +ill  R, and this proves (ii)-(iii). For general 2, let 2~ be the re- 
striction of 2 to I~ and write X =  X~+ X~, where X~ is ind. of Xs with can.r.e. 
7~, ~, 2~, constructed as in [14]. By martingale convergence, we easily obtain 
X,(1)-* X ( I ) = a  a.s. as e-*0, which proves (ii). Furthermore, 

c~=a0+7~+! im ~ [2(hc-h~)+ fih'~], 

3 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 27 
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where h' c = h -  he, so for u ~ R, v ~ C +, fE ~+ 

E exp [i u (a • + ~ + 2 (h, ,-  h~) + flh'c) - v tr 2 - fly] 

= E { exp [i u (~ + k (h~ - h ~)) - v tr 23 E 1,e i"" a l a ] E  [e p~i" hl- f)[~] } 

= E exp [i u (T~ + 2 (he - he) ) - v tr 2 - u 2 a2/2 -- ,~ (1 -- e i"h;- Y)] 

= H~ (u, v + u2/2, i u (h e - h~) + 1 - e i ,h:- y), 

and (5.1) follows as c--* 0 by dominated convergence. 

Theorem 5.2. Let X be a r. pr. in Do [0, 1] with ich. incr. and can. r. e. ~, a, fl, and 
let ~', tr',fl' be the can.r.e, of  its restriction to 1,0, Pl, p~(0, 1). Then 

(i) fl' is a p-thinning offl,  
(ii) tr '=trl /p,  e ' = e p + t r ~ l / ~ - p ) + [ i m ( f l ' - p f l ) l I ~  a.s. where ~ is N(O, 1), 

(iii) ~) and the randomization involved in (i) are mutually ind. and ind. of(e,  tr, fl). 

The FL-transforms Hp of  (e', tr',fl') and H1 of(e ,  a, fl) are related for  ue  R, v~C+,  
f ~ +  by 

H p ( u , v , f ) = H l ( u p ,  v p + u 2 p ( 1 - p ) / 2 ,  i u p h - - l o g [ l - - p ( 1 - - e i " h - Y ) ] ) .  (5.2) 

It is interesting to observe that Th. 5.1-2 essentially contain the main result of 
Mecke 1191. In fact, if X is a r.pr. on [0, 11 with ich. incr. and can.r.e. ~, tr, fl, then 
by Th. 5.1 its distribution may be extended to R § for some e provided/~ is a subordi- 
nated Poisson pr., and by Th.5.2 provided fl is a p-thinning for each pE(0, 1), so 
these two conditions must be equivalent. Th. 5.1-2 have simple analogues for se- 
quences of ich. r. e., but there the notions of sample pr. [12-1 and sampling take over 
the roles of Poisson pr. and thinning here. 

Proof. As for Th.5.1, it suffices to prove (i)-(iii) in the case of non-random 
e, tr, fl with ~ I~ = 0 for some 8 > 0. Then (i) is obvious, while the continuous compo- 
nent of X takes the form X2 =(~-f l~  R)h + a B  for some Brownian bridge B. 
Defining ~ = B ( p ) / ] / ~  - p); B' (s) = [B (s p ) -  s B (p)]/]/~, se [0, 11, and verifying 
that ~ is N(0, 1), that B' is a Brownian bridge ind. of~ and that 

X 2 ( s p ) = ( ~ - f l  1 R ) s p + t r s ~ ] / ~ - p ) + r  s~ 1,0, 1], 

we obtain (ii) and (iii). Finally, (5.2) follows by proceeding as in Th. 5.1 and using 
Hilfssatz 4.1 of Mecke 1,19]. 

Theorem 5.3. Let  X and Y be r. pr. in Do [0, 11 or Do [t3, oo) with ich. incr. and let 
Te~~l or f ~  respectively. Then X ~= Y iff X( t )  a= Y(t), t~ T k, k e N .  

Note that the corresponding statement for sequences of ich. r.e. is false. For a 
strengthening in the case of simple p. pr., see 1,12], Th. 5.2. 

Proof. For T ~ l l ,  the extension to the closure of T is unique by continuity. 
(Only this fact was needed in the proof of Th. 2.1.) By interchangeability and induc- 
tion, we may assume that T =  1,0, p] for some fixed p~(0, 1), so it suffices to prove 
that Hp determines H 1 in Th. 5.2. Substitution in (5.2) yields with q = l ip  

H~(u, v , f )=Hp(uq ,  vq-t-U 2 q(1 -q ) /2 ,  i u q h - l o g  [ 1 - q ( 1  --eiuh-f)l ) (5.3) 
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for ueR,  Re [vq+uZq(1-q) /2]>O, and for f ~ +  with 

i u q h - l o g  [1 - q ( 1  -eiUh-f)]e~+. (5.4) 

Now Hx(u, v,f) is analytic in ve C+ for fixed ueR,  f e ~ + ,  so//1 is determined by 
(5.3) for all ve C÷. Put p = 1/2 and note that the principal branch of the function 

w--- - l o g  [1 - p ( 1  - e - 0 ]  = - l o g  [(1 +e-Z)/2] 

maps {z: Re z > 0} onto D = {w: I Im w l < arccos e-  Re w}, except for w = log 2. By 
(5.4), H1 is therefore determined for a l l f ~ +  such that i u x - f ( x ) e D \ { l o g 2 } ,  
x~R'.  The exception for log 2 is removed by continuity. 

For fixed u~R, veR÷,  let f0 be some fixed function of this type withfo(x)= 
O(x2), x ~ O ,  which exists sihce Re w,-~(Im w) 2, w ~ 0 ,  on the boundary of D. Let I 
be any compact sub-set of R', and choose some disjoint partitioning 1~ . . . . .  I ,  of I 
and some z~, . . . , z ,~C+,  such that 

• xe I j ,  j = l ,  . . . ,k ,  

has the same properties. Since the values of z~ . . . . .  zk may be varied around the 
initially chosen numbers, it follows by analyticity that//1 is determined for a n y f o f  
the form (5.5) with z~,... ,  z~e C+. By successive sub-divisioning of 11 . . . . .  Ik, it is 
seen that f may be chosen arbitrarily on I, and this result extends to I = R '  by 
dominated convergence. 

Finally, let T contain some lattice, and assume without real loss that T = Z + .  
By Th. 1.1, the can. r. m. p of X ( j ) -  X ( j -  1), j e  N, is then uniquely determined, and 
# determines F and A by [6], p. 564. 

Our last result improves and extends Th.4.9.6 of Btthlmann [3]. 

Theorem 5.4. For I = [ 0 ,  1] or R+, let X and Y be r.pr. in Co(I) with ich. incr., 
and suppose that T ~ I has a limit point in the interior of  I. Then X d= y iff X ( t ) a__ Y ( t ), 
t~T. 

Proof. It suffices to take I = [ 0 ,  1]. Let toe(0, 1) be a limit point of T, let X =  
h + tr B, and define the FL-transform H by H (s, v) = E exp (i s a -  v a2), se  R, 

ve C÷. For u e R  and t e l  we get 

SO 

C(u, t)= E ei~Xt'~= E E [ei~"+"a<°la,  a] = E [e i~' E(e~U°B~°la)] 

= E [e i"~' exp (-- u z a 2 t( l  -- 0/2)] = H(u t, u 2 t(1 - t)/2), 

C(s/t, t)=H(s, (t -1 - 1) s2/2)=H(s, v), seR,  te l ,  v=( t  -1 - 1) s2/2. 

For fixed seR', the left side is assumed to be known for all te  T, so H(s, v) is deter- 
mined for some v-set with limit point Vo =(tff 1 -1 ) s2 /2  >0, and hence by analyti- 
city for all v > 0. 
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