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Summary. A random time T is a future independent # time for a Markov 
X 0o chain (X,)~ if Tis  independent of ( r+,),=0 and if (XT+,)2- o is a Markov 

chain with initial distribution # and the same transition probabilities as 
(X,)~. This concept is used (with # the "conditional stationary measure") 
to give a new and short proof  of the basic limit theorem of Markov chains, 
improving somewhat the result in the null-recurrent case. 
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Introduction 

Let X = (Xn)~ be an irreducible, aperiodic, recurrent Markov chain on a count- 
able state space E and let T be a non-negative a.s. finite random time. Call 
T future independent if T is independent of (Xr+k)k~ o. Call T a # time if 
X o~ ( r+k)k=0 is a Markov chain with initial distribution # and the same transition 

probabilities as X. 
Suppose Tis a randomized stopping time, i.e., for each n > 0  the event {T= n} 

is conditionally independent of (Xn+k)k~O given (Xk)~= o. Then T is a future 
independent # time if 

(i) Tis independent of X r and 
(ii) X r has the distribution #, 

due to the strong Markov property for randomized stopping times. 
The stopping times 

N/=inf{n=> 1 : X,=j}, jeE, 

are future independent 6j times where 3j has mass one at j. Further, let Y be 
a random element in E with an arbitrary distribution # and let Ybe independent 
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of X. Then the randomized stopping time IVy is a # time. However, Nr is not 
in general a future independent time. In fact, future independent # times need 
not exist in general: see the counter-example at the end of Sect. 2. 

If the state space E is general and X is a Harris chain then the regeneration 
times of X (see, e.g., Asmussen [3], Chapter VI.3) are future independent 
times where # is the regeneration distribution. Actually, (if we allow us to use 
the notion "regeneration t ime" without a reference to a sequence of regeneration 
times) a future independent time Tis a regeneration time in the sense of Asmussen 
([3], Chapter V.1) and a time-homogeneous regeneration time in the sense of 
Thorisson [5], [7]. However, T is not in general a regeneration time in the 
traditional sense since (X T +k)k% 0 need not be independent of (X,)o <, < T. 

Call T a  stationary time if Tis arc time where rc is a stationary distribution 
for X. Examples of future independent stationary times are the "strong uniform 
times" used by Aldous and Diaconis [1], [2] to prove "non-asymptot ics"  for 
certain random walks on finite groups (in that case the stationary distribution 
is uniform - and "s t rong"  means "future independent"). 

Here future independent # times, with # the "conditional stationary mea- 
sure", are used to prove a strong version of the basic limit theorem for recurrent 
Markov chains. In the positive recurrent case the limit result is the same as 
the one obtained by the so called coupling method. The present approach is 
probably not as intuitively appealing as the coupling one, but  it has the advan- 
tage of covering also the null-recurrent case without additional effort (see, how- 
ever, Thorisson [8]). Further, it establishes the class property of positive recur- 
rence and also the equivalence of positive recurrence on the one hand and 
the existence and uniqueness of a stationary distribution on the other. Finally, 
it yields a slightly improved limit result in the null-recurrent case. 

In Sect. 1 we establish notat ion and formulate the limit theorem, in Sect. 2 
we discuss the relation between future independent stationary times and cou- 
pling, in Sect. 3 we prove the key existence result for future independent # 
times and, finally, in Sect. 4 we prove the limit theorem. 

1. The Limit Theorem 

Let 2 be the initial distribution of X and P"=(Pi~ : i, jEE) the n-step transition 
matrix. We regard measures on E as row-vectors, e.g. 2 = (2j :jeE) and 2 A = ~ 2y, 
A ___ E. Thus 2P" is the distribution of X, ,  i.e. j~A 

2P2= ~ 2Pj"=IP(X, eA), A~E.  
j e A  

Put 
mj =IEj [Nj], 

where E j  indicates X o -  j a.s. Fix an arbitrary leE and define a measure r~ 
on E by 

~A=]Ef I{x,~eA} ~ ~(Xlq=i, ...,Xn-aq=i,X,,EA), 
n 1 = 1  

A~E,  
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where I B= 1 or 0 according as B occurs or  not.  It is easily checked (see, e.g. 
Asmussen [-3], Theo rem 1.3.2) that  

= r~p n, 

Fo r  c < oo put  

0 < ~ j <  oo, jEE, ( la)  

~i = 1 (1 b) 

7~E = mi (1 c) 

n > 0, (~t is a s ta t ionary  measure). (i d) 

~c={A___E: rtA <C}. 

Theorem 1. Either all states are positive recurrent, r e = ( 1  : j s E  1 is a unique 
stationary distribution and for all initial distributions 2 \mi ] 

P(X,~A)-->  ~A uni formIy inA~_Easn~o% (2) 

or all states are null-recurrent, no stationary distribution exists and for all initial 
distributions 2 and all c < oo 

IP(Xn ~A) --+ 0 u n i f o r m l y i n A ~ c a s n - - * ~ .  (3) 

Remark 1. (2) is the typical result ob ta ined  by the coupling method.  With [l" 1[ 
denot ing the total  var ia t ion no rm we have 

][ 2 P " -  ~ [] = 2 sup ()oPT, - ~A) = 2 sup (rC A -- 2P~) (4) 
A ~ E  A ~ E  

and thus (2) can be rewrit ten on the form 

[12P"-Tc[I-->0 as n - ->~ .  (2') 

This is maybe  the more  appropr ia te  form but  we have chosen (2) to stress 
the resemblance between (2) and (3). It should, however,  be observed that  (2) 
is, due to the countable  state space, logically equivalent  to the seemingly weaker  
classical result: 

IP(X, =j )  --+ ~zi as n--, oo. 

Remark 2. (3) seems to be a new result improving  somewhat  the classical one:  
IP(Xn =j )  ~ 0 as n ~ oo. In Thor i sson  [8] (3) is extended to nul l-recurrent  Harr is  
chains. In Orey [4] the following equivalent  result can be found (Theorem 1.7.3): 
F o r  any ~ > 0 it holds that  IP(Xn E A)/(e + Z~A) --+ 0 uniformly in A as n ---, oo. 

2. Future Independent Stationary Times and Coupling 

If Tis a future independent  # time then for k__< n 

IP(T= k, X n s A  ) = IP(T= k) ]P(XT +n_k~A ) = P ( T =  k) #P2-k  
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and thus 
n 

IP(X.~A)= ~ ~ ' ( T = k , X . ~ A ) + I P ( T > n , X . E A ) ,  
k = 0  

< ~ l P ( r = k ) # P 2 - k + l P ( r > n ) .  (5) 
k = 0  

In particular, if #=7c where 7c is a stationary distribution then r~P2-k= r~ A and 
thus 

P ( X . ~ A ) -  rCA <=~(T> n ). 

Applying (4) yields 

]]2P"--~I[<21P(T>n)~O as n-~ov (6) 

proving (2') and thus (2). 
Now the inequality in (6) looks exactly like a coupling inequality and this 

is no coincidence: Let X'  be a Markov chain with initial distribution rc and 
X 00 t 09 independent of T. Then clearly (T, ( r+k)k=0) and (T, (Xr+k)k=0) have the same 

distribution and we have established a distributional coupling (see [6]) with 
T as a coupling epoch. Hence the inequality in (6) is a coupling inequality. 

We have seen that a future independent stationary time can always be 
regarded as a coupling epoch, - the converse is obviously not true. What  is 
more, while in the positive recurrent case there always exists a coupling epoch 
such that (6) holds (see [8] or combine (2) and the maximal coupling theorem 
in [6]) the same is not true for future independent stationary times as can 
be seen from the following counter-example: 

Let X be positive recurrent and such that for each n > 0  there is a j ,  such 
that P~,--0 (e.g., consider a random walk on the positive integers with negative 
drift, reflected at 0 and with bounded step-lengths). Then if Tis a future indepen- 
dent stationary time we have by (i) and (ii) 

~ ( T =  n) nj. = ~ ( T =  n, X.  =j .)  =< ~ ( X .  =j,,) = 0. 

But zcj>0 for al l j  and thus IP (T=n)=0  for all n > 0  contradicting T< oo a.s. 

3. Future Independent p Times 

The above counter-example shows that future independent # times do not exist 
in general. However, the following holds: 

Proposition 1. I f  #B = 1 where B ~ E is finite then there exists a future independent 
# time T. 

Remark 3. If E is finite, we obtain (2) from Proposition 1 and (6) by putting 
# = ~ = lt/mi. 

Proof of the proposition. We shall use the following well-known result: 

Vi, j e E 3 n i j :  P~]>O forn>n~j. 
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Fix an i o ~ E and put 

no = m a x  g~io j a n d  
jeB 

Put To = 0 and for k = 1 

Let Ikj  , j ~ E ,  
and such that 

lP(Ik~= i)-- e#j ~ '  
Put I k = Ik, Xr~ +,o. Then clearly 

Further, 

no e = min P/o~ > O. 
j e B  

Tk = inf{n => T k_ 1 + nO" X n  = io}- 

k - l ,  be independent 0-1-variables that are independent of X 

j ~ E , k > = l .  

(Xr~ +,o, Ik) is independent of (Tk, I k_ 1, . . . ,  I1). 

IP ( X  Tk + .o = J, Ik = 1 ) = F ( X  Tk + .o = J) ]P (Ik j = 1) = Pi~i e # j = e # j  
~o~ 

and summing over jEE yields 

Put 

(7) 

T =  TK +no 

(8) 

IP(I k = 1) = e. 

where K = i n f { k > l "  I k = l  }. 

(9) 

Then {T= n} is determined by (Xk)~O and the IkfS and thus T is a randomized 
stopping time. Further, (7) and (8) yield the second equality in 

IP ( X  r = j ,  T =  n, K = k ) =  lP (X  rk +oo=j, Tk + n o = n, Ik = l ,  I k -  ~ . . . . .  I a =0) 

=e# j  IP(T~ + no = n, I k_ a . . . . .  11 =0) 

= #~ lP(Tk + no = n, Ik = 1, I k -  a . . . . .  I1 =0) 

=#~ ~ ( T =  n, K = k )  

while the third follows from (7) and (9). Summing over k yields IP(X r =j ,  T=  n) 
= #j IP(T= n) and thus (i) and (ii) hold and the proof is complete. 

4.  P r o o f  o f  t h e  T h e o r e m  

Take a finite B~_E and let # be the "conditional stationary measure": #A 
= ~B~A/%" Then # < ~/~B yields the inequality in 

# p 2 - k < ~ P 2  -k  _ ~A A ~ _ E , k < n ,  
^ , 

7~ B TC B 
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while the equality is due to (ld). F rom this, (5) and Proposition 1 we obtain 

^ 

]P(X,~A) <_ ~A_ + IP(T> n). 
TC B 

Subtracting :r = 71A/Tt~ from both sides yields 

^ ^ A 

sup P ( X , ~ A ) - ~ A ] < s u p  ( ~ - ~ - ] + I P ( T > n )  
A ~  m l /  Aegc \ ~ B  7~E/ 

C C 
< T - - w - + P ( T >  n) 

~B ~E 

C C 
--+ - - - - - -  as g/----~ oo 

~B r~E 
~ 0  as B~[E. 

If i is null-recurrent ~A/mi = 0 and (3) is established. If i is positive recurrent 
put c = m i -= 7~ E to obtain (2) with rc = ~/m i. 

Since (2) and (3) cannot hold simultaneously and since icE is arbitrary, 
either all states are null-recurrent or all states are positive recurrent. In the 
latter case the limit ~z=~/mi is a stationary distribution due to (lc) and (ld). 
Further, rc must be independent of i and thus with i=j, ~zj= 1/mj due to (1 b). 
Finally, if re' is a stationary distribution, then with 2=re' we have 
lira,_, oo IP(XneA) = ~ and thus (3) cannot hold, i.e. X must be positive recurrent, 
- but then (2) holds implying 7r~ = ~z A so ~ is unique and the proof  is complete. 

Remark 4. The approach of this paper extends easily to continuous time, irreduc- 
ible, recurrent Markov jump processes. In fact the proof  of Proposition 1 
becomes more elementary in that case since the "well known result" refered 
to at the beginning of the proof  is then immediate. 
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