Connection between the Different L_s -Predictions with Applications

D. Landers¹ and L. Rogge²

¹ Mathematisches Institut der Universität zu Köln
 Weyertal 86–90, D-5000 Köln 41, Federal Republic of Germany
 ² Universität Konstanz, Fachbereich Wirtschaftswissenschaften/Statistik,
 Postfach 7733, D-7750 Konstanz, Federal Republic of Germany

1. Introduction and Notations

Let P be a probability measure defined on a σ -algebra \mathscr{A} over Ω . For each s > 1 denote by $\mathscr{L}_s(\Omega, \mathscr{A}, P)$ the space of all realvalued random variables f with $P[|f|^s] < \infty$. Let $\mathscr{B} \subset \mathscr{A}$ be a sub- σ -algebra. For each $f \in \mathscr{L}_s(\Omega, \mathscr{A}, P)$ let $P_s^{\mathscr{B}} f$ be the projection of f onto the closed linear subspace $\mathscr{L}_s(\Omega, \mathscr{B}, P)$ and call it the s-prediction of f. 2-prediction is the usual conditional expectation. According to [1] $P_s^{\mathscr{B}} f$ exists and is P-a.e. uniquely determined. We use the symbol $P_s^{\mathscr{B}} f$ both for a function and its corresponding equivalence class.

Let \mathscr{P} be a family of probability measures on the σ -algebra \mathscr{A} . The σ -algebra $\mathscr{B} \subset \mathscr{A}$ is sufficient for $\mathscr{P}|\mathscr{A}$ in the usual sense iff for each $A \in \mathscr{A}$ there exists a common 2-prediction $g_2^A \in \bigcap_{\substack{P \in \mathscr{P}\\ P \in \mathscr{P}}} P_2^{\mathscr{B}} 1_A$. We call $\mathscr{B}s$ -prediction sufficient for $\mathscr{P}|\mathscr{A}$ iff for each $A \in \mathscr{A}$ there exists a common s-prediction $g_s^A \in \bigcap_{\substack{P \in \mathscr{P}\\ P \in \mathscr{P}}} P_s^{\mathscr{B}} 1_A$.

It is shown in this paper (see Theorem 1) that there exists a functional relationship between *s*-prediction and 2-prediction for step functions. This relation can be used to show that *s*-prediction-sufficiency is equivalent to sufficiency.

If \mathscr{B} is sufficient for $\mathscr{P}|\mathscr{A}$, the linearity of the 2-prediction directly implies that for each $f \in \bigcap_{\substack{P \in \mathscr{P} \\ P \in \mathscr{P}}} \mathscr{L}_2(\Omega, \mathscr{A}, P)$ there exists a common 2-prediction $g_2^f \in \bigcap_{\substack{P \in \mathscr{P} \\ P \in \mathscr{P}}} \mathcal{D}_2^{\mathscr{B}} f$. Since s-prediction is in general not a linear operator, the corresponding consequence for sprediction sufficiency cannot be derived in such a direct way. It, however, follows from our functional relationship between s-prediction and 2-prediction. This relationship can furthermore be applied, to obtain a generalization of Ando-Amemiya's [1] martingale theorem for s-predictions.

2. The Results

If $a \in \mathbb{R}$, r > 0 let $a^r = |a|^r$ sign a.

To make the paper more readable we collect the following well known results (see e.g. [1], [4]).

Remark. Let $1 < s < \infty$. Then

a)
$$f \leq g \Rightarrow P_s^{\mathscr{B}} f \leq P_s^{\mathscr{B}} g$$
 $(f, g \in \mathscr{L}_s(\Omega, \mathscr{A}, P))$
b) $P_s^{\mathscr{B}}(\alpha f) = \alpha P_s^{\mathscr{B}} f$ $(f \in \mathscr{L}_s(\Omega, \mathscr{A}, P), \alpha \in \mathbb{R})$
c) $P_s^{\mathscr{B}}(\alpha + f) = \alpha + P_s^{\mathscr{B}} f$ $(f \in \mathscr{L}_s(\Omega, \mathscr{A}, P), \alpha \in \mathbb{R})$
d) $f_n, f \in \mathscr{L}_s(\Omega, \mathscr{A}, P)$ and $f_n \uparrow f$ or $f_n \downarrow f$ then
 $P_s^{\mathscr{B}} f_n \xrightarrow[n \to \infty]{} P_s^{\mathscr{B}} f$ P -a.e.
e) If $f \in \mathscr{L}_s(\Omega, \mathscr{A}, P), g \in \mathscr{L}_s(\Omega, \mathscr{B}, P)$ then
 $g \in P_s^{\mathscr{B}} f$ iff $P_2^{\mathscr{B}} [(f - g)^{s - 1}] = 0$
f) If $f_n, f \in \bigcap_{P \in \mathscr{P}} \mathscr{L}_s(\Omega, \mathscr{A}, P), f_n \uparrow f$ or $f_n \downarrow f$ and

$$g_n \in \bigcap_{P \in \mathscr{P}} P_s^{\mathscr{B}} f_n$$
 then $\varlimsup_{n \to \infty} g_n \in \bigcap_{P \in \mathscr{P}} P_s^{\mathscr{B}} f.$

We remark that f) directly follows from d).

In the following theorem we state our basic relationship between s-prediction and 2-prediction.

Let

$$\Delta_m = \left\{ (x_1, \dots, x_m) \in [0, 1]^m \colon \sum_{i=1}^m x_i = 1 \right\}.$$

1. Theorem. Let $P|\mathscr{A}$ be a probability measure, $\mathscr{B} \subset \mathscr{A}$ a sub- σ -algebra and $1 < s < \infty$. Then for each step function f with representations $f = \sum_{i=1}^{m} \alpha_i \mathbf{1}_{A_i}$, where $A_i \in \mathscr{A}$, i = 1, ..., m, are disjoint and $\sum_{i=1}^{m} A_i = \Omega$, there exists a continuous function $H_{\alpha_1, ..., \alpha_m}^{(s)}$: $\Delta_m \to \mathbb{R}$ which depends on $\alpha_1, ..., \alpha_m$ and s but not on $P|\mathscr{A}$ and \mathscr{B} such that

 $P_s^{\mathscr{B}} f = H_{\alpha_1, \ldots, \alpha_m}^{(s)} \circ (P_2^{\mathscr{B}} A_1, \ldots, P_2^{\mathscr{B}} A_m).$

Proof. Let g be \mathscr{B} -measurable and bounded: to show that $g \in P_s^{\mathscr{B}} f$ it suffices to prove according to Remark e) that

$$P_2^{\mathscr{B}}\left[(f-g)^{s-1}\right] = 0. \tag{1}$$

Since $\sum_{i=1}^{m} 1_{A_i} = 1$ and $P_2^{\mathscr{B}}$ is a linear operator, (1) is equivalent to $\sum_{i=1}^{m} P_2^{\mathscr{B}} [1_{A_i} (\alpha_i - g)^{s-1}] = 0$

and hence to

$$\sum_{i=1}^{m} (\alpha_i - \mathbf{g})^{s-1} P_2^{\mathscr{B}} A_i = 0.$$
⁽²⁾

Now we construct a continuous function $H: \Delta_m \to \mathbb{R}$ such that $g = H \circ (P_2^{\mathscr{B}}A_1, \dots, P_2^{\mathscr{B}}A_m)$ fulfills (2). We remark that this g is \mathscr{B} -measurable and bounded. W.l.g. we assume $\alpha_1 \leq \cdots \leq \alpha_m$. For each $(x_1, \dots, x_m) \in \Delta_m, \alpha \in \mathbb{R}$, let

$$\varphi_{x_1,\ldots,x_m}(\alpha) = \sum_{i=1}^m (\alpha_i - \alpha)^{s-1} x_i.$$

Since $\alpha \to \varphi_{x_1, \dots, x_m}(\alpha)$ is a strictly monotone decreasing and continuous function with $\varphi_{x_1, \dots, x_m}(\alpha_1) \ge 0$ and $\varphi_{x_1, \dots, x_m}(\alpha_m) \le 0$ there exists a unique $H(x_1, \dots, x_m) \in \mathbb{R}$ with

$$\varphi_{x_1, \ldots, x_m}(H(x_1, \ldots, x_m)) = 0.$$

It is easy to see that H is continuous. Since $\sum_{i=1}^{m} P_2^{\mathscr{B}} A_i = 1$ we obtain that $g = H \circ (P_2^{\mathscr{B}} A_1, \dots, P_2^{\mathscr{B}} A_m)$ fulfills relation (2).

The construction of H shows that H depends only on $\alpha_1, \ldots, \alpha_m$ and s.

Although the s-prediction is in general not a linear operator it turns out to be possible to describe the s-prediction of a step function $\sum_{i=1}^{m} \alpha_i \mathbf{1}_{A_i} \left(\sum_{i=1}^{m} \mathbf{A}_i = \Omega \right)$ in terms of the s-predictions $P_s^{\mathscr{B}}A_i$, i = 1, ..., m. Moreover the functional connection is independent of $P \mid \mathscr{A}$ and \mathscr{B} .

2. Corollary. Let $P \mid \mathcal{A}$ be a probability measure, $\mathcal{B} \subset \mathcal{A}$ be a sub- σ -field and $1 < s < \infty$. If $f = \sum_{i=1}^{m} \alpha_i \mathbf{1}_{A_i}$ where $A_i \in \mathscr{A}$, i = 1, ..., m, are disjoint and $\sum_{i=1}^{m} A_i = \Omega$, there exists a continuous function $\hat{H}: \Delta_m \to \mathbb{R}$ which depends on $\alpha_1, \ldots, \alpha_m$ and s but not on $P \mid \mathscr{A}$ and *B* such that

$$P_s^{\mathscr{B}} f = \hat{H} \circ (P_s^{\mathscr{B}} A_1, \dots, P_s^{\mathscr{B}} A_m).$$

Proof. Let $H_{0,1}^{(s)}: \Delta_2 \to \mathbb{R}$ be the function appearing in Theorem 1 for $\alpha_1 = 0, \alpha_2 = 1$. It is easy to see that $\varphi(x) = H_{0,1}^{(s)}(x, 1-x) = \frac{x^r}{x^r + (1-x)^r}$ (where $r = \frac{1}{s-1}$) is a continuous strictly increasing function from [0, 1] onto [0, 1]. Let

$$\hat{H} = H_{\alpha_1, ..., \alpha_m}^{(s)} \circ (\varphi^{-1}, ..., \varphi^{-1}).$$

Since $P_2^{\mathscr{B}}A = \varphi^{-1} \circ P_s^{\mathscr{B}}A$, Theorem 1 yields the assertion. As $P_s^{\mathscr{B}}A = \varphi \circ P_2^{\mathscr{B}}A$ and $P_2^{\mathscr{B}}A = \varphi^{-1} \circ P_s^{\mathscr{B}}A$ with a strictly increasing and continuous function φ which does not depend on $P|\mathscr{A}$ and \mathscr{B} we obtain:

3. Corollary. Let $\mathcal{P}|\mathcal{A}$ be a family of probability measures. If a σ -algebra $\mathcal{B} \subset \mathcal{A}$ is sprediction sufficient for $\mathcal{P}|\mathcal{A}$ for some $s \in (1, \infty)$ then it is s-prediction sufficient for all $s \in (1, \infty)$.

Hence s-prediction sufficiency is equivalent to sufficiency.

4. Corollary. Let $\mathscr{P}|\mathscr{A}$ be a family of probability measures, and $\mathscr{B} \subset \mathscr{A}$ be a sprediction sufficient σ -algebra for $\mathcal{P}|\mathcal{A}$ with $s \in (1, \infty)$. Then for each $f \in \bigcap_{P \in \mathscr{P}} \mathscr{L}_{s}(\Omega, \mathscr{A}, P) \text{ there exists a common s-predictor } g \in \bigcap_{P \in \mathscr{P}} P_{s}^{\mathscr{B}} f.$

Proof. According to Corollary 2 there exists for each *A*-measurable step function a common *s*-predictor. Hence the assertion follows from Remark f).

Now we apply once more our relation between s-predictions and 2-predictions to obtain a generalized martingale theorem. For the special case s = 2 and $\mathcal{B}_n = \mathcal{B}_\infty$ this is the result of Gänßler-Pfanzagl [2]. For the special case $P_n = P$ it yields immediately the result of Ando-Amemiya [1] (use Remark d)).

5. Corollary. Let $P_n | \mathscr{A}, n \in \mathbb{N} \cup \{\infty\}$, be probability measures, dominated by a measure $\mu | \mathscr{A}$. Let $\mathscr{B}_n \subset \mathscr{A}, n \in \mathbb{N}, \sigma$ -algebras decreasing or increasing to the σ -algebra \mathscr{B}_{∞} and assume that μ is σ -finite on $\bigcap \mathscr{B}_n$. Let h_n be a density of $P_n | \mathscr{A}$ with respect to $\mu | \mathscr{A}$ and h_n^* be a density of $P_n | \mathscr{B}_n$ with respect to $\mu | \mathscr{B}_n, n \in \mathbb{N} \cup \{\infty\}$. Assume that $h_n \to h \mu$ -a.e. and $h_n^* \to h^* \mu$ -a.e.

Then for each bounded \mathscr{A} -measurable function f and each $s \in (1, \infty)$

$$(P_n)_s^{\mathscr{B}_n} f \to (P_\infty)_s^{\mathscr{B}_\infty} f \qquad P_\infty \text{-a.e.}$$

Proof. We show at first that the assertion holds for all step functions *f*. Represent *f* by $f = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i}$ with $A_i \in \mathcal{A}, i = 1, ..., n$, disjoint and $\sum_{i=1}^{m} A_i = \Omega$. According to Theorem 1 of [3] we have for each i = 1, ..., m

$$(P_n)_2^{\mathscr{B}_n} A_i \to (P_\infty)_2^{\mathscr{B}_\infty} A_i \qquad P_\infty \text{-a.e.}$$

$$\tag{1}$$

According to Theorem 1 there exists a continuous function $H: \Delta_m \to \mathbb{R}$, not depending on $P_n | \mathscr{A}$ and \mathscr{B}_n such that

 $(P_n)_s^{\mathscr{B}_n} f = H \circ ((P_n)_2^{\mathscr{B}_n} A_1, \dots, (P_n)_2^{\mathscr{B}_n} A_m)$

for all $n \in \mathbb{N} \cup \{\infty\}$. Since *H* is continuous we obtain from (1) the assertion for the step function *f*.

Now let f be bounded and \mathscr{A} -measurable. Then there exists \mathscr{A} -measurable simple functions f_k such that $f_k \leq f \leq f_k + \frac{1}{k}$, $k \in \mathbb{N}$. Hence

$$(P_n)_s^{\mathscr{B}_n} f_k \leq (P_n)_s^{\mathscr{B}_n} f \leq (P_n)_s^{\mathscr{B}_n} f_k + \frac{1}{k}, \quad k \in \mathbb{N}$$

Since the assertion holds for each f_k we obtain

$$(P_{\infty})_{s}^{\mathscr{B}_{\infty}}f_{k} \leq \underbrace{\lim_{n \to \infty}}_{n \to \infty} (P_{n})_{s}^{\mathscr{B}_{n}}f \leq \overbrace{\lim_{n \to \infty}}^{\max} (P_{n})_{s}^{\mathscr{B}_{n}}f$$

$$\leq (P_{\infty})_{s}^{\mathscr{B}_{\infty}}f_{k} + \frac{1}{k}$$
(2)

for all $k \in \mathbb{N}$. According to Remark a) and c) we have $(P_{\infty})_{s}^{\mathscr{B}_{\infty}} f_{k} \xrightarrow[k \to \infty]{} (P_{\infty})_{s}^{\mathscr{B}_{\infty}} f P$ -a.e. and (2) implies the assertion.

Examples, given in [2] and [3] show that the assumptions of the preceding result cannot be weakened.

References

- 1. Ando, T., Amemiya, I.: Almost everywhere convergence of prediction sequence in L_p (1 . Z. Wahrscheinlichkeitstheorie verw. Gebiete 4, 113–120 (1965)
- 2. Gänßler, P., Pfanzagl, J.: Convergence of conditional expectations. Ann. Math. Statist. 42, 315–324 (1971)
- 3. Landers, D., Rogge, L.: A generalized martingale theorem. Z. Wahrscheinlichkeitstheorie verw. Gebiete 23, 289-292 (1972)
- 4. Rao, M.M.: Inference in stochastic processes III. Z. Wahrscheinlichkeitstheorie verw. Gebiete **8**, 49–72 (1967)

Received June 27, 1977; in revised form April 10, 1978