Connection between the Different L_{s}-Predictions with Applications

D. Landers ${ }^{1}$ and L. Rogge ${ }^{2}$
${ }^{1}$ Mathematisches Institut der Universität zu Köln
Weyertal 86-90, D-5000 Köln 41, Federal Republic of Germany
${ }^{2}$ Universität Konstanz, Fachbereich Wirtschaftswissenschaften/Statistik, Postfach 7733, D-7750 Konstanz, Federal Republic of Germany

1. Introduction and Notations

Let P be a probability measure defined on a σ-algebra \mathscr{A} over Ω. For each $s>1$ denote by $\mathscr{L}_{s}(\Omega, \mathscr{A}, P)$ the space of all realvalued random variables f with $P\left[|f|^{s}\right]<\infty$. Let $\mathscr{B} \subset \mathscr{A}$ be a sub- σ-algebra. For each $f \in \mathscr{L}_{s}(\Omega, \mathscr{A}, P)$ let $P_{s}^{\mathscr{F} f} f$ be the projection of f onto the closed linear subspace $\mathscr{L}_{s}(\Omega, \mathscr{B}, P)$ and call it the s prediction of f. 2-prediction is the usual conditional expectation. According to [1] $P_{s}^{\text {gS }} f$ exists and is P-a.e. uniquely determined. We use the symbol $P_{s}^{2 B} f$ both for a function and its corresponding equivalence class.

Let \mathscr{P} be a family of probability measures on the σ-algebra \mathscr{A}. The σ-algebra $\mathscr{B} \subset \mathscr{A}$ is sufficient for $\mathscr{P} \mid \mathscr{A}$ in the usual sense iff for each $A \in \mathscr{A}$ there exists a common 2-prediction $g_{2}^{A} \in \cap_{P \in \mathscr{P}} P_{2}^{\mathscr{B}} 1_{A}$. We call $\mathscr{B} s$-prediction sufficient for $\mathscr{P} \mid \mathscr{A}$ iff for each $A \in \mathscr{A}$ there exists a common s-prediction $g_{s}^{A} \in \underset{P \in \mathscr{P}}{\cap} P_{s}^{\mathscr{B}} 1_{A}$.

It is shown in this paper (see Theorem 1) that there exists a functional relationship between s-prediction and 2-prediction for step functions. This relation can be used to show that s-prediction-sufficiency is equivalent to sufficiency.

If \mathscr{B} is sufficient for $\mathscr{P} \mid \mathscr{A}$, the linearity of the 2-prediction directly implies that for each $f \in \underset{P \in \mathscr{P}}{\cap} \mathscr{L}_{2}(\Omega, \mathscr{A}, P)$ there exists a common 2-prediction $g_{2}^{f} \in \underset{P \in \mathscr{P}}{\cap} P_{2}^{\mathscr{F}} f$. Since s-prediction is in general not a linear operator, thecorresponding consequence for s prediction sufficiency cannot be derived in such a direct way. It, however, follows from our functional relationship between s-prediction and 2 -prediction. This relationship can furthermore be applied, to obtain a generalization of AndoAmemiya's [1] martingale theorem for s-predictions.

2. The Results

If $a \in \mathbb{R}, r>0$ let $a^{r}=|a|^{r}$ sign a.
To make the paper more readable we collect the following well known results (see e.g. [1], [4]).

Remark. Let $1<s<\infty$. Then
a) $f \leqq g \Rightarrow P_{s}^{\mathscr{F}} f \leqq P_{s}^{\mathscr{A}} g \quad\left(f, g \in \mathscr{L}_{s}(\Omega, \mathscr{A}, P)\right)$
b) $P_{s}^{\mathscr{R}}(\alpha f)=\alpha P_{s}^{\mathscr{B}} f \quad\left(f \in \mathscr{L}_{s}(\Omega, \mathscr{A}, P), \alpha \in \mathbb{R}\right)$
c) $P_{s}^{\mathscr{B}}(\alpha+f)=\alpha+P_{s}^{\mathscr{B}_{f}} f \quad\left(f \in \mathscr{L}_{s}(\Omega, \mathscr{A}, P), \alpha \in \mathbb{R}\right)$
d) $f_{n}, f \in \mathscr{L}_{s}(\Omega, \mathscr{A}, P)$ and $f_{n} \uparrow f$ or $f_{n} \downarrow f$ then $P_{\mathrm{s}}^{\mathscr{E}} f_{n} \xrightarrow[n \rightarrow \infty]{ } P_{s}^{\mathscr{Z}} f P$-a.e.
e) If $f \in \mathscr{L}_{s}(\Omega, \mathscr{A}, P), g \in \mathscr{L}_{s}(\Omega, \mathscr{B}, P)$ then
$g \in P_{s}^{\mathscr{B}} f \quad$ iff $\quad P_{2}^{\mathscr{B}}\left[(f-g)^{s-1}\right]=0$
f) If $f_{n}, f \in \underset{P \in \mathscr{P}}{\cap} \mathscr{L}_{s}(\Omega, \mathscr{A}, P), \quad f_{n} \uparrow f$ or $f_{n} \downarrow f$ and
$g_{n} \in \underset{P \in \mathscr{P}}{\cap} P_{s}^{\mathscr{P}} f_{n} \quad$ then $\varlimsup_{n \rightarrow \infty} g_{n} \in \underset{P \in \mathscr{P}}{\cap} P_{s}^{\mathscr{P}} f$.
We remark that f) directly follows from d).
In the following theorem we state our basic relationship between s-prediction and 2-prediction.

Let

$$
\Delta_{m}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}: \sum_{i=1}^{m} x_{i}=1\right\} .
$$

1. Theorem. Let $P \mid \mathscr{A}$ be a probability measure, $\mathscr{B} \subset \mathscr{A}$ a sub- σ-algebra and $1<s<\infty$. Then for each step function f with representations $f=\sum_{i=1}^{m} \alpha_{i} 1_{A_{i}}$, where $A_{i} \in \mathscr{A}, i=1, \ldots, m$, are disjoint and $\sum_{i=1}^{m} A_{i}=\Omega$, there exists a continuous function $H_{\alpha_{1}, \ldots, \alpha_{m}}^{(s)}: \Delta_{m} \rightarrow \mathbb{R}$ which depends on $\alpha_{1}, \ldots, \alpha_{m}$ and s but not on $P \mid \mathscr{A}$ and \mathscr{B} such that

$$
P_{s}^{\mathscr{P}} f=H_{\alpha_{1}, \ldots, \alpha_{m}}^{(s)} \circ\left(P_{2}^{\mathscr{S}_{\mathcal{S}}} A_{1}, \ldots, P_{2}^{\mathscr{B}} A_{m}\right) .
$$

Proof. Let g be \mathscr{B}-measurable and bounded; to show that $g \in P_{s}^{\mathscr{B}} f$ it suffices to prove according to Remark e) that

$$
\begin{equation*}
P_{2}^{B}\left[(f-g)^{s-1}\right]=0 . \tag{1}
\end{equation*}
$$

Since $\sum_{i=1}^{m} 1_{A_{i}}=1$ and $P_{2}^{\text {®B }}$ is a linear operator, (1) is equivalent to

$$
\sum_{i=1}^{m} P_{2}^{\mathscr{B}}\left[1_{A_{i}}\left(\alpha_{i}-g\right)^{s-1}\right]=0
$$

and hence to

$$
\begin{equation*}
\sum_{i=1}^{m}\left(\alpha_{i}-\mathrm{g}\right)^{s-1} P_{2}^{\mathscr{P}_{B}} A_{i}=0 \tag{2}
\end{equation*}
$$

Now we construct a continuous function $H: A_{m} \rightarrow \mathbb{R}$ such that g $=H \circ\left(P_{2}^{\mathscr{B}} A_{1}, \ldots, P_{2}^{\mathscr{D}} A_{m}\right)$ fulfills (2). We remark that this g is \mathscr{B}-measurable and bounded. W.l.g. we assume $\alpha_{1} \leqq \cdots \leqq \alpha_{m}$. For each $\left(x_{1}, \ldots, x_{m}\right) \in A_{m}, \alpha \in \mathbb{R}$, let

$$
\varphi_{x_{1}, \ldots, x_{m}}(\alpha)=\sum_{i=1}^{m}\left(\alpha_{i}-\alpha\right)^{s-1} x_{i}
$$

Since $\alpha \rightarrow \varphi_{x_{1}, \ldots, x_{m}}(\alpha)$ is a strictly monotone decreasing and continuous function with $\varphi_{x_{1}, \ldots, x_{m}}\left(\alpha_{1}\right) \geqq 0$ and $\varphi_{x_{1}, \ldots, x_{m}}\left(\alpha_{m}\right) \leqq 0$ there exists a unique $H\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}$ with

$$
\varphi_{x_{1}, \ldots, x_{m}}\left(H\left(x_{1}, \ldots, x_{m}\right)\right)=0
$$

It is easy to see that H is continuous. Since $\sum_{i=1}^{m} P_{2}^{\text {eg }} A_{i}=1$ we obtain that g
$=H \circ\left(P_{2}^{\text {g/ }} A_{1}, \ldots, P_{2}^{\mathscr{\theta}} A_{m}\right)$ fulfills relation (2).
The construction of H shows that H depends only on $\alpha_{1}, \ldots, \alpha_{m}$ and s.
Although the s-prediction is in general not a linear operator it turns out to be possible to describe the s-prediction of a step function $\sum_{i=1}^{m} \alpha_{i} 1_{A_{i}}\left(\sum_{i=1}^{m} \mathrm{~A}_{i}=\Omega\right)$ in terms of the s-predictions $P_{s}^{\mathscr{/}} A_{i}, i=1, \ldots, m$. Moreover the functional connection is independent of $P \mid \mathscr{A}$ and \mathscr{B}.
2. Corollary. Let $P \mid \mathscr{A}$ be a probability measure, $\mathscr{B} \subset \mathscr{A}$ be a sub- σ-field and $1<s<\infty$. If $f=\sum_{i=1}^{m} \alpha_{i} 1_{A_{i}}$ where $A_{i} \in \mathscr{A}, i=1, \ldots, m$, are disjoint and $\sum_{i=1}^{m} A_{i}=\Omega$, there exists a continuous function $\hat{H}: \Delta_{m} \rightarrow \mathbb{R}$ which depends on $\alpha_{1}, \ldots, \alpha_{m}$ and s but not on $P \mid \mathscr{A}$ and \mathscr{B} such that

$$
P_{s}^{\mathscr{O}} f=\hat{H} \circ\left(P_{s}^{\mathscr{S}} A_{1}, \ldots, P_{s}^{\mathscr{S}} A_{m}\right) .
$$

Proof. Let $H_{0,1}^{(s)}: \Delta_{2} \rightarrow \mathbb{R}$ be the function appearing in Theorem 1 for $\alpha_{1}=0, \alpha_{2}=1$. It is easy to see that $\varphi(x)=H_{0,1}^{(s)}(x, 1-x)=\frac{x^{r}}{x^{r}+(1-x)^{r}} \quad\left(\right.$ where $\left.r=\frac{1}{s-1}\right)$ is a continuous strictly increasing function from [0, 1] onto [0, 1]. Let

$$
\hat{H}=H_{\alpha_{1}, \ldots, \alpha_{m}}^{(s)} \circ\left(\varphi^{-1}, \ldots, \varphi^{-1}\right)
$$

Since $P_{2}^{\mathscr{A}} A=\varphi^{-1} \circ P_{s}^{\mathscr{A}} A$, Theorem 1 yields the assertion.
As $P_{s}^{\mathscr{P}} A=\varphi \circ P_{2}^{\mathscr{P}_{s}^{s}} A$ and $P_{2}^{P_{A}} A=\varphi^{-1} \circ P_{s}^{\mathscr{P}} A$ with a strictly increasing and continuous function φ which does not depend on $P \mid \mathscr{A}$ and \mathscr{B} we obtain:
3. Corollary. Let $\mathscr{P} \mid \mathscr{A}$ be a family of probability measures. If a σ-algebra $\mathscr{B} \subset \mathscr{A}$ is sprediction sufficient for $\mathscr{P} \mid \mathscr{A}$ for some $s \in(1, \infty)$ then it is s-prediction sufficient for all $s \in(1, \infty)$.

Hence s-prediction sufficiency is equivalent to sufficiency.
4. Corollary. Let $\mathscr{P} \mid \mathscr{A}$ be a family of probability measures, and $\mathscr{B} \subset \mathscr{A}$ be a sprediction sufficient σ-algebra for $\mathscr{P} \mid \mathscr{A}$ with $s \in(1, \infty)$. Then for each $f \in \underset{P \in \mathscr{P}}{\cap} \mathscr{L}_{s}(\Omega, \mathscr{A}, P)$ there exists a common s-predictor $g \in \bigcap_{P \in \mathscr{P}}^{\cap} P_{s}^{\mathscr{P}} f$.

Proof. According to Corollary 2 there exists for each \mathscr{A}-measurable step function a common s-predictor. Hence the assertion follows from Remark f).

Now we apply once more our relation between s-predictions and 2-predictions to obtain a generalized martingale theorem. For the special case $s=2$ and $\mathscr{B}_{n}=\mathscr{B}_{\infty}$ this is the result of Gänßler-Pfanzagl [2]. For the special case $P_{n}=P$ it yields immediately the result of Ando-Amemiya [1] (use Remark d)).
5. Corollary. Let $P_{n} \mid \mathscr{A}, n \in \mathbb{N} \cup\{\infty\}$, be probability measures, dominated by a measure $\mu \mid \mathscr{A}$. Let $\mathscr{B}_{n} \subset \mathscr{A}, n \in \mathbb{N}, \sigma$-algebras decreasing or increasing to the σ-algebra \mathscr{B}_{∞} and assume that μ is σ-finite on $\underset{n \in \mathbb{N}}{\cap} \mathscr{B}_{n}$. Let h_{n} be a density of $P_{n} \mid \mathscr{A}$ with respect to $\mu \mid \mathscr{A}$ and h_{n}^{*} be a density of $P_{n} \mid \mathscr{B}_{n}$ with respect to $\mu \mid \mathscr{B}_{n}, n \in \mathbb{N} \cup\{\infty\}$. Assume that $h_{n} \rightarrow h \mu$-a.e. and $h_{n}^{*} \rightarrow h^{*} \mu$-a.e.

Then for each bounded \mathscr{A}-measurable function f and each $s \in(1, \infty)$

$$
\left(P_{n}\right)_{s}^{\mathscr{F}_{n}} f \rightarrow\left(P_{\infty}\right)_{s}^{\mathscr{B}_{\infty}} f \quad P_{\infty} \text {-a.e. }
$$

Proof. We show at first that the assertion holds for all step functions f. Represent f by $f=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$ with $A_{i} \in \mathscr{A}, i=1, \ldots, n$, disjoint and $\sum_{i=1}^{m} A_{i}=\Omega$. According to Theorem 1 of [3] we have for each $i=1, \ldots, m$

$$
\begin{equation*}
\left(P_{n}\right)_{2}^{g_{n}} A_{i} \rightarrow\left(P_{\infty}\right)_{2}^{\mathscr{S}_{\infty}} A_{i} \quad P_{\infty} \text { - a.e. } \tag{1}
\end{equation*}
$$

According to Theorem 1 there exists a continuous function $H: \Delta_{m} \rightarrow \mathbb{R}$, not depending on $P_{n} \mid \mathscr{A}$ and \mathscr{B}_{n} such that

$$
\left(P_{n}\right)_{s}^{\mathscr{F}_{n}} f=H \circ\left(\left(P_{n}\right)_{2}^{\mathscr{F}_{n}} A_{1}, \ldots,\left(P_{n}\right)_{2}^{\mathscr{F}_{n}} A_{m}\right)
$$

for all $n \in \mathbb{N} \cup\{\infty\}$. Since H is continuous we obtain from (1) the assertion for the step function f.

Now let f be bounded and \mathscr{A}-measurable. Then there exists \mathscr{A}-measurable simple functions f_{k} such that $f_{k} \leqq f \leqq f_{k}+\frac{1}{k}, k \in \mathbb{N}$. Hence

$$
\left(P_{n}\right)_{s}^{\mathscr{F}_{n}} f_{k} \leqq\left(P_{n}\right)_{s}^{\mathscr{B}_{n}} f \leqq\left(P_{n}\right)_{s}^{\mathscr{S}_{n}} f_{k}+\frac{1}{k}, \quad k \in \mathbb{N} .
$$

Since the assertion holds for each f_{k} we obtain

$$
\begin{align*}
\left(P_{\infty}\right)_{s}^{\mathscr{B}_{\infty}} f_{k} & \leqq \varliminf_{n \rightarrow \infty}\left(P_{n}\right)_{s}^{\mathscr{B}_{n}} f \leqq \varlimsup_{n \rightarrow \infty}\left(P_{n}\right)_{s}^{\mathscr{B}_{n}} f \tag{2}\\
& \leqq\left(P_{\infty}\right)_{s}^{\mathscr{B}_{\infty}} f_{k}+\frac{1}{k}
\end{align*}
$$

for all $k \in \mathbb{N}$. According to Remark a) and c) we have $\left(P_{\infty}\right)_{s}^{\mathscr{P}_{\infty}} f_{k} \longrightarrow \xrightarrow[k \rightarrow \infty]{ }\left(P_{\infty}\right)_{s}^{\mathscr{F}_{\infty}} f P$-a.e. and (2) implies the assertion.

Examples, given in [2] and [3] show that the assumptions of the preceding result cannot be weakened.

References

1. Ando, T., Amemiya, I.: Almost everywhere convergence of prediction sequence in $L_{p}(1<p<\infty)$. Z . Wahrscheinlichkeitstheorie verw. Gebiete 4, 113-120 (1965)
2. Gänßler, P., Pfanzagl, J.: Convergence of conditional expectations. Ann. Math. Statist. 42, 315-324 (1971)
3. Landers, D., Rogge, L.: A generalized martingale theorem. Z. Wahrscheinlichkeitstheorie verw. Gebiete 23, 289-292 (1972)
4. Rao, M.M.: Inference in stochastic processes III. Z. Wahrscheinlichkeitstheorie verw. Gebiete 8, 4972 (1967)

Received June 27, 1977; in revised form April 10, 1978

