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I discuss conditions under which a measure space will be "decomposable"  or 
strictly localizable. In particular, I show that there can be no canonical way 
of enlarging a-algebras of measurable sets so as to make measure spaces 
decomposable. The argument uses a discussion of subspaces (w 

My thanks are due to M. Talagrand for helpful conversations leading to 
a greatly improved description of Example 8, and to L. LeCam for referring 
me to [4] and [7]. 

l. Definitions and Introduction. Following [-5], I shall say that a measure algebra 
is a Boolean algebra 95[ together with a strictly positive countably additive 
funct ional# :  ~I~[-0, oo]. 9d y will then be {a: # a <  oo}. If (X, 2, #) is a measure 
space, I shall write 9.I(S, #) for the associated measure algebra; Z y will be 
{E:#E<o�9 A measure algebra is semi-finite if it has no purely infinite 
elements i.e. sup ~ I _ - 1 ;  it is Maharam if it is moreover Dedekind complete. A 
measure space is semi-finite l or Maharam ("localizable") if its measure algebra 
is. (X, Z, #) is complete if every subset of a set of zero measure is measurable; it 
is locally determined if it is semi-finite and E ~Z whenever E ___ X and E c~ F ~Z for 
every FeZ I. Finally, (X, Z, #) is decomposable ("strictly localizable") if there is a 
partition ( X , ) ~  I of X into sets of finite measure such that 

2 =  {E: E c_X, Ec~X,~S V t~I}, 

#E= ~ #(Ec~X~) V EeS, 

Note that the effect of the definitions of I-9] is to restrict attention to locally 
determined measure spaces; thus a localizable measure space in [-9] corresponds 
to a locally determined Maharam measure space here. In [4] and 1-6] there is a 
further restriction to complete spaces. 

This corresponds to a "regular" upper integral in [6] 
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The importance of Maharam spaces lies in the strong Radon-Nikodym 
theorem: (X, Z, #) is Maharam iff the natural duality between L 1 and L ~176 
represents L ~ as (L1) ' ([5], 53B; compare [93, Theorem 5.1). All decomposable 
measure spaces are Maharam and locally determined ([5], 64Hb), and the most 
important Maharam measure spaces are decomposable (e.g. Radon measure 
spaces; see [5], 72B). An essential property of decomposable spaces is given in 
IV.3 of [6], where we see that (in the notation of this paper) a complete locally 
determined measure space is decomposable iff it has a lifting. 

It is easy to find Maharam measure spaces which are not decomposable; see 
e.g. w 5 below. However, the examples given there are essentially insignificant, for 
the following reason. Let (X, Z, #) be any measure space. Then it has a complete 
locally determined ("c.l.d.") version, constructed as follows. Set 

X'={E:  E ~ X ,  V F~Z~ 3EI, E2GZ 

such that E: ~EcqF~E 2 and #(E2\E1)=O}, 

#'E=sup{#F:FGZI, F~_E} VEGZ'. 

Then (X,Z',#') is a c.l.d, measure space. Moreover, the embedding Z~_X' 
induces a map 9.I(X,#)~9.I(Z',#') which includes an isomorphism between 
~I(Z,#) I and 9.I(Z',#')r and if (X,Z,#) is Maharam, we actually have an 
isomorphism between ~I(Z, #) and 9.1(Z',#'). (See [5], Exercises 64 da/b. An 
alternative construction of #' is from the inner measure 

#.A=sup{#F:FGZf ,  F ~ A }  VA~_X, 

as in [5], 72A. Compare [1], Exercise 17.7.) 
Thus any Maharam measure space has a canonical c.l.d, version which has 

the same measure algebra and therefore the same L p spaces, etc. The examples 
5(a)-(b) below are clearly rendered decomposable by this process. The question 
therefore arises: can every Maharam measure space be made decomposable by 
taking its c.l.d, version? equivalently, is every c.l.d. Maharam measure space 
decomposable? or, does every c.l.d. Maharam measure space have a lifting? (See 
e.g. [2], p. 71.) The centrepiece of this paper is an example to show that the 
answer is no (Example 8). 

To clear the air, I shall begin with the known positive results. The most 
powerful of these is the following. 

2. Theorem. Let (X, ~, #) be a c.l.d, measure space, and suppose that there is a 
disjoint family d ~X  I such that supE ~ = 1 in 9.I(X, #). Then (X, Z, #) is decompos- 
able. ~~ 

Proof. See [5], 64 I. (The decomposition is of course d u {X \ u d} . )  

Remark. This theorem amounts to a proof that the "strongly localizable" spaces 
of [4] are decomposable. 

3. Definition. The next proposition depends on the concept of magnitude of a 
measure space, which I shall define as follows. Let (9.I, #) be a semi-finite 
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measure algebra. If #1 < 0% then #1eR + is the magnitude of (9.I, #). Otherwise, 
any two maximal disjoint families A,B~_X f have the same infinite cardinal 
(because each clement of A meets only countably many elements of B, while 
each non-zero element of B meets at least one element of A; and vice versa). 
This cardinal is now the magnitude of (91, #). If (X, Z, #) is a semi-finite measure 
space, its magnitude is the magnitude of 9.1(Z, #) i.e. either #X or the cardinal of 
any maximal almost-disjoint family of sets of non-zero finite measure. Observe 
that for non-totally-finite spaces, the magnitude is just the "dimension" dis- 
cussed in [4]. 

Now we have the following results. (Parts (b) and (c) are given in [4].) 

4. Proposition. (a) Any semi-finite measure space of countable magnitude is 
decomposable. 

(b) Any c.l.d, measure space of magnitude < N a is decomposable. 
(c) Any c.I.d. Maharam measure space of magnitude < c is decomposable. 
(d) I f  (X, X, #) is a Maharam measure space and ~ (X) < c, then its magnitude 

is either finite or <= 4f(X). Consequently, if (X, X,#) is also c.l.d., it must be 
decomposable. 

Proof (a) The measure spaces of countable magnitude are just those which are 
usually called "a-finite", and are of course decomposable ([5], 64Ha). 

(b) Let (X, X, #) be a c.l.d, measure space of magnitude N1, and let ~ _ ~ :  
be a maximal almost-disjoint family of sets of non-zero measure. Enumerate d 
as ~E~)~<~ where ~c<co 1, and set F~=E~\,<~JE, for each ~<~c. Then {F~: ~<tc} 

is a disjont family in s  and sup F~" = sup E~ = 1 because (X, 2;, #) is semi-finite. 
~<~ r 

By Theorem 2, (X, E, #) is decomposable. 
(c) Now suppose that (X, E, #) is a c.l.d. Maharam measure space of magni- 

tude < c, and let C ~ 9.1(f, #): be a maximal disjoint family. Index C as ~cx)i~: 
where J _ ~ N .  For neN, set 

a,, = sup {c~: n e I ~ J } ,  

which exists as 9.I is Dedekind complete. Choose E, eX such that a,=E~, and set 

vi=(  e.-. U e~ vI :. 
n e t  neN ' - . I  

Then {FI)I~: is a disjoint family in X: and sup FT= sup ci= 1, so that once 

again (X, X, #) is decomposable by Theorem 2. 
(d) If (X, E, #) is a Maharam measure space of infinite magnitude N, then 

there is a disjoint family C___ ~(X, # ) \  {0) of cardinal rain (c, N). The technique 
of (c) above shows that we can find a disjoint family d _ ~ E  such that C 
= { F ' :  F e d } .  As no element of d can be empty, 

4f (X)=> ~(~r ##(C)=min (c, N). 

Turning this round, if we know that 4f (X)< c then N must be < 4f (X), as stated. 
The last part now follows from (c). 
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Note. See Example 11 below for the problems that can arise if # (X)= c. 

5. Examples. For the next few sections, I shall give examples to show that the 
hypotheses of Proposition 4 are (within their own terms) precisely what is 
needed. 

(a) Let ~o 1 be the first uncountable ordinal. Let To be {~, o~1} and let 

T1 = {E: E~_col, either E is countable or co~ "-.E is countable}. 

Define v on T 1 by 

vE = 0 if E is countable, 1 otherwise. 

Then (col, T1, v) is a measure space. Let X=co  I xco 1 and for Ec_X write 

Er = {t/: (~, t/)eE} g ~ < e )  1 . 

Set 

E = { E :  E~_X, EceT t Vr E~eT o for all but countably many ~}; 

12E= ~ vE~ V EeS. 
~<(ol 

Then it is easy to check that (X, S, it) is a complete Maharam measure space, of 
magnitude N~, but is not locally determined nor decomposable. (Observe that 
(X, Z, #) has a multiplicative lifting 0: Z ~ Z given by 

O E  ~- {(~, ~1): n <(D1, vgr = 1}.) 

(b) Now, following the same conventions as in (a), take X to be co I x [0, 1]. 
Replace T 1 by the algebra of Lebesgue measurable sets, T o by the algebra of 
Borel measurable sets, and v by Lebesgue measure. Proceeding as before, we 
obtain a locally determined Maharam measure space of magnitude N 1 which is 
not complete or decomposable. 

(c) Finally, try X = o92 x co2, where co 2 is the first ordinal of greater cardinal 
than N1. Let T be 

{F: F__co2, either F is countable or r is countable}, 

and define v on T by saying that vF = 0 if F is countable, 1 otherwise. For  E ~_ X, 
write 

e~={~: (~, ~)E~}, E"={~: (~, ~)~E}. 

Let S be 

{E:E~_X,Er and E%TV~,I/<o)2} 

and define # on Z by 
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~_ < co2 ~t < roz 

Then (X, S, #) is complete and locally determined, of magnitude ~o2, but is not 
Maharam. 

6. For the fourth and principal example of this paper, we need the following 
(attributed in [3] to Z. Hedrlin). 

Proposition. Let I be any index set, and let d be a disjoint collection of subsets of 
{0, 1} r such that each A EsJ is countably-determined (i.e. there is a countable J ~ I 
such that if teA, ue{0, 1} t and t(z)=u(O for every zEJ, then u~A). Then # ( d ) <  c. 

Proof This is a special case of [3], Theorem 3.13. 

7. Construction. Let 03, 2) be any Dedekind a-complete measure algebra. Then it 
can be represented as the measure algebra of a measure space (Z, T, ~) where Z 
is the Stone space of ~3 ([5], 61I). Now Z, the space of maximal ideals in ~3, can 
be regarded as a subset of X = {0, 1} ~, identifying J e Z  with the function t given 
by t(a)=0 if a ~ J ,  1 otherwise. Since, for any a~3 ,  

E~={t: t(a)=l} 

corresponds to 

{J :  aCJ}  = F ~  T, 

the embedding Z~_X is measurable for T and the Baire a-algebra 27oC__~X 
generated by the sets E~. So we have a measure #o on S o given by 

#o(E)=v(Ec~Z) V E~X o. 

Since each F~T is v-equivalent to some F~, we see that the map 
E~--~Ec~Z: ~ o ~ T  induces an isomorphism between 91(So,Po ) and 9.1(T,v) 
---- ;0. 

Accordingly, if the original algebra (~3, 2) is Maharam, we can take the c.l.d. 
version of (X, Z0, #o) to obtain a c.l.d. Maharam measure space (X, 27, #) with 
measure algebra isomorphic to 03, 2). 

The essential property of (X, 27, #) is the following: if d ~ S  is disjoint and 
pE>O for every E e d ,  then # ( d ) < c .  This is because each E ~ d  has #E 
=sup {#oH: H~2~o, HOE},  so there must be a non-empty Baire set He~_E. 
Now each H E is countably determined, so by Theorem 6 

# ( d ) =  #{HE: E 6 d }  _-<c. 

8. Example. If, in the construction of w 7, (~3, 2) is a Maharam measure algebra of 
magnitude >c  (e.g. ~ = ~ Y ,  where Ye(Y)>c, and 2{u} =1 for every u~Y), then 
the measure space (X, 27, #) obtained is a c.l.d. Maharam measure space which is 
not decomposable. 

Remark. Prof. LeCam has pointed out that this is in effect a counterexample to 
(1)~(5) of [7], Theorem 5. 
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9. Under a suitable set-theoretic assumption, we can find an even more striking 
version of this example. I begin with a lemma on subspaces. 

Subspaces of Measure Spaces. Let (X, X, #) be a measure space, and Y a subset of 
X. Write 

Xr={Ec~Y: EsX}, 

#r(F)= #*(F)= inf {laE : E s X, E ~_F} 

Then 

(a) 
(b) 
(c) 
(d) 
(e) 

Proof. 
(b) 
(c) 

V F ~ I  r. 

(Y, Xr, #r) is a measure space; 
if(X, Z, #) is complete, so is (Y, X r, #r); 
if (X, X, #) is c.l.d., (Y, X r, #r) is semi-finite; 
if (X, X, #) is c.l.d. Maharam, so is (Y, St ,  #r); 
if (X, X, #) is decomposable, so is (Y,, St ,  #r)- 

(a) is elementary; cf. [1], Ex. 17.10. 
is trivial. 
Suppose that HeX r is such that # r ( H m F ) = 0  for every FeS{.  Then 

# * ( H ~ E ) = 0  for every EeX:; as (X, Z,#) is complete, # (Hc~E)=0 for every 
E~2:; as (X, 2, #) is locally determined, HeX and # H = 0 ,  so that #r (H)=0.  

(d) We know already that (Y,, St ,  #r) is complete and semi-finite. 
(i) Suppose that H~_ Y and that Hc~FeX r for every FeSIr. Consider 

{E': EE~ f, Ec~ Y c_H} ZN(X, I-O. 

As (X, Z, #) is Maharam, this has a supremum of the form E~) where EoeZ. It is 
easy to show that (because (X, Z, #) is complete) 

#(Fc~((Eoc~Y)/kH))=O V FeS:, 

from which it follows (because (X,Z,#) is locally determined) that 
~t((Eoc~ Y ) A H ) = 0  and H e Z r .  Because (X, Zr, #r) is semifinite, this is enough to 
show that it is locally determined. 

(ii) To see that (Y, Xr,#r) is Maharam, observe that the mapE~--> 
Ec~Y: X ~ X  r induces an isomorphism between 9.1(Nr,#r) and the quotient 
9X'(Z, #)/J, where 

~ =  {E': EeX, ~(Ec~ Y)-- 0}. 

Because oR(S, #) is Dedekind complete, J is a principal idea/, and the quotient is 
isomorphic to the complementary principal ideal, therefore also Dedekind 
complete. 

(e) is easy. 

10. Remarks. Part (d) above is a surprising property of c.l.d. Maharam spaces. It 
is not difficult, using the techniques of w 5, to find (i) a subspace of a complete 
Maharam measure space which is not semi-finite (take Y={(~,0): ~<o)1} in 
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5(a)); (ii) a subspace of a locally determined Maharam measure space which is 
not semi-finite; (iii) a subspace of a c.l.d, space which is not locally determined 
(take Y=co 1 x e) 1 in 5(c)). 

11. Example. Observe first that if I is any set of cardinal 2 c, and X =  {0, 1} ~, there 
is a set yc_x ,  of cardinal c, which meets every non-empty Baire set in X. For  
there is certainly a dense set Yo--X of cardinal c. Now for each sequence (t,)n~ N 
in Yo, choose one t~X such that t ( t )= lim t,( 0 for all those i~I for which the 

n ~ o o  

limit exists. Let Y be the set of all the t's obtained. Then :~ (Y)= c. If E_~X is a 
non-empty Baire set, let u~E and let J G I  be a countable set such that any t~X 
which agrees with u on J must belong to E. Then there is a sequence (t,)n~ N in 
Y0 such that u ( 0 =  lim tn(t) for every t~J. The corresponding t belongs to Y~E, 
as required. ~ 

(b) Let us now suppose that 2 s = 2  ~ for some N>c;  this is consistent with the 
usual axioms of set theory (for instance, we may take c= N~, N = N 2, 2~= N3; see 
[8], Chapter 8). In w take ~3 to be ~W,, where :~(W)=N, and )o{v} = 1 for each 
yEW. Then =~(~3)=2 ~, so, by part (a), there is a set Y_~X={0, 1} ~ such that 
:~(Y)=c and Y meets every non-empty element of 2; 0. Consequently g meets 
every non-negligible set in N. If we construct Zy and #y from N and # as in w 10, 
we see that (X, Ny, #y) is a c.l.d. Maharam measure space of magnitude N, 
because 91(Iy, #y) is isomorphic to 9I(I,/z). 

Thus we have a c.l.d. Maharam space with magnitude actually greater than 
the cardinal of the underlying space. This means that not merely is (Y, Ny, #y) 
not decomposable, but that it cannot be made decomposable without either 
shrinking the measure algebra or enlarging Y. 

12. Remark. Of course this example is eliminated by assuming the generalized 
continuum hypothesis. If (X, I ,  #) is a Maharam measure space of infinite 
magnitude N, we certainly have 

2 s <  ~(9~(I, #))~ @(X)<2 ~(x), 

so (subject to GCH) N< #(X). 
From 4(d) above we see also that the problem cannot arise if the underlying 

space has cardinal < c. 

13. Application to Product Measures. There is no generally accepted formulation 
of " the"  product of two measure spaces of uncountable magnitude, but the 
strongest candidate is in my view the following. Given measure spaces (X, S, #) 
and (Y, T, v), let p be the outer measure on X x Y given by 

; A = i n f  { ~ gE i . vF~: Ei~Z , F,.~ T V ieN,  A c U Ei x Fi} 
i~N i~N 

(with the usual convention that 0.oo =0);  let 2p be the measure defined by p; and 
let 2 be the c.l.d, version of 2p. (This is the completion of the product measure 
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defined in [1], w Note that 20 need not be semi-finite, so that 2 and 2p may 
fail to have isomorphic measure algebras; cf. [1], Ex. 39.17.) It is easy to see that 
this cons t ruct ion- the  "c.l.d. product measure" - is associative, commutative, 
and distributive over direct sums; so that the c.l.d, product of two decomposable 
spaces is always decomposable. But the c.l.d, product of two Maharam spaces 
need not be Maharam, because of the following. 

14. Proposition. A c.l.d, measure space (X, 2, V) is decomposable iff its c.l.d. 
product with every probability space is Maharam. 

Proof. (a) If (X, Z, V) is decomposable, so is its c.l.d, product with any decompos- 
able measure space; so such products have to be Maharam. 

(b) Suppose that (X, ~, V) has Maharam c.l.d, products. Let (a~),e I be a 
maximal disjoint family in 9.i(X,/*):. Let (Y, T, v) be a probability space such that 
#(9.i(T,v))> #(I)  (e.g. Y={0,1} x with the usual product measure), and let 
(b,),~ I be a family of distinct elements of 9.I(T, v). Choose A,eX, B,~ T such that 
AT=a,, B 7 =b, for each zeI. Let (X x Y,, A, 2) be the c.l.d, product of(X, X,/*) and 
(r, T, v). 

In 91(A, 2), consider the family {(A, xB,)~ z~I}. By hypothesis, this has a 
supremum, which is of the form E ~ where E e A  and 

(A, x B f ~ E ' ,  ( A , x ( Y \ B , ) ) ' c ~ E ' = O  g~eI.  

For r eX  write E, = {u: (t, u)~E}. On A, x Y, ). is the ordinary (completed) product 
measure, so we can use Fubini's theorem to see that 

A',= {t: teA,,  v(Et AB,) = 0 } 

is v-measurable and /,-almost the whole of A,. Now (l~ecause the b, are all 
distinct) {A',: zeI} is a disjoint family and sup(A ' , ) '= supa ,= l  in 9.I(2, V). By 
Theorem 2, (X, Z, V) is decomposable. ,~i ,~z 

15. Corollary. There exist Maharam measure spaces which have a non-Maharam 
c.l.d, product. 

16. Remark. Observe that the c.l.d, version of any measure space (X, Z, V) is 
isomorphic to the c.l.d, product of (X, s V) with the elementary probability 
space (S, ~2, p) with one point. Consequently, if (X, s V) and (Y, T, v) are two 
Maharam measure spaces of magnitude < c, 

(x ,  z ,  v) x (Y, 7;, v) ~ ( ( x ,  z,/*) x (Y, ~ v)) x ((s, ~,  p) x (s, n, p)) 

(because the product is certainly c.l.d.) 

~( (x ,  ~,/*) x (s, 8, p)) x ((Y, ~ v) x (s, 8, p)) 

(because the c.l.d, product is associative and commutative). Thus (X, 2, V) 
x(Y, T, v) is isomorphic to the product of decomposable spaces, therefore 

decomposable, therefore Maharam. 
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