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Summary. A unified proof  is given of several ergodic and martingale 
theorems in infinite measure spaces. 

Introduction 

For  a fixed positive integer m, define Im=I1  x ... x I m with each I k = N  (positive 
integers), and partial order defined on I m by s=(s  1 . . . . .  sin) < t = ( t  1 . . . .  , tin) if and 
only if s k < t  k for all k =  1 . . . .  ,m. We are concerned here with almost everywhere 
convergence of processes indexed by I "~ when all the indices sj converge to 
infinity independently ("unrestricted" convergence). In a recent article [23], the 
second author has formulated a general principle yielding simultaneous proofs 
of many a.e. mult iparameter  convergence theorems. As a starting point, we 
restate this principle. Recall that a a-complete Banach lattice E has an order 
continuous norm if g,$0 implies [Ignkl ~ 0 .  Since we only consider Banach lattices 
of functions over measure spaces for which convergence in order corresponds 
to a.e. convergence (in fact, every Banach lattice with order-continuous norm 
may be so represented, as shown e.g. in [14], p. 25), we only discuss a.e. con- 
vergence. The words a.e. may or may not be omitted. 

Theorem 1 [233. Let  L ( 1 ) ~ L ( 2 ) ~ . . . ~ L ( m )  be Orlicz spaces satisfying the A= 
condition, or, more generally, Banach lattices with an order-continuous norm. For 
k = l  . . . .  ,m, let T(k,n),  n ~ N  be positive and linear operators fi'om L(k) to L(1) 
such that 

(a) l i m r ( k , n ) f  = r (k ,  oo)f" exists a.e. for  each function f in L(k) and is in 
tl  

L(k). 

(b) sup I T ( k , n ) f l e L ( k - 1 )  for each f in L(k), k = 2  . . . . .  m. 
n 

* The research of this author is m part supported by the National Science Foundation, grant 
MCS-8301619 



478 N.E. Frangos and L. Sucheston 

Then for each f in L(m) one has 

(c) lira T(1,s l) . . .  T(m, sm)f = T(1 , oo)... T(m, ov)f a.e. 

This principle is applicable if all L(k) spaces are Lp spaces for a fixed p, 
l < p < o %  since these spaces have an order-continuous norm. Thus, the prin- 
ciple gives multiparameter versions of purely Lp results, e.g., theorems of 
Akcoglu and Stein, in either finite or infinite measure spaces. The situation is 
different if the operators act simultaneously on the spaces La and L~o, which is 
the case of the martingale theorem, and theorems of Rota and Dunford- 
Schwartz. In finite measure spaces, Theorem 1 still implies the appropriate k- 
parameter versions, with L(k)=Llogk-~L for martingale and Dunford- 
Schwartz, L(k)= LlogkL for Rota. But in the case of infinite measures, the Orlicz 
spaces LlogkL do not have any more an order-continuous norm, and the right 
setting are the spaces R k introduced by N. Fava [9], who proved the multipa- 
rameter Dunford-Schwartz theorem for R k. A real difficulty arises because the 
spaces Rk, defined as intersections of Orlicz classes (see Section 1), are not 
known to satisfy the conditions required of the L(k) classes in Theorem 1. 
However, we prove that R o is an order-continuous Banach lattice for the L 1 
+ L ~  norm. This is particularly gratifying because, unlike Ro, the space L~ 
+L~o has neither an order-continuous norm nor one-parameter limit theorems. 
The space R o can now play the role of L(1). We require a version of the 
principle in which only L(1) is assumed to be a Banach lattice with an order- 
continuous norm, and this is accomplished at the price of having the one- 
dimensional operators T(k,n) defined on L(1) rather than only on L(k). As an 
application, we obtain a simple proof of the theorem of Fava, and a l s o  
apparently new R k versions of the martingale theorem and of Rota's theorem. 
No difficult properties of Banach lattices are used, and our results are easier to 
prove and are more widely applicable than multiparameter maximal inequali- 
ties adapted to particular cases. 

Theorem 2. Let L(1)DL(2)m. . .~L(m) where L(1) is a Banach lattice with an 
order-continuous norm, and L(2) . . . .  ,L(m) are (not necessarily closed) linear 
subspaces of L(1). For k= 1, ...,m let T(k,n), n~N be positive and linear oper- 
ators from L(1) to L(1) such that the assumption (b) of Theorem 1 holds. Assume 
also that (a') holds: 

(a') For each k = l ,  ...,m and each f in L(1), l imT(k ,n) f= r(k, oo)f exists 
a.e. and is in L(1). 

Then for each f in L(m) the condition (c) of Theorem 1 holds. 

The proof is the same as the proof of Theorem 1, therefore it is omitted. 
However, we will explain here the role played by the order-continuity of L(1): 
it is used to establish the monotone continuity for order convergence of positive 
operators T on L(1), that is, the implication: f , ~ 0 ~  Tf~O. Indeed, f~$0 im- 
plies irf,,rl~o, hence p[Tf, lp--,O, because a positive linear operator on a Banach 
lattice is necessarily continuous (see e.g., [14], p. 2). Let g = l i m T f , ,  then 
I[gll < II Zf . -g l l  + II Zf.l] implies g=0 .  In the proof of Theorem 2, the monotone 
continuity for order convergence is required of the one-parameter limit oper- 
ators T(k, oo). 
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The first section gives basic properties of the spaces R k. Section 2 discusses 
conditions for the applicability of Theorem 2 to the R k spaces. Section 3 re- 
views the one-parameter infinite-measure setting of Dunford-Schwartz, mar- 
tingale, and Rota. To start the multiparameter induction, it is here necessary to 
go beyond the classical case, proving the theorems in Ro; in R 1 for Rota. The 
R1 setting is an improvement over N. Starr [22]. Theorem 2 is also used to 
simplify the proof of the one-parameter Rota theorem. Section 4 gives the 
promised multiparameter theorems in R k. Section 5 proves a new multipara- 
meter LlogkL version of the Chacon-Ornstein theorem. Section 6 considers 
Banach valued processes, giving a Banach-valued version of our  martingale 
result, and a multiparameter version of E. Mourier's ergodic theorem. This is 
achieved by an application of the earlier results to positive operators on spaces 
of real functions, which "dominate" operators acting on spaces of Banach- 
valued functions. 

I. Definitions and Basic Notions 

Let ((2,~,#) be a a-finite measure space. The relations are often considered 
modulo sets of measure zero. Let Lp=Lp(s l<p__<oo be the usual 
Banach spaces of real valued functions defined on ~2. By L I + L ~ = Y  we 
understand the Banach space of functions f which can be written as g+h 
where g e L  1 and heL~,  endowed with the norm 

[If J] =inf{llg][ 1 + I[hl[ o0 : f = g +  h}. 

The completeness of the norm PI'It follows from the completeness of the norms 
II'll~ and H" II ~. For  various properties of Y, see e.g., [14], p. 119. 

For  each k = 1, 2, . . . ,  let R k be the class of functions f such that 

Infl( loglnfl)k d#=~ lnfl(log + Inf[)k d# < oo 
{If] > i/n} 

for all neN.  R o is the class of functions f such that for each heN,  

] f l d # < o o .  
{If[ > 1~hi 

An equivalent definition of R k is as follows: 
Let for s>0 ,  CI'7,(X)=SX(Iog+sx)k: N + ~ I R  +, then ~b~ is an Orlicz function. 

Let 
/Yk = {f :  fr  d# < oo}. 

Each L~k is an Orlicz class (see e.g., [-12], p. 60). Now R k = ~ I 2  k. Since the 
classes L" k are convex, it follows that the spaces R k are linear. N 

By LlogkL we understand the Orlicz spaces corresponding to Orlicz func- 
tions ~k(x)---x(log + x) k. The following proposition collects simple properties of 
the R k spaces ([9]). 
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Proposition 1.1. i) Each R k is a linear space. 

ii) L ~ c R o c L l  +L~o. 
:iii) R k cLlogkL, k = 1, 2 . . . .  ; R k = LlogkL if and only if #(f2)< oo. 

iv) R o ~ R j ~ R 2 ~  .... 
v) For bach k, R k contains the linear space spanned by ~ Lp. 

p > l  

The  conta inment  in (v) is proper,  as shown by the example of f ( x ) =  1/logx 
for x > 2 ,  f ( x ) = 0  for x < 2 .  It is also known that  the spaces R k, k>=l, are 
rear rangemen t invariant  Banach lattices for the norm of LlogkL, closure in this 
no rm of the class of simple functions (see remarks about  spaces H M, [14], 
p. 120). Here  we do not  use these properties.  We only require the following: 

Theorem 1.2. The space R o is an order continuous Banach lattice for the norm 
I1"11 (the L 1 +L~o norm). 

P r o o f  We first prove that  (R o, 1]'11) is a closed subspace of the Banach lattice Y 
=LI +L~o. 

Let  ( f , ) cR  o, f e Y  be such that I lL-I l l - '0 .  We will show that f ~ R  o. Let  
t > 0 .  Then  there exists peN such that  I/f-fpll  < t .  Since f - f ,  eY, there exist 
gp~L1, hp~Loo such that  

f-fp=gp-%hp and ligpll~ <t, I[hpll~<t. 

N o w  IfJ < I/,I + Lg,I + Ihpl, and 

{If I> At} ~ (If,l-% Igpl-% Ih, I > 3 t} ~ {I/pl-% Igpl > 2t} 
-~ {I f ,[  > t} u {Ig,[ > t}. 

Hence  

[. [ f l d # 5  [. Ifpld#-% [. [ L i d #  
(Ill > 3t) Ofpl >t) (Ig, l >t~ 

+ 2 II gpl[1 + t/~({I f , [  > t})+ t#({I gpl > t}). 

The  third and fifth terms on the right are finite because gpeL r The  remaining 
terms on the right are finite because f f i R  o. Thus, (. I f[d# < oc, and since t 
is arbitrary,  it fol lows that  f e R  o. {Ifl >3t} 

We next show that  H'/I restricted to R o is an order-cont inuous  norm. Let  
( f , ) cR  o, f,J,O a.e., then f ,  lu.>t~ is in Lj  and hence I[f~!~i~mt~[1150. Also 

I] f .  I[ < II f .  1~;% > tl I[1 + t, 

therefore lira IILII 5 t  for all t > 0 .  Thus  lim IIf~ll =0.  / / /  

IL A Maximal Inequality 

To a p p l y  Theo rem 2 of the In t roduct ion  to the R k spaces, it is necessary to 
show that  the condi t ion (b) holds with L(k)=  R k_ 1. In fact, this will follow from 
a discussion of the L~k classes. 
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Given an Orlicz function ~ with ~ ' =  q~, set 

(x) = x q~ (x)  - r (x). 

If r (x) = n x (log + n x) k then {~ (x) = k ~ _  1 (x). 

Proposition 2.1. Let f, g be positive functions with f e12~ for some k > 1. Suppose 
that for some c> 1 and every 2 > 0  

p({g>c)o})<=~{j.!~f dp. (1) 

Then 6~k-"~T~/c 1" Hence if f e R  k, then geR  k_ 1. 

Proof. Let t>O be fixed. From (1) we have 

# g > c  <y ~ f d # .  
"~ { f  > Z/t} 

Hence applying Fubini, we have: 

oo 

0 ~ {f > ,~/tl 

*f 

= ~ t f  4)k(t f)d# 

=~t f ( log  + t f)k d p + k ~ t f ( l o g  + t f )  k-x d # <  oo. 

Since t is arbitrary, it follows that "/~ g~Ek- 1. ///  

IlL One Parameter Theory 

In this section, we discuss the behavior of one parameter sequences in a-finite 
measure spaces. 

Lemma3.1.  Let (T, ,neN) be a sequence of  positive linear operators on Y = L  1 
+L~o such that sup[lZ,[l~o=c<oo. ([]rll~o denotes the L~o norm of T) Assume 

n 

that lim T , f  exists a.e. for all f e L  1. Then 

i) lira sup T , f  < oo a.e. for all fe'Y. 

ii) l imTnf exists a.e. for all f ~ R  o. 

Proof. i) Let f~Y. Then f = g + h ,  g~L 1, heLoo, limT~g exists a.e. and 
I Tnh]<c IIhlloo. Consequently, l imsupT~f is finite a.e. ii) Let Toof=l imsupTJ ,  
f~Y. The operator T~ is sublinear and II r ~  II ~o ==_c. Now let fERo, then 

f t =  f l{lr >~}eL1 
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for each t > O, hence 

Also 

Too f =  lim sup (T.ft  + T , f  l{lll __<,}) 

= lim T. f '  + lim sup T . f  l{lfl __<,} 

= Tooft + r ~ f  l{ifl<__, }. 

IT, f -  Too f I= I T . f '+  T , f  1{i ff _-<,; - Too f '  - T~ f l{izl <,~,l 

~lT, f ' - T o o f ' l + 2 c t .  

Thus, limsup [T,f-goof[ <2ct. Since t is arbitrary, [T.f-Toofl--+O a.e. /// 

Lemma 3.2. Let (T,,nsN) be a sequence of positive linear operators on Y such 
that ]l T,I[ Oo < c < oc. For each f e  Y, let f *  = sup T, I f l .  Assume that for each f s L  1 
and every 2 > O, 

<! 
#({f* >c2})=  2 Ilfll 1. O) 

Then for every f e R  o and every 2 > O, 

<! 
# ( { f * > 2 c 2 } ) =  2 5 If[d#. (2) 

{[ f l  > 21 

Proof Let feRo,  then f ' e L 1 ,  and since ]f[ =< [f*l + ~-, we have f *  =< sup T, i f  x] 
+c2.  Hence 

#({f*>2c2})<=p({supT, lf~l>c2})<=~Hfxnl= 1- ~ [fld#. 
n J~ { I f l  >2}  

Let (3 . ,n~N) be either an increasing (or decreasing) sequence of sub-a- 
fields of 3, and let 3oo = V 3 .  (N 3.). We assume that # is a-finite on each a-  

field 3 ,  (but not necessarily on 3,)- 
n 

Remark. Observe that the weak maximal inequality (1) in Lemma 3.2 holds for 
f e L  1 if f*=supE( l f l ]3 , [ )  and c = l .  It is the usual weak martingale in- 

n QO 

equality which extends to the a-finite case by considering s U s #(s < 0% 
/ = 1  

s (see C. Dellacherie and P.A. Meyer [5], p. 33). 

Theorem 3.3. I f  f sRo,  then E(f ]3 , )  converges a.e. 

Proof The main case, where f e L ,  is known (see [5], pp. 34, 35). Since 
ng(-[3,)Hoo_<_l, we can apply Lemma3.1 to obtain convergence for all 
feRo.  /// 

Let T~ be positive operators on Y such that T~ 1 = 1, T~*I = 1 (bistochastic 
operators). Let U,f= T 1 ... T,T* ... r ~ f  The following result is Rota's theorem 
in o--finite measure spaces. 
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Theorem 3.4. If  faR1, then U,f  converges a.e. 

Proof. In the finite measure case, the proof of this result (see [21, 5, 7]) shows 
that U, can be represented as E(.I~,[~3) where ~,~ and ~B is a fixed a-field. 
The argument extends to the a-finite case. The previous discussion (Remark, 
Lemma3.2, Proposition2.1) shows that if f ~ R  1 then supE(If l l~,)sR o. The 

n 

a.e. convergence now follows from Theorem 3.3 and Theorem2 of the In- 
troduction, applied with L(1)=R 0, L(m)= L(2)=R1, r(1, n )=E( ' I~ , )  and r(2, n) 
=E(-I~),  nsN. /// 

Theorem 3.4 was obtained by N. Start [22] for f e (  ~ Lp)C~LlogL. One 
l = < p < o o  

has that ( U Lp)c~LlogLcR 1 and the inclusion is proper: Let again f(x) 
l < p < ~ o  

= 1/logx for x_>_2, f ( x ) = 0  otherwise. 
In Theorem 3.4, R~ cannot be replaced by L 1 even if the measure space is 

finite. This follows from a counterexample of D. Ornstein [19]. 
Assume that T is an Ll-contraction and also Loo-bounded, i.e., 

sup I[T"Ii~ < c <  ~ .  We can assume c >  1. 
n 

n - - 1  

Lemma 3.5. I f  feL+l and g=sup  -1 2 Tif, then 
n n k = O  

~({g>c,~})< -1 =;i Ilfllv 

The proof is similar to the case II TI] 1 --< 1, II rll ~ < 1. 

n - - 1  

Theorem3.6. Let I l r l l l< l ,  sup[Ir"Ll~<oo. I f  faRo, then lim -1 ~ r i f  exists 
a.e. n n i=o 

Proof. For f eL l ,  and [I Tl[ x < 1, II TII o0 < 1, the results is the Dunford-Schwartz 
theorem (see e.g., [11], p. 27). This result remains valid assuming 
sup IIT"ll co < oo instead of II r l l~  < 1, as observed by D. Ornstein and L. Suches- 

n 

ton [20]. If U - 1 " - 1  
- ~ r i, then supllg.l l~<c, hence Lemma3.1 applies and we 

n n / = o  n - -  

obtain convergence for f ~ R  o. /// 

The following simple examples show that the convergence theorems do not 
hold in L~ +Lo~. 

Let (a,) be a sequence of real numbers such that [ a , l= l  and (ao+a~+... 
+ a2,)/2" + 1 diverges. Consider the a-finite measure space ([0, oo), ~,/x), ~ being 
the Borel a-field and /~ the Lebesgue measure. Let g(x)=a, if n < x < n + l ,  n 
=0, 1,2 . . . . .  Clearly, g~Y=L~ +L~o, but gq~R o. 

Let 
A~={x'k2~<=x<(k+l)2"}, k=0,1  .. . . .  

Define ~=a(A~,k=O,  1 . . . .  ), then ~ , + 1 c ~ ,  and 

2 n 

E(gl~,,)= ~ a,/2" on [0,2) 
i = 1  
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diverges. This is a counter-example to the reversed martingale theorem on L~ 
+Lo~. 

Next  consider the shift operator T f ( x ) - - f ( x +  1) on Lx~+ L/o..,'Then 

1 "-a +. . . -F 
- ~, Tig(x)= a~ a"~-'l on [0,1), 
n i =  0 n 

again diverges. This is a couriter-ekample t o'DunfordC'Schwattz o n L  i +Lo~, 

IV. Multiparameter Results 

For each fixed k, let ~k, h e n  be either increasing (or decreasing) sub-a-fields of 
~, and let ~ = V ~k ( ~  ~k). We assume that # is a-finite on each a-field ~k 

n n 

(but not necessarily on 0 ~)-  L e t  k, k E,=E( ' I~ , ) ,  n~N; U,=EJ E~:.. .E ms,. f o r s  

=(s~,s 2 . . . .  ,Sm)~I5 By Theorem3,3, Lemma3.2~ Proposit ion2.1,  the system 
(E~) satisfies the conditions (a') and (b) of the Introduction. Let T(k; n)=Ek, and 
for f s R  o, T(k, oo ) f= l imE~ ' f  Applyinu Theorem2 with L(k)=Rk_ 1 f o r k  

?l 

= 1,2, ...,m, we obtain: 

Theorem 4.1. I f  f e R  m_ 1, then 

converges to 
E 1 E 2 . .E~ , f  

s t  s 2  " 

T(1, ~ ) . . .  T(m, ~ ) f  

a.e. as the indices si-> oo independently. 

Let (~s,s~I m) be an increasing (decreasing) net of sub-a-fields of ~. Let ~oo 
= V ~ s ( ( ~ s ) .  Now for s=(sl ,s  2 . . . . .  Sm)~I m, ~ is defined as the a-field ob- 

s 

rained by lumping together the a-fields on all axes except for the k-th one. 
That is 

where V is taken over all s t e l t , . . . , Sk_ l~ Ik_ l ,  Sk+l~Ik+ ~ . . . .  ,SmeI ~. Let for 
k <=m, s~I ~ 

E s - 

k _ E k The commutation assumption is the assumption that the operators E~-  ~ 
, commute; then 

E(-I~s)=E ~ E 2 E" 
Sl S 2  "" ' S i n "  

Applying this representation, we obtain: 

Theorem 4.2. Let (fs, s~I") be a martingale or a reversed martingale of the form 

f s = E ( f l ~ )  

for f~Rm_ 1. Suppose that (~s) satisfies the commutation assumption. Then limfs 
exists a.e. xm 
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The next theorem is the multiparameter version of Rota's theorem in a- 
finite measure spaces. 

Theorem 4.3. Let for i= 1,2, . . . ,m and for n~N, T~ be a bistochastic operator on 
Y= LI + L~. Set 

U/= T~... T~(T~)*... (T])*. 
I f  f e R  m then 

lim Us1... Uym f 

exists a.e. as the indices s ~  oo independently. 

Pro@ For  i - 1 , 2  . . . .  ,m, and n~N there exist a-fields ~3 i and ~i such that U~ 
= E(. I~i,1~3 i) (see Theorem 3.4). By Jensen's inequality, E(-1~3 i) maps each class 
/2~ to-itself; it follows that if f ~ R  k then sup U~,f=supE(fl~,[~3)~Rk_l.i  ~ Hence 

?z 

Theorem 2 of the Introduction is applicable with I~(k)=R k_ 1 for k = 1,2 . . . .  , m 
+ 1. / / /  

Let T~,..., T m be linear positive operators on Y. Assume that each T~ is an 
L~-contraction and L~-power bounded. 

Theorem 4.4. I f  f ~ R ~ _  i, then 

I S l - -  1 s in - -1  

lim 2 ".. 2 T('  ... T2"f 
SlS2""Smkt=O k m ~ 0  

exists a.e. as the indices s~--* oo independently. 

Proof. Let T ( k , n ) = - ~  T~. By Theorem 3.6, Lemmas 3.5, 3.2 and Proposi- 
n i = o  

tion 2.1, the system (T(k,n)) satisfies conditions (a') and (b) of Theorem 2 with 
L(k) = R k_ 1 for k = 1, 2, ..., m. 

V. Multiparameter Chacon-Ornstein Theorem 

Let 7"1, T2, ..., T,, be positive linear contraction operators on L 1. We first recall 
the following weak maximal inequality. 

Lemma 5.1. Let f, gEL-~, g > 0  and set 

 r<s 
h = sup ~ ~  

" ~ T~g 
Then for every ,~ > 0 i= o 

X ~ gdt~< ~ f d # .  
(h > al {h > z} 

Proof. Let B(2)= S T~f> Ti)~g . Since T i 2 g = 2 T i g ,  we have B(2) 
n>0 i i=0 

= {h > 2}. The maximal inequality now follows from Hopf's inequality (see e.g., 
[-173, p. 114 or [11], p. 23). /// 
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Let dv=gd#, then v is a finite measure and v and # have exactly the same 
null sets. Then Lemma  5.1 implies that for each 2 > 0  and each f~Ll(#)  

22v({h>22})< S f / gdv  
{h > 2;,} 

<= I f/gdv+ f/gd  
{ f i g  > .~.} { f i g  < )~, h > 2 )..} 

< ~ f /gdv+2v({h>22})  
{ f i g  > A} 

from which we obtain 

Now Proposit ion 2.1 (with n--- 1) implies: 

L e m m a  5.2. I f  f /g~LlogkL(v) then heLlog k- 1L(v). 

Theorem 5.3. Let (Y2, 5, #) be a finite measure space and let g be a fixed element 
of L+l(#) bounded away from zero (essinfg=c>O). Let v be the measure g.#. 
Then for each f such that f /g~Llogm-l(v) one has that 

t l  t m  

E Tkl 2 T,~'fkm 
lira k,=O km=O 

t l  " " " t m  

Tbg 2 
k l = O  k ~ = O  

exists a.e. as the indices t ~  o~ independently. 

Proof Let for k>__O, Sk={f:f/g~LlogkL(v)}. The elements of S k are defined 
modulo sets of v, or #, measure zero. Each S k is a linear space, and L I ( # ) = S  o 
~ S  1 ~ $ 2 ~  ... ~S,, .  Let 

T(k, n)-- i= o 

i = 0  

Clearly the operators T(k,n) are from LI(#) to Ll(v); since g > c ,  Ll(v)cLl(#).  
Furthermore,  Lemma  5.2 implies that if f e S  k then heLlog k- 1L(v), hence again 
from g > c  it follows that heSk_~. Let L(k)=Sk_ 1 for k = l , 2  . . . .  ,m; then the 
condition (b) in Theorems 1 and 2 is satisfied. The condition (a') in Theorem 2 
follows from the one-parameter  Chacon-Ornstein theorem. The convergence 
now follows from Theorem 2. //// 

VI. Banach Spaces 

Let (E, !!) be a Banach space. All functions considered are from O to E, 
strongly measurable and Bochner integrable. As in the real case, we define 
(Y(E), ]].l]) to be the Banach space of all E-valued functions that can be written 
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as a sum of an L 1 and L~o-function. Rk(E ), LlogkL(E) are spaces of functions f 
such that Ifl are in Rk, respectively in LlogkL. 

A linear operator T on Y(E) is said to be positively dominated (by 7~) if 
there exists a positive linear operator T on Y such that 

!Tf!<T!f!  a.e. 

for all f~Y(E)=LI(E)+Loo(E ). The operator T will be called a positive do- 
mirnant of T. 

We now give some examples of positively dominated operators. 

1. Any linear operator T on LI(IL)+L~(IR) is positively dominated by its 
modulus IT[, defined by 

ITIf= sup ITgl for all f > 0 .  
Igl~f 

This follows from Dunford-Schwartz [8], Lemma 4, p. 672; see also Chacon- 
Krengel [3]. 

2. Assume that the Banach space E has the Radon-Nikodym property 
(RNP). Let ~3 be any sub-o-field of 3 such that p restricted to ~3 is a-finite. 
The conditional expectation E(.{~3) is defined on Y(E). Indeed, for feY(E), 
E(fl~3) is the Radon-Nikodym density of the measure f .  kt with respect to o-- 
finite measure ~t on ~3. Since !E(fl~)!<E(!f![~) a.e. for all feY(E), the 
operator E(.[~3) is positively dominated by E(.[~3) restricted to Y=L~(IR) 
+L~(~) 

3. Let 0 be a measure preserving point-transformation on (f2,3,#). The 
linear operator Tf=foO, f~Y(E) is positively dominated by T where T ! f !  
=!fo0~. 

4. Assume that E has RNP, and/1(~2)= 1. Let Pl(oo, F), F~3 ,  be a transition 
probability defined on (f2, 3, #) that is, P1 (co,.) is a probability measure for each 
(9~2, and PI(.,F) is a measurable function for each F~3 .  Assume furthermore 
that P1 preserves y-null sets, i.e., g (A)=0 ~ P ( . ,A)=0 ,  ~t-a.e. Let feLl(E ) and 
define the following measure 

(P,f#)(F)=SfPl(',r)d#, Fe3. 

Clearly (P~f#)< bt. Hence there exists an E-valued function Tf such that 

Tf =d(P~f #). 
dg 

Thus T maps L 1 (E) to itself. For  f eL  1 (IR) define 

~f d(Plf l~) 
dg 

For f6LI(E ) we have 

(P1 f ~)(F)= ~f P~ (., F)d# = ~ Tf dg 
F 

(P1 !f!#)(F)=~!f!P~(',F)d#=~T!f!d#. 
F 
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Consequently, 

!(P~f p)(F)! < ~ T ! f ! d# 
F 

for all F ~ .  
Let Ivl denote the variation of an E-valued measure v (see, e.g., [6]). Then 

the above inequality implies 

for all F e ~ .  But 

([6J, p. 46). Hence 

for all F e ~ .  This implies 

IP~f #4(F)<= ~ T! f ! d #  
F 

]Paf #[(F)= ~ !Tf!d# 
F 

~ ! T f ! d # ~ T ! f ! d #  
F F 

! T f ! < T ! f !  a.e. /// 

We now state a version of Theorem 2 of the Introduction for positively 
dominated operators on Ro(E ). The argument in [23t proves also this version. 

Theorem 6.1. For k= 1,2 . . . .  , m let T(k, n), n~ N be positively dominated operators 
on Ro(E), such that 

a) l i m r ( k , n ) f  and l i m T ( k , n ) ! f !  exist a.e. for each function f in Ro(E), k 
n n 

=1,2,  ...,m. 

b) sup T(k ,n ) ! f !~Rk_  1 for each f ~Rk(E ), k = l , 2 ,  .... 
n 

Then for each feRm(E ) 

lim r(1,  sl) T(2, s2) ... r(m, sin) f 

exists strongly a.e. as s i~  oo independently. 

The following Theorems 6.2 and 6.3 follow from Theorem 6.1 and the one- 
parameter results. 

Theorem 6,2. Let E be a Banach space with the Radon-Nikodym Property. I f  
f~Rm-  1 (E), then 

E 1 E 2 E s m ( f )  
si s2 " �9 

converges strongly a.e. as the indices si--, ov independently. 

Let 0~, i=  1,2 . . . . .  m be measure preserving point transformations. The next 
result is the multiparameter version of E. Mourier's theorem [16]. 

Theorem 6.3. I f  f eR m_ ~ (E), then 

1 Sl--I Sin--1 

lim E "" ~ f~  1"'' 0~ m 
S 1 S 2  "'" Sm k l = O  k m = O  

exists strongly a.e. as the indices si--* oo independently. 
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Notes Added in Proof 

l. In fact, Theorem 1 stated in the Introduction is applicable throughout the paper and provides 
the simplest proofs of all the results. The reason is that not only Ro, but atso the spaces Rk, k_>l, 
and the spaces S k appearing in the proof of Theorem 5.2, are order-continuous Banach lattices. As 
observed following Proposition 1.1, the spaces R k are Banach lattices for the (Luxemburg) norm 
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defined by the Orlicz function r  + x) ~, closure in this norm of simple integrable functions. 
The order continuity is now easy: Let f ,  be in Rk, f,,L0. Let 6 > 0  be arbitrary and observe that 
r is integrabie, hence by the continuity of ~ and the Lebesgue theorem, ~q~(fjgO < 1 for large 
n, which implies that [[f, lj <3. 2. Theorem 2 of the Introduction is also applicable, but its proof 
requires a slight variant of the argument in [23], letting the index n in T~X, run over a directed 
set. This variant is also useful to obtain a version of Theorem 1 which reduces multiparameter 
local ergodic theorems to one parameter  local ergodic theorems. 3. The first counterexample to 
Rota's theorem in L 1 is due to D.L. Burkholder, "Semi-Gaussian subspaces", Trans. Am. Math. 
Soc. 104, 123-131 (1962). Ornstein's example (19) is concerned with the important  particular case 
involving alternating applications of two conditional expectations. 


