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Summary. Let X 1 , X 2 , . . .  , be i.i.d, random variables and S , = X I + X 2 + . . .  
+ X , .  In this paper we simplify Rogozin's condition for S,/B.- p > _+ 1 for 
some B, ~ + oo, which generalises Hin6in's condition for relative stability 
of S,. We also consider convergence of subsequences of S,/B,. As an 
application of our methods, we extend a result of Chow and Robbins to 
show that S, /B ,~  _ 1 a.s. for some B , ~  + oo if and only if 0 < [EX[ <EIX[ < 
+oo. 

0. Introduction 

Let X ,  X 1 , X  2 . . . .  be independent and identically distributed random variables 
with distribution F, and let S , = X  1 + X 2 + . - - + X , .  We say that F is relatively 
stable if there is a sequence of norming constants B , - ~ +  oo for which either 

Sn P~ 1 or - -  - 1 .  This concept was introduced for positive random 
B. Bn 
variables by Hinein (1936), who showed that, when X i are non-negative, F is 
relatively stable if and only if 

x P(X > x) 

i [1 - F(u)] du 
0 

,~0, as x ~ +  oo; 

see also Gnedenko (1970 p. 541) and Feller (1971 p. 236). Rogozin (1976) 
generalised Hin~in's condition to the case of a not necessarily positive X, using 
some methods of the theory of regular variation; (Rogozin (1971) having shown 

that, for X>__0, relative stability is equivalent to the slow variation of i [1  
0 

- F(u)] du). 
In the present paper (Theorem 1), we state Rogozin's (1976) result in a 

simpler way by removing a subsidiary condition of his, and we also consider 
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"compactness" of S~ (cf. Feller (1965-66)) and convergence of a subsequence S,~ 
to _+ 1. B, B~ 

Hin~in (1936) also proved that, when X is non-negative, if there are con- 
S n  a . s .  

stants B, ~ + oo for which ~ > 1, then EIX[ < + oo. This result was proved in 

general by Chow and Robbins (1961), by quite different methods. We go on to 
consider how relative stability is related to the weak and strong laws of large 

numbers. Suppose --S" " ,#;  then if /~+0, __S" P >+1 where B,=n]#1. But if 
n B n -- 

S, P >0, there may be a sequence B~ for which S, v )_+1, as is shown by 
n B n 
Rogozin (1976). This cannot happen if the convergence is almost sure, since if 

S, P ~ 0, we show in Theorem 4 that there is no sequence B , ~  + oo for which 
n 

S . . . . .  >_+1; combined with the result of Chow and Robbins (1961) we can 
B~ 
summarize this almost sure behaviour by: there is a sequence Bn--* + oo for which 

S . . . .  "-> +_ 1 if and only if 0 < IEXI <E IXI < + oo. B. 

1. Results 

We say that F does not have compact support if P(lXl>x)>O for every x >0 .  

Theorem 1. Suppose F does not have compact support. Then F is relatively stable 
if and only if 

xP(lXl >x) 
,0 as x ~  + oo. (1.1) 

i u dF(u) 
- x  

The sign of lim S~ is determined by the ultimate sign of i u dF(u), which is 
n~+~Bn -x 

constant. The sequence B n is regularly varying with index 1, satisfies 

Bn 

Bn~n ~ udF(u)~[median(Sn)l  as n - ~ + ~ ,  
- -  B n 

and may be chosen to be non-decreasing. 
Theorem 1 differs essentially from the theorem of Rogozin (1976) only in 

that Rogozin assumes i u dF(u) is slowly varying. We show this is implied by 
(1.1). -x 

We remark that no symmetric F can be relatively stable, but we do not need 
to exclude symmetric F if we interpret the expression in (1.1) as being infinite in 
this case. 
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As an appl ica t ion of T h e o r e m  1, we show that  there is no " c o m p a c t n e s s "  

S~ P ~+1"  version of the convergence B-~ - 

Theorem 2. Suppose F does not have compact support and B,--* + oo are constants. 
I f  for every sequence n " ~ + o o  there is a subsequence n ' ~ + o o  for which 
S n , 

v ~ c', where c' is a constant, possibly depending on the choice of n', with 
B n , 

0 <  [c'[ < + 0% then F is relatively stable. 

We now give a subsequent ial  version of Theo rem 1: 

Theorem 3. Suppose F does not have compact support. I f  there are sequences nz, 

Bi-~ + ov for which --S"~ p , § 1, then 
Bi 

lim inf xP(]Xf => x) = 0. (1.2) 

~ + ~  ~ udF(u) 

Conversely,/f(1.2) holds and either X is non-negative or X is not in the domain of 
partial attraction of the normal distribution (L6vy (1937, p. 113)) then there 

Sin. are sequences ni, mi, Bi ~ + ~ for which either Sn, v ~ + 1, " ... .  v ~ _ 1, or both. 
B• B• 

We remark  that  we can equivalently take S,., ~ _+ 1 in Theo rem 3, so that  
Bi 

we are considering "s t rong  limit po in t s"  of  S ,  (cf. Er ickson and Kes ten  (1974)). 
B. 

Let 's  ment ion  what  happens  when F has compac t  suppor t ;  in fact, suppose 

E X  2 < + ~ .  Then if EX + 0, we have  S ,  ~ • 1, where B, = n [EX f, while if EX 
B. 

= 0, there are no sequences n~, Bi--* + ~ for which - -  S'i ; , • 1, as is easy to see. 
Bi 

N o w  we look at the a lmost  sure convergence of S , .  
B. 

X 

Theorem 4. I f  lira inf ~_xu dF(u) = 0  there is no B , ~  + ~ for which --S" .... ~ + 1. 

The result of  Chow and Robbins  (1961) states that  if S, __ a.s.~ •  then 
B. 

E]X[< + ~ ;  we give a short  p roo f  of  this following the p roo f  of  T h e o r e m  4. 
Combin ing  this result with that  of  T h e o r e m  4 gives: there is a sequence B , ~  + oo 

for which S ~ + •  if and only if O<[EX[<EIX[< +oo; we then have 
B. 

Bn~n[EX[. 
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2. Proofs 

Proof of Theorem 1. A minor modification of Rogozin's (1976) theorem shows 

that (1.1) and the regular variation of B,, are necessary for S, P~ _+ 1. (A 
B. 

treatment of the regular variation of sequences, rather than that of functions, is 
given in Galambos and Seneta (1973)). The fact that B , ~  Imedian(Sn) ] follows by 

S, ~ . p 
symmetrisation, since clearly B-~ + 1 implies [S,-medlan(S,)]/B,----, O. Con- 

versely, suppose (1.1) holds; to apply Rogozin's theorem we need only show that 

u dF(u) is slowly varying. Let A(x)= S G(u) du, where G ( x ) = l - F ( x ) - F ( - x )  
- - X  0 

for x > 0, and let (here and elsewhere) H(x)= 1 -  F(x)+ F ( -  x)< P([X[ >x). Then 
(1.1) implies xH(x)/A(x)--.O as x ~ + o o ,  and since [GI<H, we also have 
xG(x)/A(x)~O. Given e>0  choose x0=x0(a ) so that x > x  o implies 
IA(x)[ > ~- 1 x H(x). Since F doesn't have compact support, H(x) > 0 for every x > 0 
and hence ]A(x)l >0  for x > x  o. Since A is continuous this means either A(x)>0 
or A(x)<0 for x > x  o. Suppose A(x)>0 for X>Xo (the other case leads to 

S. p -1) .  Then for x>xo ,  and 2>0,  - -  ) 

B. 

A(x) ~ G(y) dy u 
0 

Hence A(Ax)~A(x)  and A is slowly varying. But since 

i u dF(u) = - i u dG(u) = - x G(x) + A(x) = [1 + o(1)] A(x), 
--x 0 

i u dF(u) is also slowly varying. Hence the result. 
- x  

Proof of Theorem 2. We must have 

0 <l im infB,+ 1/Bn_<lim supB,+ j /B ,< + o% 
n ~ + o o  n ~ + o o  

since, if not, we could take n " ~  + oo such that B,,,+ 1/B,,,~O or + oo. By taking 
subsequences, we can make S,,,/B,,, P ,c" and S , , , + J B , , , + I ~ c ' " .  Thus 

c'" = lim S,,,+ ~/B,,,+ a = lim S,,,/B,,,+ ~ = lim (S,,,/B,,,) (B,,,/B.,,+ 1) 

=c".(0 or +oo), 

which is impossible since neither c" nor c'" is 0 or + oo. Also, as in Rogozin 
(1976), for each n" there is a subsequence n' for which 

Bn, Bn 

B.,H(B.,)/ ~ udF(u)~O, so B.H(B.)/  ~ udF(u)~O. 
- B ~ ,  - B ~  
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Using the boundedness of B,+ 1lB,, a proof just like that of Rogozin shows that 
(1.1) holds, so F is relatively stable. 

Proof of Theorem 3. Our proof is closely related to the method of Ldvy's (1937, p. 
113) characterization of the domain of partial attraction of the normal distribu- 

tion. We have S,, P > + 1 if and only if (Gnedenko and Kolmogorov (1968 p. 
Bi 

124)) (letting V(x)= i u2 dr(u)), 
- x  

nH(xB,)-+O as n--++c~ for x > 0 ,  (2.1) 

{ [7 nB2 2 V (xBn ) -  udF(u) --,0 as n ~ + o o  for x > 0 ,  (2.2) 
- -  Bn 

and 
xBn 

nB21 ~ u d f ( u ) ~ + _ l  as n ~ + o o  for x > 0 ,  (2.3) 
--xBn 

hold with n i in place of n and B~ in place of B,,. Hence the necessity of (1.2) is 
obvious. For the sufficiency, using the notation of the proof of Theorem 1, by 
(1.2) we can find a sequence xi--* + oc for which xiH(xi)/A(xi)~O. Since F does 
not have compact support, IA(x~)[>0 for i large. Define n i ~ + o o  by 
nZ~xi/[g(xl)lA(xOU, so that [niH(xO]2,,~xiH(x~)/lA(x~)l--+O as i ~ + ~ .  Define 
B~>0 by B, =nr IA(xr then 

X i- 2 B 2  ~- x i -  2 n~AZ(xi} ~ ]A(xi)]/[xiH(xi) ] _~ + 0% 

so B , ~ + c e  and x~=o(Bi). Given x > 0  we can make xB~>xi, so 
niH(xBi)<niH(xi)--+O. This is (2.1). Also, for x>0 ,  

xBi 

n iBy lA(xBi )=niBT 'A(x i j+n iB71  ~ G(u)du= _+ l +o(1). 
xi 

n i B[- i xg, because ~ G(u)du <xniH(xl)~O.  By taking a further subsequence, if 
x, 

necessary, we can make either n~BF1A(xB~)--++I or --*-1, or possibly both. 
This proves (2.3). To prove (2.2), we have for x > 0  

n i By 2 V(x Bi) : rtiB i - 2 V(xi ) + rtiB [- 2 f u 2 dF(u) 
x~ < tu I <_xB~ 

< V(x,) 
= B, ]A(xi)l ~- x2 niH(xO 

_ xi V(xO ~-o(1) 
Bi xl IA(xl)l 

V(xi) =o(1) § 
Xl IA(xi)} 
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At this stage we need the further information that X is non-negative, in which 
c a s e  

xl xi 

- [. u ~ a i n u )  2 S u H ( u )  du  
V(xO _ o < o 

xi iA(xi) I ~, = ~, < 2, 
x~ ~ H(u) du x, ~ H(u) du 

0 0 

or that X is not in the domain of partial attraction of the normal distribution, 
equivalently, by L6vy (19 3 7, p. 113), lim inf x 2 H (x)/V (x) > 0, and then 

x~ -1- oo 

V(xi) <o(1) V(xi) 
xi iA(xi)~-~ = xZH(xi ~ =o(1). 

In either case, we see that (2.2) holds, and this proves the sufficiency of (1.2). 

Proof of Theorem 4. We require the following Lemma (cf. Chow and Robbins 
(1961 Lemma 1), Feller (1968 Lemma 3.2)): 

Lemma 1. I f  B, is non-decreasing and lim infB,~o/B . > 1 for some integer 20 > 1, 
n ~  4-oo 

then either X , / B , ~ - ~ O  or lim suplX,  l/B,= +oo a.s., according as ~ H(B,) 
rl ~ -F oO n ~ l 

converges or diverges. 

Proof of Lemma 1. First, note that, given any integer 2 > 2 o > 1, and defining k 
]k < ~ / ] k + l  = k(2) by "~o =" . . . .  o , we have 

B k B ~ B k-1  B,~o B,z > ~,Zo = ,Zo ,~o > ( c -  e) k, 
= B k-2 B, = B. B, Bn.~ko - 1  n.~o 

provided n>no(2o,e ) where c=l imin fB ,xo /B ,>l  and c - e > l  for some e>0.  

Since k + 1 > log 2/log 2o, we then have 

B,,~ > (c - ~)- 1 21og(c -e ) / l og2o  = ( c  - l?,)- 1 2 2 6  ~ 2 6  

Bn 

for 2 > 21 (c, e) >)~o, where 2 6 = log(c - e)/log 20 > 0. 
Now suppose ~ H ( x o B , ) = + o o  for some x0>0,  so ~ H ( x B , ) = + o o  for 

x < x  o. Consider X>Xo; define an integer i=i(x) so that ia>_X/Xo . Then 
xoBi ,>Xo iaB ,>xB ,  for i>2a,  n >n  o, so 

H(xB,)> ~ H(xoBi.)> ~ H(xoBi.+j ) 
n > n o  n > n o  n>--no 

for every j > 0, since B, is non-decreasing. But 

i--1 ~ oO 

H(xoB,i+j ) = ~ H(xoB,)= + o% 
j=O n= l  n = i  

so ~ H ( x B , ) =  + oo for this case also. The remainder of Lemma 1 follows from 
the Borel-Cantelli lemma. 
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The proof of Theorem 4, and the result of Chow and Robbins (1961) follow 
from: 

L e m m a  2. I f  either 

l iminf i ~ up i udF(u) =0 or 1 s udF(u) =+oo, 

then there is no sequence B , ~  + oo for which --S . . . . .  , ++_ 1. 
B, 

Proof of Lemma 2. We can assume F does not have compact support (see 

Section 2). Suppose ~ " ~  + 1; the other case may be treated similarly. Then 

S, 
1, and also ~ H(Bn) < + ~ ; because, from Theorem 1 we may choose B, P 

B, n ~ l  

to be non-decreasing and regularly varying with index 1, so that B, satisfies the 
conditions of Lernma 1, and then limsuplS,[/B,< +oo a.s. implies 

n ~ + o o  

lira sup IX, I/B, < + oo a.s. and hence ~ H(B,) < + ~ .  Now, instead of B, we can 
n ~ + o 0  n = l  

use any asymptotically equivalent sequence, and we define B(x) 
= sup {y > 0] y -  1A (y) => x -  1 ); by the continuity of A, this means B(x) = x A [B(x)]. 

If B* =B(n), then by a proof the same as Rogozin's, S . . . . .  - -  , 1 ,  so H(B*) < + oo. 
B,,* n = l  

Now B(x) is a differentiable function, because 

o r  

B'(x) = A [B(x)] + x G [B(x)] B'(x), 

B'(x)=A[B(x)]/[1 -xG[B(x)]]  = [1 + o(1)] A[B(x)], 

since x]G[B(x)]l<xH[B(x)]--,O as x ~  + 0% when S-~-" ~ f ~  vv 1, by (2.1). Also, as 
B.* 

we saw in the proof of Theorem 1, A(x)>0 for X>Xo, so B(x) is ultimately 
increasing. Hence 

oo > ~ H(B*) >__ ~ ,+ H[B(x)] dx = ~ H[B(x)] dx 
n = l  n = l  n 1 

oo > ~ H(x)dx 
B' [B- l (x ) ] '  

where B-1 is the inverse function to B, existing ultimately by the monotonicity. 
From the above, B'[B-I(x)] = [1 + o(1)] A(x) as x--+ + 0% so we have the integral 

H ( x )  . 
xo ~ X )  ax converging. But this is impossible if either A(x,)~O or A(x,)--, + oo 

for some x,, because then 
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, A(x.)l 6(x) ax I 
09 = lim log A-~0) = lim ~ 

I " j G(u) du 
o 

~ IG(x)ldx 
<lim inf S A(x) 

n x o  

oo 

< 
xo ~ dx. 

This contradiction completes the proof of Lemma 2. 
Theorem 4 is immediate from Lemma 2, and we now deduce the result of 

S~ a.% 1 then Sn Chow and Robbins (1961). If Bn ~ 1 ,  and from Lemma 2, 

X Bn  

limsup ~udF(u) < +oo. Also B,~n J udF(u), so B~=O(n) as n ~ + o o ,  and 
x ~  + oo - - B n  

since, as we saw, ~ H(B,)<+oo,  we have H(n)<+oo  and ELXL<+oo. 
n = l  n = l  
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