Skip to main content
Log in

Concentration dependence of thermoelectric power of aqueous sodium hydroxide solutions using hydrogen electrodes

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Using a hydrogen-electrode thermocell with a temperature difference of 8 K, the initial thermoelectric power ɛin has been determined for aqueous NaOH solutions from 0.003 to 0.2 molal at mean temperatures of 25 and 15°C. Graphs of a function of ɛin vs. a function of m1/2 yield infinitedilution limiting slopes as m1/2 → 0 which are shown to be in agreement with the five-term theory of this laboratory. Extrapolation of these curves to infinite dilution yields the value for the standard transported entropy of the hydroxide ion\(\bar \bar S^ \circ (OH^-- ) = 68.8 \pm 0.3J{\text{ - }}K^{ - 1} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Payton, T. R. Eubanks, S. E. Feller, and T. G. O'Donnell,J. Electrochem. Soc. 137, 1028 (1990).

    Google Scholar 

  2. A. D. Payton, S. G. Angelos, E. L. Shuck, and A. H. Zimmerman,J. Chem. Soc. Faraday Trans. I 71, 2111 (1975).

    Google Scholar 

  3. P. A. Wilmarth and A. D. Payton,J. Phys. Chem. 85, 3950 (1981).

    Google Scholar 

  4. E. Helfand and J. G. Kirkwood,J. Chem. Phys. 33, 857 (1960).

    Google Scholar 

  5. E. Helfand, R. J. Bearman, and V. S. Vaidhynathan,J. Math. Phys. 4, 160 (1963).

    Google Scholar 

  6. R. J. Bearman and V. S. Vaidhynathan,J. Chem. Phys. 39, 3411 (1963).

    Google Scholar 

  7. J. N. Agar, inAdvances in Electrochemistry and Electrochemical Engineering, Vol. 3, P. Delahay, ed., (Interscience Publishers, New York, 1963) Chap. 2.

    Google Scholar 

  8. J. N. Agar, inAnnual Reviews of Physical Chemistry Vol. 15, H. Eyring, ed., (Annual Reviews, Palo Alto, CA, 1964) pp. 469, 477.

    Google Scholar 

  9. H. S. Harned and G. E. Mannweiler,J. Am. Chem. Soc. 57, 1873 (1935);

    Google Scholar 

  10. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolytic Solutions, 3rd edn., (Reinhold, New York, 1958) pp.631, 636.

    Google Scholar 

  11. N. Takeyama, and K. Nakashima,J. Solution Chem. 17 305, (1988).

    Google Scholar 

  12. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd edn., (Butterworth Scientific, London, 1970).

    Google Scholar 

  13. J. S. Newman,Electrochemical Systems, 2nd edn., (Prentice-Hall, Englewood Cliffs, NJ, 1991) p. 255.

    Google Scholar 

  14. A. D. Payton, B. H. Boyd, C. M. Houck, E. H. Temple, and A. H. Zimmerman,J. Electrochem. Soc. 120, 373 (1973).

    Google Scholar 

  15. The NBS Tables of Chemical Thermodynamic Properties,J. Phys. Chem. Ref. Data 12, 2–38 (1982).

    Google Scholar 

  16. W. G. Breck and J. L. Lin,Trans. Faraday Soc. 61, 2223 (1965).

    Google Scholar 

  17. W. E. Deming,Statistical Adjustment of Data (Dover Publications, New York, 1943) pp. 27, 226.

    Google Scholar 

  18. A. D. Payton and S. E. Feller,J. Electrochem. Soc. 137, 183 (1990).

    Google Scholar 

  19. T. S. Thacher, C. Y. Mou, U. Mohanty, and J. L. Lin,J. Chem. Phys. 84, 6401 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payton, A.D., Brucker, M.J. & Zhang, Y. Concentration dependence of thermoelectric power of aqueous sodium hydroxide solutions using hydrogen electrodes. J Solution Chem 22, 995–1003 (1993). https://doi.org/10.1007/BF00647723

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647723

Key Words

Navigation