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1. Introduction 

The tail o--field Y- of a Markov process has been studied by several authors, and 
there are many criteria in terms of the paths or of the transition probabilities 
which ensure that 3- is trivial or equal to the o--field of invariant events. See e.g. 
[1, 3, 4, 13, 21, 31-33]. 

Often Markov processes are given by their infinitesimal generator. In many 
cases this generator turns out to be more suitable for calculations than the 
transition probabilities. Thus it may be useful to know the connections of the 
tail a-field Y- and the infinitesimal generator. In this paper we will study one- 
dimensional quasi-diffusions on [0,L) with reflecting boundary 0, which in 
particular include diffusions and birth and death processes. Their infinitesimal 
generator has the form of a generalized second order differential operator D,,Dp, 
where m and p are nondecreasing functions, the so-called speed measure and 
natural scale respectively. 

We will characterize quasi-diffusions with trivial tail a-field in terms of m 
and p, in terms of the spectrum a 2 of D,,Dp in IL2(m ) and also in terms of the 
paths (see Theorem 1). 

From the theory of Martin boundaries (see e.g. [28]) it is known that every 
parabolic function (i.e. every harmonic function for the space-time process), 
satisfying some regular conditions, can be represented by minimal parabolic 
functions. But it is not always easy to find the minimal parabolic functions for a 
given process. 

Parabolic functions, which can often be given explicitly, are the so-called 
factorizing parabolic functions (see [22, 23, 29]). For  quasi-diffusions such 
functions are given by h,(x,s)=exp(-I~s)cp(x,t~)where # > s u p a  2 and (0 is a 
solution of D m Dp (p =/~ (p. 

In Theorem 2 below we will give necessary and sufficient conditions under 
which such a factorizing parabolic function for a quasi-diffusion is minimal. This 
result is mainly interesting for processes with natural boundary L. For  accessible 
and entrance boundaries L the minimal parabolic functions are known to be not 
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factorizing (up to exactly one of them), in these cases they have been studied in 
[18, 19]. 

The Brownian motion on the real axis has natural boundaries. Woo [36] has 
proved that its minimal parabolic functions are exactly the factorizing ones. 
Theorem 2 and examples show that this picture is not true for all quasi- 
diffusions with natural boundary. 

The tail o--field for one-dimensional diffusions was also studied by Rifsler 
[33] and Fristedt, Orey [10], see Sect. 3 below. 

We would like thank H. Langer for valuable discussions around the subject 
of this paper, in particular for his suggestion how to prove Lemma 6. We want 
to express our thanks also to the referees for their careful reading the manu- 
script and many helpful comments. 

2. Definitions and Preliminary Results 

Let 1R be the set of real numbers, IK the set of complex numbers, N the o-- 
algebra of Borel-sets of IR and N the set of natural numbers including zero. If E 
is a set and A a subset of E then IIA(.) denotes the indicator function of A on E, 
instead of 1l~ we write 1. By ~ we mean the empty set. 

The Operator D,~D v and Quasi-Diffusions 

Let m and p be two nondecreasing functions on an interval [0, L) (L < oe) with 0 
=m(O)<m(x)<m(y)<m(L-O)<_oo (x,y~[O,L),x<y) and let p be continuous 
and strictly increasing. For every complex valued function f on [0, L) having the 
form 

x 

f(x) = a + bp(x) + ~(p(x) -p(s)) g(s) m(ds) (x~ [0, L)) 
0 

where a, b are complex numbers and g is a dm-locally integrable function, we 
define D,,Dpf:= g. For given f (and b if m(0 + ) >  0) DmDpf is dm-a.e, uniquely 
determined. We use the notation D;f(O)= b (for details see e.g. [7, 9, 15]). By E m 
we denote the set of all points of [0, L) where m increases. By definition we have 
0eE,,. Let 112,, be the set of all continuous functions on the compact set E m w {L} 

L L 

w i t h f ( L ) = 0  if ~mdp< oo or ~pdm= oo. 
0 0 

Every f from C,, can be assumed to be a continuous function on [0,L) 
which is linear with respect to the scale p on every subinterval of the open set 
[0, L) \ Em. Define 

A = {fOlT,,]D,,DpfeC,,, D;f(O)= 0}. 

The restriction of D~Dp to A is the infinitesimal generator of a strongly 
continuous semigroup (Pt),>=o of linear operators on (E,, with Po =I .  (This follows 
from the theorem of Hille-Yosida, the proof is similar to those in [12, 26, 34], 
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see [20].) The semigroup (P~) generates a Hunt  process 3;---(X t, ~', Jd~, 0t, Px) with 
state space E m (see [2, 8, 20, 25]) which is reflected at zero and is killed as soon 
as it hits L (and only there). In particular 3; is right continuous and strongly 
Markovian. We wi(1 call the process 3; the quasi-diffusion with speed measure m 
and scale p. Firstly this notation was used by Watanabe [35] as far as we know. 

Let us give two basic examples. 
1. Assume ~ is a diffusion process on [0, L), connected with the differential 

d 2 , d 
operator a(x)~x~x2 + b(x)dxx' instantaneously reflected at zero and killed as soon 

b() 
as it hits L. Assume a(x)>0 and ds <Go (xeEO, L)). Then ~ is a quasi- 

/ '; b(s) .  
diffusion with speed measure dm(x)=exp~-j-aT~asjdx and scale dp(x) 

/~" b(s) 
= a - l ( x ) e x p  l ! ~ d s ) d x  (see e.g. [26]). In particular, for L=oo ,  a(x)_--�89 and 

b(x)-~b the process 3; is the Brownian motion on t0, oo) with trend b and 
reflecting barrier 0. 

2. Let ~ be a birth and death process on N with birth rates ak>0(k>0) ,  
death rates b k >0 (k> l) and reflecting boundary 0. Moreover, let 3; be killed as 
soon as it hits ~ .  Then 3; is the quasi-diffusion having the speed measure 

aoa~ ... ak-i re(x)= ~ rn~, mo-~ l~ ink= (k> I, xe[0, L)) 
k<~ bl ,.. bk 

and the scale 

k--1 
p(x)= ~ (m~aj)-l-~ (x-k)  (x~[k, k+ l ) ,  kEN). 

j~ 0 l~k 6/k 

Obviously E m = N and an easy calculation shows 

D,,,Dpf(k)=a~f(k+l)-(ak+b~)f(k)+bkf(k-1 ) (k>=l) 

D~ Dp f(0) = a 0 f(1) - ao f(0). 

Conversely, if 3; is a quasi-diffusion with speed measure m, which increases 
exactly in the points of N, then 3; is a birth and death process on N. 

In this paper we restrict ourselves to processes on intervals [0,L) with 
reflecting boundary 0. This is done by two reasons. Firstly, in this case we can 
apply results of Kac and Krein from [15~. Secondly, the tail a-field for general 
boundaries can be recovered from our special case. Indeed, this field depends 
only on the behaviour of the process near the boundaries, and this can be 
studied at one of them. (See also [10~ for the motivation.) 

The birth and death processes are Markov processes on N jumping only in 
neighbour states, i.e., in a certain sense they are continuous. Groh [12] has 
generalized this property to quasi-diffusions (he assumes m ( 0 + ) = 0 ,  but this 
assumption is not essential). He has proved that every path of a quasi-diffusion 

can be choosed qf*-continuous. This means, with the notation 
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p*(x,y)=lx-yl-sup{lu-vl:  (u,v)~[x,y]\Em} (x<y; x,y~[O,L)) 

that for every co~ f2, every e>0  and all t > 0  there exists a 6=(~(t, ~)>0 such that 
p*(X~(co), Xt(co)) <e for every positive sE(t-6,  t+cS). 

If E m = [0, L) then p*(x, y)= I x - y l  and therefore ~*-continuity coincides in 
this case with the usual continuity. 

Define r~ and o-, to be the hitting times of [l,L) and [0, l] respectively: 

~;(co) = in f {t > 0IX t(co) ~ [l, L)}, 

a;(co)=inf{t>OIXt(co)~[O , l]} with i n f ~ = ~ .  

From the cf*-continuity and the right continuity of �9 we have 

Lemma 1. a) Let be l e e  m and put l + =inf{y~Em[Y>l}, l-:=sup{ysEmly<l } 
with sup ~ = 0. Then we have 

Px(X~,_o = / - ,  X~ = / ) = 1  (xEEm, x<l) (1) 

P~(Xr Xr a;<~)=P~(r;;< o (x, I6E~, x>l). (2) 

b) I f  co6f2 and t > 0  such that Xt_o(co)<Xt(co ) then E,~c~(Xt_o(co ), 
Xt(co))=~. The analogous statement holds if Xt(co)<Xt_o(co ). 

Proof. a) (1): From the right-continuity of �9 and the definition of r; follows 
X~, < l  and X~,>l + P~-a.s. (x<l). The ~*-continuity implies p*(X~_, X~,)=0. 
Thus (1) holds. (2): The proof is similar. 

b) The existence of a state z ~ E,~ in the interval considered in b) would imply 
p*(Xz_o(co ), X,(co))>0 which contradicts the ~*-continuity. A 

The Function qo(x, 2) 

Let 3; be a quasi-diffusion with speed measure m and scale p. Then every linear 
operator Pt ( t> 0) can be uniquely extended from 1L2(m)c~ ll2,n to a contraction T~ 
on IL2(m), the Hilbert space of dm-quadratic integrable functions on [0, L]. The 
family (Tt)te o is a strongly continuous semigroup on IL2(m ). 

Its infinitesimal generator is the restriction 1DruID p of DmD p to A2: = H  1 c~H 2 
with 

H l={felL2(m)lDmDpfelL2(m), D~-f(0)=0} and 

L 

[ H~ if !pZdm=oo, L L 

H2=/{f~H,,f(L)=0} if !pldm<oo and !m~p<oo, 

[{ feHl lD; f (L)=O } if Sp2dm<oo and Smdp=oo, 
0 0 

(see [9] for strongly increasing m, [17] for birth and death processes and [-19, 20, 
25]). The operator IDmlD v is self-adjoint and nonpositive, in particular its 
spectrum o- 2 is included in ( - c~, 0]. Put Z 0 = sup o- 2. 
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A detailed study of IDmlD p and its spectrum a 2 was given by Kac and Krein. 
A summary can be found in [15], see also [7]. The following lemma is an 
immediately consequence of [15], w 11, formula 11.5. 

Lemma 2. I f  p(L)= oo then ).o=0, if p(L)< ~ and if moreover 2 0 is an isolated 
point of a z then 2 o <0. 

For every complex/~ the solution of 

D~D;cp(.,/~) =#(p(.,/~), Dp- q0(0, #)=0,  qo(0, #)= 1 (3) 

exists and is uniquely determined. Indeed (3) is equivalent to 

x 

q0 (x, #) = 1 + g ~ (p (x) - p (s)) (p (s, #) m(d s) (x ~ [0, L)) (4) 
0 

and this equation is solved by the function 

qo(x,/~) = ~ #"~o,(x) with qOo(X)--1 and 
n = O  

x 

~.+1 (x) = ~ ~o~ m(ds) (x ~ [o, L)) 
0 

Obviously (p(/,g)=q0(/,~t) (/~slK) holds. The function ~o(1, .) is entire and its 
zeros ().j(l))j~ are simple and strictly negative. Thus the representation formula 

(5) 
j = O  

holds (see [15] for details). 
Obviously, if # > 0 then qo(.,/~) is strictly increasing with 

(p(l , l~)>l+~im(s)dp(s)  (/e [0, L)) (6) 
0 

Hitting Times and Some Path Properties 

The resolvent operator IR, = (g.3 - l I )  if)p)- 1 (# > 0) is given by 

L 

IR#f(xl=~ru(x,  y l f (y lm(dy)  (felLz(ml) 
0 

with 

r.(x,y)=~o(x,~)~(y,~) (x<y; x,y~E.,) 

and 
L 

Z(y,#)=qo(y,g)~qo-2(z,#)p(dz) (see e.g. [7,15,19,26]). 
Y 
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Using 1R~f(x)=E x ~ e-~t f (Xt )d t  and the strong Markov property of X we get 
0 

for f=ll~;,L ) and every 2>0 :  

Exexp(_2v;  ) lRxf(x)  cp(x, 2) (x, leEm, x<I) (7) 
1Raf(/) (p(l, 2) = 

(see e.g. [14], if r e ( L - 0 ) =  oe then 1R~,f=limlRzf~ with fc=ll~,c)). 
cTL 

From the theory of Laplace transforms it follows (see [6]) that 

8 k (p(x, 2) 
Exz ~ = ( -  1) k lira . (8) 

;~So c~2k ~o(l, 2) 

Now from (8) and (4) we have (with zL:=l im~) 
l~i L 

1 

ExZ;=[. mdp (x, leE~w{L},  x<l). (9) 
x 

L 

Assume ~mdp= oe. From (6) and (7) it follows that P~(%= o o)-- 1 (xeEm), i.e., 
o 

the boundary L is inaccessible for X. Thus for the life time ( holds P~(~< oo)=0 
L 

(xeEm). Depending on ~pdm< oo or = oe an inaccessible boundary L is called 
o 

an entrance or natural boundary (Feller's classification, see e.g. [9, 14, 26]). 
Throughout this paper we make the 

Assumption. 
L 

mdp = 0% i.e. L is inaccessible. (10) 
0 

Now let us give some properties of the paths of a quasi-diffusion, necessary for 
the proofs in Sect. 3. 

Let be x, l e e  R with x < l < l  +, i.e. m is constant on (l, l+). From (9) it follows 
that E S ;  < E s ; +  , and by Blumenthals zero-one-law (see e.g. [2]) and the strong 
Markov property we have 

P~(z;<'cl+)=P;(z;+ > 0 ) =  1. (11) 

Analogously it follows for x, l ~ E,~ with x > l > l- that 

Px (or; < a;-) = P;(cr;_ > 0) = 1. (12) 

By virtue of (11) and (12) and the strong Markov property the process $ jumps 
over every interval I=(l~, I2) where m is constant only finite often in finite times. 
Denote by z([)(co) (a([)(co)) the k-th jump of X. (co) over I from below (from above) 
if it exists and define it to be oe if it does not exist. 

Lemma 3. Assume k >= 1, I=( l l ,  12) is an interval from [0, L ) \ E m  with ll, 1 2 e E  m 

and let x ~ E  m. Then for P~-a.e. co with -c~k)(co)< oo (o-~k)(co)<o�9 there exists a 
(k)(CO strongly increasing sequence t. ] z ~ . ) (t. ~ o-~k)(CO)) with Xt.  (co ) = I a (Xt. (co) = 12). 
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Proof. By virtue of the strong Markov property and Lemma 1 it suffices to 
prove the proposition for z~ ~), a(~ a) only. We restrict ourselves to z~ *), for a~ *) the 
proof is completely analogous. We put l=l , ,  l + =/2. Obviously we can assume 
x < l. Then the equation r~ ~) = zt + holds P,-a.s. If l- < l then l is an isolated point 
of Em. By virtue of P~(X,t+_o=l)=l (Lemma i) it follows that X,z+_~=l for 
every sufficient small positive s P~-a.s. 

Let be l - = l .  Then 1 cannot be a holding point. (Indeed, define ~t 
= i n f { t > 0 l X t + l  } and assume Pl({z >0) ~=0. By Dynkin [8] Theorems 5.4 and 5.5 
it follows for every f e A  that 

D,nDpf(1)= -af(l)+alimEtf(Xr ) for some a>0.  (13) 
h;O 

p(1 +) -p(1) 
We have P~(a ~ < zz+ ) -  -+ 1. 

p(l +)-p(x)  x,, 
Thus E~f(Xr i.e. D,~D;f(1)=O. 
Therefore l is absorbing ([8], Lemma 

l + 

= ~ mdp < Go. Therefore we have 
l 

5.3). This contradicts Ezzz+ 

Pz({, > O) = 0.) (14) 

From (11) and (14) it follows that 

Pl(%,<zz+ for some n e N ) = l  (15) 

where (y,,) is any strongly increasing sequence fl'om E~,, with y,~ I. For every t >0  
we define 

At = {m l z, + (m) > t, ~t se(t,  ~z+(m)): X,(co)=/}. 

Then we have 

{co]~(tn), t~l"zl+(co)" Xt,,(co)=l}=~){A~]t>O , t rational} 

and from the Markov property it follows that 

P~(A,)= ~ Px,(Ao)dP~. 
{~l + > ~} 

Lemma 1 implies 

Py(Ao) =0  for y<l.  

Thus P~(At)=Pz(Ao)Px(zt+ >t). From (15), (16) and Lemma 1 we get 

PI(Ao) = lira ~(Ao, ay~ < zz +) < limsup PI(A~, , % < zl +) 
n ~ c o  n ~  n n 

= limsup Pl (ay~ < z I .) P,o(A o) = 0. 
n ~ a o  

Therefore P~(At)=0, and the lemma follows immediately. 

(16) 
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The Tail a-Field and Parabolic Functions 

Let 3;=(Xt, ~//g~, 0~, Px) be a quasi-diffusion with state space E m and infinite life 
time, i.e. with (10). We denote by ~oo the a-field generated by {X~, s>t}, by J-* 
the intersection (-] ~o~, and we identify all elements of Y *  being equal Px-a.s. 

t>0  
for every x ~ E  m. The a-field Y of all equivalence classes thus defined is called 
the tail a-field of 3;. 

By P(t,(x,s), AxG),=Px(X~eA)JIG(s+t ) (AeNc~E,),  Ge~r  oo); 
s, t e[0,  oo)) a transition function P on/~ , ,=E, ,  x [0, Go) is determined, which is 
stochastically continuous and Fellerian. (See [18].) Thus it generates a Hunt 
process ~ = (3~t, ~ t ,  6,, ~x,,)) on /~ , ,  the so called space-time process for 3;. The 
first component of ~; has the same finite-dimensional distributions as 3; and thus 
it can be identified with 3;. In this sense it follows that 

P~,~(2 ,=(x , ,  ~+ t)) = 1 ((x, s) ~ m ) .  

Let h be a nonnegative function on/~m. We say that h is parabolic for 3;, if it 
is harmonic in the sense of [28] for the space-time process 3~, i.e. if 

- h is ~-universally measurable, 
- h(x, s)=E~h(X~, ~v+s) for every open neighbourhood UcE, ,  of (x,s) 

with compact closure in Era, where zv denotes the first hitting time o f / ~ , , \  U 
((X, S) ~ J~m)" 

Obviously the constant function 11 is parabolic. 
A parabolic function h is said to be minimal, if there is no parabolic function 

h o with 0 < h o < h  unless ho=ch for c~(0, 1). Bounded parabolic functions are 
continuous (see [20]). The constant function Ii is minimal if and only if Y is 
trivial. More generally, the relation 

Z---,h(x, s)=ExZ o O~ (17) 

establishes a one-to-one correspondence between the set of all bounded Y-- 
measurable random variables Z and the set of all bounded parabolic functions 
h. The inverse formula of (17) is given by Z = lim h(X~, t). 

t~oO 
For the proof we recall that by virtue of the finite life time of 3; a bounded 

nonnegative function h on E,, x [0, oo) is parabolic for 3; if and only if it is 
invariant, i.e. if 

E~h(Xt, s+t)-=h(x,s ) (x~Em; s,t>O) (18) 

holds (see e.g. [20], p. 41). 
Now the assertion can by verified analogously to the proof of the same 

proposition for discrete time Markov processes in [30], Chapter V. 
Formula (18) implies that (h(Xt, s+t))t~_o is a martingale with respect to P~ 

(x ~ E~, s > 0). Indeed we have 

E~(h(Xt+,,s+t +u)lX~, v<t)=Ex h(X ., s+t +u)=h(X t, s+t) 

(xeE,,; s,t,u>O). (19) 
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If h is continuous, nonnegative and satisfies the equation 

"h 
D,,Dph+~=O, D;h(O,s)=O 

GS 

then h is parabolic for the quasi-diffusion �9 (see [18, 20]). (The boundary 
condition D~-h(0, s)= 0 is necessary because 0 z E~ and 0 is reflecting.) 

In particular for every # > 2 o the function h, defined by 

h,(x, s) = exp ( -  #s) q)(x, N ((x, s) e /~ )  

is parabolic (see [20]). 

The Coincidence Property 

We say that a quasi-diffusion 3r has the coincidence property if two independent 
versions 3~ (j~, 3~ (2~ of X, starting in arbitrary states x, y ~E,, respectively, coincide 
P(x,y)-a.s. at some time. (Here and in the sequel P<,:,y) denotes the product 
measure Px G Py; x, y ~ Era. ) More precisely, putting 

a-(c0) = inf {t > 01X}I)((D) = X}2) ((.o)} 

the coincidence property means P(x,y~(O- < oo) = 1 (x, y E E,,). 
In [163 it was proved that a birth and death process with intensities ak, b k 

has the coincidence property if and only if 

co k 

2 (akmk) -r • m~(wk+l--wr)=~ 
k = l  v=0 

with 
m - 1  i 

Wm~- 2 (aimi) -1 2 mj and wo=O 
i=o  j = 0  

where m k (k eN) are defined as in the example above. 
In terms of the corresponding speed measure m and scale p this criterion can 

be written as follows (see [25]): 

Lxx 
S ~ ~n(t)p(dt)m(ds)p(dx)= o~. 

OOs 

A simplification of this analytica! criterion will be given in Theorem 1 below. 
The coincidence property for random walks on N has been considered in 

E23]. 

3. Quasi-Diffusions with Trivial Tail a-Field 

The theorem below characterizes the quasi-diffusions ~ with trivial tail a-field 
J by different objects connected with X: by the parabolic functions, by the 
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trajectories, by the functions m and p and by the spectrum a 2 of ID~IDp in 
1L2(m). 

If L is an entrance boundary then an easy calculation shows that (v) and 
therefore (i)-(vi) hold. If L is a natural boundary then (v) may but need not hold 
(see the examples below). Thus Feller's boundary classification can be refined by 
the theorem below, indeed, the quasi-diffusions with natural boundary L are 
divided into two classes according to the convergence or divergence of the 
integral in (v). 

By the way if L is accessible then non of the properties (ii)-(vi) holds. 

Theorem 1. Let )i be a quasi-diffusion on [0, L) with speed measure m and scale p. 

(i The boundary 0 is assumed to be reflecting, L is assumed to be inaccessible mdp 

= oo). Then the following properties are equivalent: 

(i) The tail a-field ~-" is trivial, 

(ii) The constant function 1l is minimal parabolic, 

(iii) The process Y. has the coincidence property, 

(iv) lim E~(z~-E~z~) 2=oo (xeEm), 
l~L, l~Em 

L 

(v) 1 ~ (p(L-O) -p(x))  2 dm2(x)= oo, 
0 

(vi) The  spectrum ~2 of IDmlD v contains a sequence (2~).~ N of  pairwise 
03 

different real numbers 2, such that ~ 2~ -2=  oo (with the notation 0 - 2 =  0(2)), i.e. 
n = 0  

]Ro=(1DmlDv)-I is not defined or does not belong to the class Y2 of Hilbert- 
Schmidt-operators. 

If �9 is the Brownian motion on [0, oo) with zero drift, which is reflected at 
zero then L = o o  is a natural boundary and (v) holds because p(x)=x and 
therefore p ( L -  O) = oo. 

If 3r is a diffusion on [0, 1) with reflecting boundary 0 and 

d 2 
1DmlDp=(1 + X ) ~ x 2 + ( l + x ) ( e x p x ) d x ,  i.e., 

dm(x)=( l+x)  -~ exp( (expx) - l )dx ,  dp (x )=exp(1 -expx )dx ,  

then L = oo is a natural boundary and (v) does not hold (see ]-25]). 

Proof of the Theorem. At first let us give some more properties of the hitting 
times zz. Using (4) and (8) we get for l e E,, 

Eoz~= (~o- 1(l, 2)) = 2  mdp -2 f f~m( t )dp( t )dm(s )dp(z )  
0 0 0  

and thus we have 

1 I f p ( L - 0 ) = o o  then the integral is defined to be equal oo. 
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l l z  

D~'c z = Eo(z , - E o ' c l )  2 = 2 5 1 5 re(t) dp(t) dp(z)din(s). 
0 s s  

From (5) and (8) it follows immediately that 

(20) 

o~z,= ~ ;4~(l) deem). (21) 
i = 0  

Now let ( l , ) ,~  be a strictly increasing sequence from E~ with lo=0 and lira 1, 
nl"oo 

=L.  We use the notation z,=zz~ and n(y )=min{n~N[l~>y} .  For every x ~ E  m 
the variables %(x), (Zk + 1 -  %) (k > n(x)) are independent with respect to Px. This is 
an easy consequence of the strong Markov property of �9 and the property X~, 
= l  Px-a.s. (l>x) (see (1)). Thus for every n>n(x) the hitting time % is the sum of 
random variables which are independent with respect to P~: 

n - 1  

G='c,(~)+ ~ (Zk+t--rk) Px-a.s. (22) 
k= n(x) 

If we put x =  l~, l=  I a then in particular we have 

D20Zl = 2 2 Dozx+Do(z~-%),  i.e. 

D2 zz= E~(zl_ Ex,Cl)2 _ 2 2 - D o z  l - D o %  
l l z  

= 2 ~ ~ ~ re(t) dp(t) dp(z) din(s). (23) 
x s s  

Let us recall that the partial sums (Z~) of a sequence of independent random 
variables on a probability space ((2, sd, P) is said to be essentially divergent, if no 
sequence (A,) of real numbers exists such that ( Z , - A , )  is P-a.s. converging to a 
finite random variable (see e.g. [24]). 

(iv) ~ (iii): Assume that (iv) holds. 

Lemma 4. For every xEE,, the sequence (%) defined by (22) is essentially divergent 
with respect to P~. 

Proof. The function (p(y,.) is entire and has strictly negative zeros only (see 
Sect. 2). Thus the right hand side of (7) is holomorphic in {zMKIRez> - 6 }  for 
some c~ > 0. The function z ~E~ exp ( - z zz) is also holomorphic in {z MK[Re z > 0} 
and continuous on the corresponding closure. In particular we have 

~o(x, i ~) 
E~exp( - i#z~)= (#MR; x, IEEm, x~l) .  

~p(l,i#) 

(With i here we mean the imaginar unit.) 
Let x~E~ and (A~) a sequence of real numbers such that ( % - A , )  converges 

P~-a.s. to a finite limit. Then the functions 

E~exp( - i# (%-A, , ) )  =exp(i#A")cp(x'i#) (#elR) 
(p(1,,i#) 

converge pointwise as n--* oo to a characteristic function p(.). From (4) it follows 
that 
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I(p(/, i#)12 = j O  ~ 1+ =>1+[#12 2~- 2 (1). 
"= j=O 

Now (iv) and (21) imply p ( . ) = 0  which is a contradiction. _J 

As in Sect. 2 let Y(~), 3; (2) be two independent versions of Y on a probability 
space (~, s~, P(~,y)) (X, ysEm) where P~ -3 denotes the product measure P~ | Py. Let 
v(i) be the hitting time of I k by 3~ (~) (i-~1, 2). If we abbreviate 

_ ~(1) ,(2), :,(1)_z~2)) (j, neN, j<n)  

then for all x, y eE  m the variable ~o,, with j o :=  n(x v y) is a sum of independent 
random variables 

: ( ,  _~(2) ~ t(1)_V(k2))] ( j o < k < n _ l )  [Tk+j. ~k+l]--~,Tk 

having symmetric distributions with respect to Pox,y). 

Lemma 5. For every x, y eE  m the sequence (Tjo,,),>j o is essentially divergent with 
respect to P(x,y). 

Proof. The proof can be provided analogously to the proof of Lemma 4 if we use 

exp(i#A,) I q~(I:o, i#)12 A 
E(x,y)exp(-i#(Tjo, ,-A")) jcp(l,, i#)[2 

Now it follows from a theorem of L6vy ([24], p. 147) that P(~,y)(Tjo,,>0 
infinitely often) equals either 0 or l. 

By the symmetry of the distributions of T~o,, this probability has to be 1. 
Another theorem of L6vy ([24], p. 147) implies that P(~,y)(T~o,,>c infinitely 
of ten)=l  for every ceR. By virtue of z(,~)-z(2)-z r T(2) qt-T.,on we have n - -  J o -  jo 

( ( 1 )  ,7.(2) P(~,y) ,z~ - ~, > 0 infinitely often) = 1 and, by symmetry P(~,y) (z~ 1~''- z(, 2) < 0 in- 
finitely often) = 1. 

In particular we get with the notation 

z = inf{t > 01(x - y)(X} a) - X} 2)) < 0} 

that 

P~x,y)(z < oe) = 1 (x, yeEm). (24) 

Lemma 6. I f  P(~,y)(z< oo)= 1 (x,y~Em) then the coincidence property holds: 
P~x,. (o-< oQ)= 1 (x,y~Em). 

Proof We show that the event A={o-= oe, z <  or} has the probability zero with 
respect to every P(~,y). Let be x , y~E  m. We can assume x<y .  Choose coeA. Then 
we have 

X~o(co)<X~2)o(c9 ) and X~l)(co)>X~2)(co). (25) 

Assume X~o(Co)=X~o(~O)=l. If X~l)(co)>l and X~Z~(co)<l then from the ~*- 
continuity it follows that l has to be an isolated point of Era. This implies that 
X~l!~(co) =X~Z)s(co ) = / f o r  sufficiently small but positive s, i.e. ~(co)<v(co) holds. 



Tail a-Field and Minimal Parabolic Functions for Quasi-Diffusions 315 

Thus we have X{1)(~o)=l or X{a)(m)=/, let us assume the second equality. 
Putting X{1)(~o)=/1 we have l 1 > l  and (by Lemma lb)) (l, l l ) c [ O , L ) \ E  m. From 
Lemma 3 it follows that there exists a strictly increasing sequence (t,) with 
t,~ z(co) such that X~ = 1. By virtue of t, < z(~o) we have tn \ ~ /  

and because (l, lz) does not contain an element of E,, we get 

This contradicts X~22o(C~)=l<lr Thus the assumption of equality in (25) was 
false, i.e., we have 

(1) (2) x p ) ( , , )  > x~2)(,~,). (25') x~_ 0(~o) < x~_ o(~O), 

Now from (25 3 and the ~*-continuity (see Lemma lb)) it follows that 

X~o(CO) < X~')(co), X{2_)o (co) > X~2)(co). (26) 

(If we assume X~l)(oo)<X~Po(~) then X~2)(~o) (17 (2) <X~ (o~)<X~_o(m), i.e., 
(X(2)&o~ X (2) ~co~ contains an element of Em. This contradicts Lemma lb). The \ 1'  z - -  Ok IJ 

second inequality follows on the same way.) 
Analogous conclusions imply 

X(1) l..., X(2h'09~__~, X~2)o(~)=X~l)(09)=__a2. 
z--O~tZ~} = r \ 1 - - ~ 1 ,  

Put l=(a,,a2). Then ~(~)=~p,J)(~)=o-~/,k)(~o) for some j, kffN where z~i'J) de- 
notes the j-th jump of 3E (1) over i from below a n d  o-~ 2,k) the k-th jump of ~(2) o v e r  

1 from above. 
The distribution functions of z~ 1';), 0.~ 2,k) under P(~.y) are absolutely con- 

tinuous, therefore the probability of the event that both processes 3E ~1), .~(2) jump 
at the same time equals zero, i.e., P(~m(A)=0 holds. 

(The absolutely continuity was shown by R&ler [33] for processes with 
strictly increasing speed measure m. His arguments hold also for general m.) 
Thus the lemma is proved. 

From (24) and Lemma 6 it follows that P~,y)(o-< ~ ) = 1  (x,y~E,,), i.e., (iii) 
holds. 

(iii) ~ (ii): Let h be a bounded parabolic function and define 
--o.[X~*),X~2)]u<_t]_ to be the o--field generated by {~'"(~), X~2)lu<t}. Then for 
every s >0  the processes (h(X} ~ s + t), ~ ) t e  o (i = 1, 2) are martingales with respect 
to P(,,y) (x, y~E~). 

Indeed, choose A=A~c~A 2 with A~a[X~~ Then from the 
independence of ffa) and ~ )  under P(x,y) it follows that (put for example i=  I) 

5 h(X}~)~,s +t  + v) dP~.,~)= ~ h(X}~)~,s +t  + v)d P. ~ dPy 
A A~. A 2  

= Y h(X}'),s+t)dP*P~(A2) = afh(X(*), , ,s +t)dP(.,y) (see (19)). 
A1 A 

Recall that the set of all such A generates ~'&t- 
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The r andom variable a defined in Sect. 2 is a (~t)-stopping time. Now a 
stopping theorem for martingales (see [27], VI. 14.), p roper ty  (iii) and X~ 1) = X ~  ) 
P(~,y)-a.s. (x, y~E~) imply 

h(x, ~(1) . . . .  (2~ s+a)=h(y,s)  (s>O,x, y6Em). s) = Et~,y~ h (~  ~ , s + a) = E(x,y ) t t (A a , 

This means that for every s~[0, oo) the function h(.,s) is constant.  Now it 
follows from (18) that  h is constant.  Therefore  the constant  function ] is minimal 
parabolic.  

(ii) ~ (i): Let  be A ~ J .  The  function h A defined by 

hA(X,s)=P~(O~A) (XEEm, S~O) 

is bounded.  Because A e ~  ~ for every t > 0 it follows from the Markov  proper ty  
that  

hA(Xt, t)=Pxt(OtA)=P~(A[X,,u<t) P~-a.s. (x~Em). (27) 

Thus (hA(Xt, t))t>=o is a bounded  mart ingale with respect to Px(X6Em). The 
stopping theorem for mart ingales ment ioned above implies that  h A is parabolic  
(the universal measurabil i ty  follows from the ~-excessivity of hA, s e e  e.g. [28]). 
By virtue of  (ii) h A has to be constant.  F r o m  (27) and the convergence theorem 
[27], VI. 6. we have by virtue of  AE~tt ~ ( t>0) :  

l imhA(X,t)=Px(A]X,,u~[O, oo))=~ A P~-a.s. (x~E~). 
t ~ o O  

This means  h A-= 0 o r  h A ~ 1, i.e. (i) holds. 
(i) ~ (iv): Assume (iv) does not  hold, i.e., by (23) and (9), 

l imD 2 z{ < oo. (28) 
l?L 

For  every x~E~ and every k with Ik>-X the r andom variables Zk, (Zi+ 1 --V~)j> k 
are independent  with respect to Px (see above). We have for every xeE~ 

n - - i  

~.-E0~~ ~ (~j+1-~i-Eo(~j+l-~)) 
j =  n (x) 

+(z,(~)-Eo %(x)) P~-a.s. 

Thus by virtue of  (28) and (23) we can conclude that ( % - E  o %) converges P~-a.s. 
and in P~-square mean  (x~Em). The limit is denoted  by Z. 

Fo r  all n ~ N  and s > 0  the equat ion z,o O~=%-s holds on {z,>s}.  By virtue 
of  lira z, = z L = oo (P~-a.s., x~Em) we have {z, > s} T 12 (P~-a.s., x~E~) for n ~  oo and 

n ~ 3  

all s > 0. It follows that Z o 0~ = lira (z, o 0~ - E o %) = lira (% - s - E o z,) = Z - s Px- 
a.s .  (x~Em) for every s > 0 .  " . . . . .  

This implies that Z is ~s~176 for every s > 0, i.e., Z is J--measurable .  
Because D 2 Z =  lira D 2 ( % - E  0 z , ) > 0  the variable Z is nondegenerate,  i.e., ~- is 

t l ~ o o  

nontrivial,  and thus (i) does not  hold. 
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(iv) ~ (v): Assume (v) is not true. Then p(L-O)<  oo and integration by parts 
yields for every/El0, L) 

t 

(p(L- 0) -  p(x))~ m ~(d x) 
0 

1 

= (p ( L -  0) - p (1))2 m2 (I) + 2 ~ (p ( L -  0) - p (x)). m 2 (x) p (d x). (29) 
0 

By assumption the left hand side and therefore all terms of this equation are 
bounded with respect to IEE,.. Thus the inequality 

l l 

(p ( L -  O) - p (x)) m z (x) p ( d x) > ~ (p (1) - p (x)) m 2 (x) p ( d x) 
0 0 

l x 

= ~(p(l)-p(x)) re(x) I m(ds)p(dx) 
0 0 

I l 

= ~ S (p (1) - p (~)) m (x) p (d x) m (d s) 
O s  

I l l  

=~ ~ ~p(dt) m(x) p(dx) m(ds) 
O s x  

l l t  

O s s  

(see (20)) implies 

lira D g zl < co. 

This contradicts (iv). 
(v) ~ (iv): Firstly let us remark that for every nonnegative continuous 

function f ( . )  on [0,L) it holds 

l l 

2 ~ f(t) re(t-- O) m(d t) <= ~ f(t) m 2 (d t) 
0 0 

l 

<2~f ( t )m( t+O)m(d t )  (ICE,.). (30) 
0 

(The first and the last integrals are understood in the Lebesgue's sense. The 
proof of (30) is left to the reader.) 

From (30) it follows 

L L L  

�88 ~ (p ( L -  O) - p (x)) 2 m 2 (d x) < ~ ~ (p ( L -  O) - p (t)) p (d t) m (x + O) m (d x) 
0 O x  

L L  

_~ ~ ~(p(L-O) -p(t))  m(t) p(dt) m(dx) 
O x  

L L z  

=~ ~ ~m(t)p(dt)p(dz)m(ds).  
O x s  

Now it follows from (v), (20) and (23) that (iv) holds. 
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(v) ~ (vi): Assume that (vi) is not true. Then the spectrum ~2 of the self- 
adjoint operator ID~IDp consist of a sequence (2,) ,~ of eigenvalues with 

~2~- < ov and 20 = max ~r 2 < 0. 2 

n = 0  

Thus the operator 1R o =(ID,,1Dp) -~ exists and has the spectrum (2,-t),~v. It 
follows from Lemma2  that p ( L - 0 ) < o o .  With the notation ro(x,y):=(p(L-O ) 
-p(x v y)) we have 

L 

IR o f (x) = ~ ro (x, y) f (y) m (d y). 
0 

This follows from the general theory of the operator IDmID v and can he also 
proved by direct calculations (see e.gl [15]). For the trace of 1R 2 we thus have 
(see e.g. [11], III w 

oo> ~ )~2z= ro(X,y)ro(y,x)m(dy ) m(dx) 
n=O 0 

L 

= ~ (p (L - 0) - p (x)) 2 (m (x + 0) + m (x - 0)) m (d x). (31) 
0 

Using (30) we get a contradiction to (v). 
(vi) ~ (v): If (v) does not hold, we have p ( L - 0 ) <  oo and 

L 

(p ( L -  0) - p (x)) 2 m2 (d x) < (30. (32) 
0 

Therefore the integrals in (29) converge to a finite limit if lTL and thus the 
limit lim(p(L-O)-p(1))m(I)=: C exists and is finite. If C > 0  then for every leE~ 

I?L 
L 

sufficiently near to L we have by virtue of (30) and the assumption ~mdp= oo: 2 
0 

L L 

(p ( L -  0) - p (x))2 m2 (d x) => 2 ~ (p ( L -  0) - p (x))2 m (x - 0) m (d x) 
l l 

L L 

__> c j" (p (L - 0) - p (x)) m (d x) = C j" (m (s) - m (1 - 0)) p (d s) 
l l 

>C(!mdp-m(l-O)p(L-O =oo. 

This contradicts (32). Therefore C = 0  holds, and this implies that the spectrum 
o- a is discrete and consists only of eigenvalues (2~)~ without finite accumulation 
point (see [15], w It now follows from Lemma2  that 2o<0 holds. In 
particular the trace formula 

L 

;~2 ~ = # ( p ( L -  0 ) -  p(x))~ (m(x + o) + r e ( x -  0)) m(d x) (3 3) 
n ~ O  0 

holds (compare (31) and the cited place in [11]). 

2 T h e  i n t e g r a l s  i . . .  v(dx) a r e  d e f i n e d  t o  b e  e q u a l  i . . .  v(dx) (v=m o r  m2). 
I I--0 
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By virtue of (32) the integral in (33) converges. This can be seen as follows. 
By the first inequality of (30) it suffices to consider the integral 

L 

(p ( L -  0) - p (~))~ (m (x  + 0) - m (~ - 0)) m ( d  x)  
0 

= ~ ( p ( L -  O) - p(x)) 2 (A re(x)) 2 (34) 

where the sum runs over all x such that A re(x)= m(x + 0 ) -  re(x-O)> 0. But this 
sum is less or equal 

E ( p ( L -  O) - e(x)) z A m(x)(m (x + O) + m(x - 0)) 
L 

= y~ (p ( L -  O) - p (x))~ (m ~ (x  + 0) - m ~ (x  - 0)) < ~ (p (C - 0) - p (x))  ~ m ~ (d x).  
ta v 

Thus the integral in (34) and therefore also the integral in (33) are finite. This 
means that (vi) does not hold. 

The proof of the theorem is finished. _] 

Remark. In the proof above we have shown that 

L 

(p ( L -  0) - p (s)) ~ m ~ (d s) < oo 
0 

is equivalent with the P~-a.s. convergence of (z~-E o z~) as l~L to a J -measurable  
nontrivial random variable Z with finite variation limD 2 z~. This result has been 

Z1"L 

proved for diffusions also by Fristedt, Orey in 1-10] in another way. Moreover, 
these authors have shown in [I0] that Z generates the a-field #- and that t 
- E o  :x~ converges to Z P~-a.s. (x~E~,). 

4. Minimality of Factorizing Parabolic Functions 

As an application of the Theorem 1, in particular of the characterization (vi), we 
can decide, if the factorizing parabolic functions (x, g)-~h~(x, s) = 
exp (-/~s)q)(x,/~)(#>20---sup a2) are minimal parabolic. This is substantial for 
studying the Martin boundary of the space-time process corresponding to t;. We 
formulate this application in the following 

Theorem 2. Let Y~ be a quasi-diffusion on [0, L) with speed measure m and scale p. 

( i )  Assume 0 is reflecting and L is inaccessible mdp=oc . Then the following 
properties hold: 

(i) The parabolic function h~.o is minimal parabolic, 

(ii) i f  L is natural and a; contains pairwise different nonzero 2, (2~>1) with 

~ 22 = oo then for every # > 20 the parabolic function hu is minimal parabolic, 2 

(iii) I f  L is natural and a 2 does not contain pairwise different nonzero 2~ (n> 1) 

with ~ 2~ 2 = oo then for no p>20 the parabolic function h~ is minimal parabolic, 
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(iv) I f  L is entrance then for no ~ > 2  o the parabolic function h~ is .minimal 
parabolic. 

Remark. If L is accessible, then h~o is also minimal parabolic but the functions 
h, (#>20) are not. The minimal parabolic functions for this case (and for the 
case that L is an entrance boundary) have been described in [19, 20]. 

Example. If 3; is a Brownian motion on [0, co) with zero drift and which is 

reflected at zero, then 20 = 0 and h,(x, s)= e x p ( - #  s)cosh(l / /~x) .  The boundary 
L = o o  is natural and by virtue of p(x)=x we have p (oo-0)=oo .  Thus the 
corollary implies that every h, (# > 0) is minimal parabolic in this case. Woo has 
shown in [36] that for the Brownian motion on ( - o %  oo) with zero drift a 
parabolic function is minimal if and only if it is of the form 

gu(x,s)=exp(-l~s+ l f2~x) ( r e ( -  o% or)) 

(up to a multiplicative constant). 
His proof makes use of analytical properties of the corresponding transition 

densities which are not available for general quasi-diffusions and thus it can not 
generalized to our case. Furthermore the Theorem2 above shows that the 
results for the Brownian motion are not the model for all quasi-diffusions with 
natural boundary L. Indeed, if 3; is the diffusion on [0, oo) given in the example 

r 
after Theorem 1 then L = o v  is a natural boundary and ~(p(L-O) 
-p(x)) z mZ(dx) < oo. o 

Thus the corresponding factorizing parabolic functions h,(/1>20) are not 
minimal. 

Proof of Theorem2. We start with some preparation. Let be # > 2  o. Then by 
dm(~):=qo2(.,t~)dm, dp(U):=cp-z(.,#)dp a new speed measure m (u) and a new 
scale p(') on [0,L) are defined (compare e.g. [9]). The corresponding quasi- 
diffusion is denoted by 3;("). (All notions connected with (m ("), p(~)) we mark with 
the superscript (").) 

Using the Lagrange identity for D,,Dp (see [15]) we get 

1 
Din,,, Dp(~, g = 9( . ,  ~) D,, Dp(g ~(. ,  ~)) - ~ g 

for all g such that the expressions are well defined. Therefore 

p(u)(X}U)~d y ) _- exp,(- ~ t) p~(Xt~d y ) qo(y, #). 
q) ( x, #~ 

For details see [19, 20], the transformation X--,Y ~u~ is a special case of transfor- 
mation of Markov processes by multiplicative functionals. 

It follows from this formula that a function h on E m • [0, or) is parabolic with 
respect to 3;(u) if and only if (x,s)-~exp(-#s)cp(x,#)h(x,s) is parabolic with 
respect to 3;. Now the following Lemma is obvious. 

Lemma 7. Assume # > 2  o. Then the function (x,s)-~h~(x,s)=exp(-#s)qo(X,l~) is 
minimal parabolic for 3; if and only if the constant function 11 is minimal parabolic 
for 3;(u). 



Tail a-Field and Minimal Parabolic Functions for Quasi-Diffusions 321 

Analogous  s ta tements  for special M a r k o v  chains and for the Brownian  
mo t ion  has been  used in [5, 23, 36] to study the minimal i ty  of factorizing 
parabol ic  functions for the cor responding  processes. 

N o w  the following l e m m a  is the key for the successful appl ica t ion  of 
T h e o r e m  1 to the processes 3;t~). 

L e m m a  8. (i) The spectrum a~ ) of ID~c~IDp(,~ in ILz(m (~)) is the translation of a 2 
by - # :  

(ii) the boundary L is (m, p)-natural if and only i f  it is (m ("), p(")) natural. 

The p roo f  of par t  (i) easily follows f rom the definition of be tween IDm(,)IDp(,~ and 
1DruiD p. The p roo f  of  par t  (ii) is more  complicate ,  see [19] or [20]. 

N o w  we are ready to p rove  the T h e o r e m  2. Let  3; be a quasi-diffusion on 
L 

[0,L)  with speed measure  m, scale p and ~mdp=oo.  Then 3;(ao) is a quasi- 
0 

diffusion on [0, L) and we have  )~(oz~ sup o(2 z~ 0 by vir tue of L e m m a  8(i). 
L 

Thus p(;~~ o~ (see L e m m a  2) and this implies ~mt~~176 o% i.e., L 
is also 3;(;~<inaccessible. o 

Therefore  T h e o r e m  1 is appl icable  to the process 3;(;'~ By vir tue of  2~0 ~~ 0, 
3;(Zo) obviously  fulfils (vi) of T h e o r e m  1, and therefore it follows f rom this 
t heo rem and L e m m a  7 tha t  ha0 is min ima l  parabol ic  for 3;, i.e. (i) of  T h e o r e m  2 
holds. 

Let  L be na tura l  for 3;. By L e m m a  8(ii) L is also na tura l  for 3;("). Thus  
T h e o r e m  1 is appl icable  to 3;("). Using L e m m a  8(i) it is clear that  the condit ions 
in (ii) and (iii) of  T h e o r e m 2  are invar iant  under  the t r ans fo rmat ion  
(m, p ) ~ ( m  ("), p(~)) for /~ > 2o- Thus  (ii) and (iii) of  T h e o r e m  2 immedia te ly  follow 
f rom the T h e o r e m  1 and L e m m a  7. 

The  par t  (iv) requires other  me thods  and was proved  in [18, 19]. 2 
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