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I n t r o d u c t i o n  

This paper is involved with the following problem. Given a sequence of local 
martingales, say (Mn), under which conditions on the quadratic variations ([M,]), 
can we state the convergence in distribution of the (M,) sequence towards a 
continuous gaussian martingale limit? 

"Convergence in distribution" means here the weak convergence of the 
(s sequence on the space D of right continuous and left hand limited 
functions, f ( M , )  being the probability measure induced on D by M n (i.e. the 
distribution or law of the M, process). 

In preceding works, the author has investigated an analogous problem for 
locally square integrable local martingales (in short, "locally square integrable 
martingales"). In such case we were interested in finding out conditions on the 
( (M,))  sequence of associated increasing processes to insure the (M.)'s con- 
vergence in distribution. 

It is a well known fact (c.f. [-9]) that for a local martingale M the associated 
increasing process ( M )  exists if and only if M is locally square integrable. On 
the contrary, [M] always exists and, furthermore, [M] is easier to calculate than 
( M )  when both processes exist. Thus the problem with which we will deal below 
is a very natural one. 

In the first paragraph, we will explain some notations. Paragraph two is 
devoted to state the main results of this paper. Proofs of these results are given 
in paragraph three. Paragraph four contains some particular cases of the main 
theorems. The last paragraph gives a complementary result for locally square 
integrabte martingales. The Appendix contains the recall of a classical Tightness 
Criterion used in the paper. 

I. N o t a t i o n s  - P r e l i m i n a r i e s  

1. We will begin by defining some notations. We consider a complete probability 
space ((2, ~, IP), and a filtering family IF = (~t, t61R+), of sub a-algebras satisfying 
the usual Dellacherie's conditions (viz. IF is right continuous, and every o-- 
algebra is complete). 

0044-3719/80/0051/0269/$03.60 



270 R. Rebolledo 

Processes are considered to be applications X from ~2 x IR+ to [ - m  oo] 
such that for all tMR+, the function co~-~X(co, t) is measurable. 1 

The IF-predictable o--algebra ~(IF) on f2 x/R+ is generated by F-adapted 
processes with left continuous trajectoires. So an IF-predictable process is a 
~30F)-measurable function from f2 x 1R+ to [ - m, oo] endowed with its borelian 
a-algebra. 

Martingales are considered as in [91, i.e. we always suppose that their 
trajectories are right continuous and possess left hand side limits at every point 
of 1R+. The following notations are standard: 

//g [IF, IP] : the space of uniform integrable (IF, P)-martingales 

./g2 [IF, IP] : the space of (IF, lP)-martingales M such that sup IE(M2(t)) < oo. 
t ~ . +  

This space will be called the space of square integrable martingales. 

~U+ OF, liP]: the set of increasing processes A, IF-adapted, with right continuous 
paths, such that A(0)=0 (IP-a.s.) and lE(A(oo))< oo. 

This set is called the set of integrable increasing processes. ~U[IF, IP] 
= Y+ [IF, IP] - ~+ OF, IP], is the set of processes of integrable variations. 

Let Y'OF, IP] be one of the set of processes introduced above. A process X is 
locally in f [ I F ,  IP] if there exists a sequence (T,) of IF-stopping times such that 
T, Too IP-a.s. as nToo and Xr~ IP] for all n~N; where the notation X r 
stands for the process Xr(t)=X(TAt), T being a IF-stopping time, tMR+. We 
write ~ocoF,  ip] for the set of process X locally in X OF, IP]; we will add a 
subscript 0 (i.e. ~~176 IP]) for the subset of elements X~2~I~ IP] such that 
x(0)=0. 

For a process V of 0F, lP)-local integrable variation (i.e. V~Vfl~ IP]) we 
denote by V its predictable compensator (or dual predictable projection, c.f. [9]). 

If M~d{ l~ OF, IP], [M] denotes the quadratic variation process (c.f. [9]) and 
for M~M{ 2' 1o~ [IF ' IP], ( M ) =  [-M"~] denotes the associated (predictable) increasing 
process. If M,N~Jgl~ IP] we put [M,N]=�88 and if M, 

N~JN2'I~ IP] we call (M,N)  the process [ M , ~ .  
As usual, the notation D=D(1R+,IR) stands for the Polish space of right 

continuous and left hand limited functions from ]R+ to IR endowed with the 
customary Skorokhod's topology (see [1, 13, 18]). For every xED, we denote by 
x( t - )  the left hand limit at tMR+ and by Ax( t )=x( t ) -x ( t - )  the jump a t  
tMR+. 

We will also define a mapping * from D to D by 

x*(t)=sup[x(s)[. 
sNt  

The function x* defined in this way is an increasing one so we can extend its 

domain to [ -  0% oo] by putting x*(oo)=limx*(t)=sup Ix(s)[. 
tTco S 

If X is a process with paths in D, we denote by ~(X)  its distribution on 
(D, ~3) where ~3 is the borelian (r-algebra of D. If (X,) is a sequence of processes 
with trajectories in D, we say that this sequence is tight (resp. C-tight) if the 

1 We identify indistinguishable processes 
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associated sequence (G~ is tight on D (resp. if (~(X,))  is tight and every 
limit point is concentrated on C-~ C(IR+, IR), the space of continuous functions 
from IR+ to IR). We say that (X,) converges in distribution or in law to X as n~" oo 

.s 
(we write X.  ~ < ~  X) if the sequence (Y(X~)) converges weakly towards 5a(X). 

Weak convergence on D will be denoted by the symbol " ~ " .  The symbol 
"-.~" means convergence in probability. 

A dot between two process, e .g .Y.X,  means stochastic integration (of the 
first process with respect to the second one) when this operation has a meaning. 
If Xey:I~176 IP] and Y is a positive process, Y . X  is just the Stieltjes integral 

~.x(t)= S Y(s)dX(s); (teaR+). 
lO, tl 

In general, we refer the reader to Meyer's theory on Stochastic Integrals ([9]). 

c Jd J~176 FIF 2. Now, let us consider M o ~_,IP] and s>0.  We can construct the 
following increasing processes: 

~ [ M ] ( t ) =  ~ IAM(s)I Itl~i(~)l >~l, 
s~ t  

~ = ~ IAM(s)I 2 I~lA~t(~)[ >~1 (t~R+). 
s<=t 

It was shown in [10] (see also [14]) that ~ [ M ]  is locally integrable. We also 
recall that the process [M] ~/2 is locally integrable (see [3]). The process a~[M] 
is locally integrable if Me./do z, l~ , IP], but it is not the case when M is just a 
local martingale. The local integrability of ~ [M] implies that the process 

A~[M](t) = ~ AM(s)I{IM(~)I>~I (teN+) 
s < t  

has local integrable variations, so its predictable compensator A~[M] exists. 
Now put Ud"=A~[M~-.4~[M]. The local martingale M ~ = M - . ~  ~ satisfies 
(4M~)*(o0)<~2~ in the general case and (AM)*(oo)~e when M is quasi-left- 
continuous (see [14, 16]). In the quasi-left-continuous case we also have [M ~] 
=o-~[M] (see [14, 161), and M ~ is orthogonal to M ~. 

3. Let us consider a sequence of filtering families of sub a-algebras of ~,~, say 
(IF.), IF.=(J~, , ;  teN+),  (neN). 

We suppose that each IF. satisfies the usual Dellacherie's conditions on 
(a, ~-, IF). 

We shall deal with local martingales sequences (M.) in the following context. 
Each M.  belongs to JY0 ~ OF., 1P], (neN), so our processes are all defined on the 
same probability space, adapted to different filtrations IF.. This is not a real 
restriction. In fact, if the M.'s are respectively defined on different filtered 
probability spaces (f2., ~ ,  IF., IP.), one can consider the product space f2 = l~[ f2. 

with the product a-algebras J ~ @ ~  and J'--~=&-~, ,~  ,,t ( teN+), and the product 
N N 

probability measure IP=@IP, .  We define then a new sequence (X,) by X, 
N 

=M,oII, ,  where / / . :  g2--+(2, is the canonical projection (neN). Clearly ~ ( X , )  
= S ( M , )  and it is easy to derive that X,  add~~176 IP] if and only if 
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M loc .e~/~o OF., IF'.] and in this case, [Xn] .=[Mn]offln, ~([Xn])=~z~([Mn]) (see 
Additional References [AR2], w X-2 by example). 

4. Definition. Let (M.)eI]  t~loc ~oo [IF.,  IP]. 2 
N 

1) We say that (M,) satisfies the Asymptotic Rarefaction of Jumps condition 
of the first type (A.R.J. (1) condition) if 

J 

(1) ([M~,ll/2+[M~,, M~,]*)(t) ~ - -~  0, for all a>0, teN+.  

We say that (M,) satisfies the strong A.R.J. (1) condition if 

(2) Y [ M , J ( t ) , - ~  0 for all e>0, teN+.  

2 ~ The second type of ARJ conditions involves locally square integrable 
martingales. Let (mn)e [ I  J//o 2' loo OF,, lP]. 

N 
We say that (M,; heN) satisfies the Asymptotic Rarefaction of Jumps Con- 

dition of the second type (ARJ(2) condition) if 

- -  M e - - e  , P (3) ( ( m ~ ) + [ _ , , m , ] ) ( t ) ~ 0 ,  forall e>0, telR+. 

We say that (M,; heN) satisfy the strong ARJ(2) condition if 

(4) d~[m,](t) , - ~  0, for all e>0, tMR+. 

Finally, (M., neN) satisfy the Lindeberg condition (L-condition) if for all ~>0, 
and all telR+ 

(5) m(~ ~ [M.] ( t ) ) ~  0. 

We are now going to prove a version of the Central Limit Theorem for local 
martingales under the ARJ(1) condition. But let us give before the relations 
between the ARJ conditions. 

5. Proposition. 1) Let (M,)e l- [ J~o ~ OF,, IP]. Then the following implication holds: 
N 

strong ARJ(1)~ ARJ(1). 
2) Let (M,, nEN)eI] MI~' lo~ OF,, IP]. Then the following implications hold: 

N 

L-condition ~ strong ARJ(2) ~ strong ARJ(1) and ARJ(2); ARJ(2)~ ARJ(1) 
if each M, is quasi-left continuous, then 
L-condition ~ strong ARJ(2)<:~ ARJ(2) ~ strong ARJ(1). 

II. Main Results 

I would now like to state the main results of this paper, proofs of which will be 
given in the next paragraph. 

2 i.e. for every n~N,  M, EJ/~ ~176 ['IF,,, IP] 
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We fix a continuous increasing real function A, A(0)=0. We know (see 
[5, 11, 6]) that there exists a filtered probability space (0  A,~A,  IFA, ipA)_a 
canonical o n e - a n d  a continuous OF a, lPA)-martingale M (unique in law) such 
that <M) = A. These notations will hold throughout this paper. Therefore M is a 
gaussian centered continuous martingale of covariance function K(s, t )  
=A(s  A t), (S, t)~lR+ x IR+. (see [11, 6]). 

1. Proposition. Let ( M ~ ) ~  ~//loc ~ooo OF., IP] be such that 
N 

(AM.)*(oo)<=c., where c.+O as n~oo. 

Consider the two following relations. 

(i) 

(2) 

<M.)  (t) ~ A(t) (Vt~lR+). 

[M.] (t) A(t) (Vtem.+). 

I f  (1) (respectively (2)) holds, then relation (2) (resp. (1)) is also valid and 

M . ~ M .  

2. Theorem (Central Limit Theorem for Local Martingales). Let 

I-I  loc OF., m] 
N 

and let us suppose that 

(1) (M.) satisfy the ARJ(1)  condition 

(2) [M.](t) ~-~ A(t) (Vt6lR+) 

then 

M,, ~fT+ ~ M. 

Ill.  Proofs 

We shall first discuss tightness. With this aim, we state here a useful criterion on 
tightness proved in 1-16] (see also [AR1]). 

1. Proposition. Let (Xn) be a sequence of processes with trajectories in D and such 
that, for all n~N, X,, is adapted to the filtering family IF,,. 

Suppose that for all N e N  and all e, t/>0, 

(1) there exists a > 0  (depending on N and tl) such that 

suplP(sup  IX, ( t ) l>a)<t  l 
n~IN to[0, N] 

(2) there exists (5>0 (depending on ~, rl) and no~N such that for every sequence 
(T.) of random variables in which each T~ is an IF.-stopping time bounded by N, we 
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have 

sup IP( sup ]X , ( s ) -X , (7~) I>e)<r  1 . 
n>no T~<s<Tn+6 

st[O, N] 

Then (X,) is tight. 

Proof. C.f. [16], Proposition II.1.3 and Remark II.1.4.1). 

Now we shall introduce the concept of domination between processes 
adapted to a filtering family IF. This notion was introduced by Lenglart in [6, 7]. 

2. Definition. Let X, Y be two IF-adapted, positive processes with trajectories in 
D. Suppose also that Y is increasing. We say that X is IF-dominated by Y, we 
write X ~  Y, if for all finite stopping time T of IF we have 

~ ( X ( T ) )  <= ~(Y(T) ) .  

3. Lemma. Let X, Y be as in the preceding definition and X-< Y. 
a) I f  Y is predictable, then for all stopping time T, and for all e, ~1 > 0 

Ip(X*(T)>e)<=I-IE(Y(T)A~I) +IP(Y(T) > ~/). 
8 

b) I f  Y is not predictable, but if (AY)*(oo)<c, with c a positive constant, then 

1 
IP(X* (T) > e) <=- 1E(Y(T) /x (q + c)) + IP(Y(T) > tl) 

8 

for all finite stopping time T and all ~, t 1 > O. 

Proof. Part a) was proved by Lenglart in [-7]. 
Part b) is only a slight modification of the first result, (see [16] for more 

details). [] 

The following corollary is an elementary application of the preceding lemma. 

4. Corollary. Let (X,), (Y,) be two sequences of processes such that for each neN,  
X ,  and Yn are positive, IFn-adapted, right-continuous and increasing. Suppose that 
X,<~ Y, (nEN) and that one of the following hypothesis is true 

(a) Y, is IF;predictable (heN), or 
(b) (AY~)*(oo)<c (neN), where c>0  is a constant. Then, if Y , ( t ) , -~  O 

(teN+), we have X,(t)  , -~ O. 

5. Lemma. Let MeJ/I~~176 IP] and e>0. Then there exists constants k and K, 
positive, such that 

k [~t~] ~/z.~ ( ~ ) ,  < g E~u] 1/2 

and 

; M ~ (M~)*-<2~[M] [ _ ,  M ~ ] * ~ 4 e U [ M ] .  
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Proof. It suffices to show that 

M ~ (M~)*~2~[M]  and [ _  ,M~]*~4~U[M] .  

The other relation is a consequence of the 
equality. 

It is clear that 

1~4 ~ [M]t  < ~ [M]  

and also 

IA ~ [-M]I < &~ I-M] 

thus 

IA ~ [M] -/1~ [M]I < ~ [M] + U [M] 

275 

Burkholder-Davis-Gundy's in- 

If T is totally inaccessible stopping time, 

IAM~( T) I = IAM ( T) II~I~M(r~t > ~1 = A c~ ~ [M] (r). 

If T is a predictable stopping time, 

IAM~(T)[ < IA M(T)I ItlaM(r)L >~1 + IEgT-]AM(T)I IEIAM(T)I >~1 

< Acd[M] (T)+ A U [ M ]  ( r )  

then 

IAM~(s) l<cd[M]( t )+~'[M](O (t~lR+) 
s < t  

(MS) * _<_ c~ ~ [M] + U [M]. 
From this relation we obtain, from the definition of the predictable com- 
pensator, 

(M~) * M2 a ~ [M] 

and 

(M~)*-< 2 U [M]. 

Finally, 

M ~ [_,  Mq (0= ~ ~M_~(s)AM~(s), (t~,+) 
s < t  

and 

I[M ~, M~](t)l<2e ~ IAM~(s)[, (t~lR+). 
s < t  

but the right member of this inequality is an increasing process and we get 
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and we easily obtain the two following relations 

M s [ _ ,  M~]*<4eU[M], 

[M~,Mq*<4g~[M].  

6. Lemma. I f  Me.~2'l~176 1P] and e>O is given, then 

U [M] < e- 1 6_~ [M]. 

Proof. This lemma is evident from the inequality 

~ [M] < e- 1 a~ [M]. 

7. Lemma. Let Me~t~ ~ [IF, lP] with (AM)*(oo)<c, where c is a positive constant, 
(this implies that M is locally square integrable). Then 

(1) ([M] - ( M 5 ) ' 2 < 1 6 c  2 [M], 

(2) ([M] - (M))* 2-< 16 c 2 <M). 

Proof. Put L = [ M ] -  (M) .  L is a local martingale locally bounded because 

(aL)*(oo) < 2 c 2. 

Moreover 

AL=A [ M ] - A  ( M ) < A  [ M ] + A  (MS 

and we get 

AL 2 <2 c2(A [M] + A (M))  

But L is a compensated sum of jumps, so [L]= ~ AL2(s) and then 
s < .  

[L] < 2 c 2 ([M] + (M)).  

Now by Dobb's inequality 

L ' 2 < 4  [L] 

then 

L'2~(16 c 2 [M] 

and furthermore 

L*2M16c2 (M).  [] 

8. Proof of Proposition 1.5. 1) Strong ARJ(1)~ARJ(1)  is merely a consequence 
of Lemma 5 and Corollary 4. 

2) L-condi t ion~strong ARJ(2) is merely a consequence of the definition of 
predictable compensators and the fact that D-convergence implies convergence 
in probability. 
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Strong ARJ(2 )~s t rong  ARJ(1) is a consequence of Lemma 6 and Corol- 
lary4. Strong A R J ( 2 ) ~ A R J ( 2 )  follows from Corollary4 and the relation 
(M,~)<;3~[Mn],  (nEN, ~>0) proved in [-16] (also see [-14]). ARJ(2 )~ARJ(1 )  
follows from the inequality [Mr "] __< (~g)l/2 ~ ( ~ ) 1 / 2  3 

(M~) =a ' [ -M,]  (nEN, e>0),  [-M~, M~-I=O, 

so ARJ(2) and strong ARJ(2) conditions are equivalent. [] 

9. Definition. Let (X,, nEN), (Yn;nEN) be two sequences of processes with 
trajectories in D. We say that they are contiguous if for all tEN+,  
(x,,- L)* (t) ~ 0 

10. Lemma (Approximation procedure). Let (M,; nEN)EHJ[o~ lP] and 
suppose that this sequence satisfies the ARJ(1) condition. N 
Then for every real sequence (G; kEN) such that ck+O as kToo there is a sequence 

rig2, lo~ HF IP] such that (G; kEN) of positive integers and a sequence (Nk)E ]--[ o L~ ,~, 
kEN 

(1) (~N~)*(o~)<__c~, 
(2) (M,,~; kEN) and (Nk, kEN) are contiguous," 

(3) ([M,~], kEN) and (INk] ; kEN) are contiguous. 

Proof. Let ck~O and put ek = G~ 2. 
By Lemma 5 and Corollary 4, the ARJ(1) condition implies both 

(4) - - ~  * ~' (M, )  (t) ~ 0, 

(5) [M--,~](t) , - ~  0 and [-M,%--~ * Mn ] (t) ~%-~ 0 for all tEN+, all kEN. 

Put p~(x, y)=N~> 1 ( x -  y)*(N) =l 2fi 1 + ( x - y ) * ( N ) '  for x, yeD and denote e(k, n) the sum 

e(k, n) = IE(p~(EM,,], [-Mff])) + IE(p~(M,,, M if)) 

(4) and (5) imply e(k, n ) ~  0 for all kEN. 
Choose n k such that 

e(k, nk) < ~ (kEN). 

- -  s Put N k - M .  ~ 

(nk; kEN) and (Nk; kEN) satisfy the required conditions. [] 

11. Lemma (Tightness criterion for bounded jumps local martingales). Let 
( M n )  E H ff//loc ~ o  [IF~, IP] such that (AM,)*(oo)< G for all nEN. 

N 

Suppose that 

(1) G+O as nToo, 

(2) the sequence ([M,];  nEN) is C-tight. Therefore (M,.) is C-tight. 

3 If B is an adapted incr~easing process locally integrable and ~b a real concave function, positive 
and increasing we have ~(B(t))<qS(/3(t)) whenever qSoB is locally integrable 
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Proof. We will prove that (M.; n~N) is D-tight. C-tightness follows then from 
the relation 

WN(M., 3)<2 Wff(M., 6)+c.; (N, n)eN 2 4 

(cf, [133) and the fact that c.+0. 
Now consider a local martingale Mead~ OF, IP] such that (AM)*(~)<c 

with c a positive constant. Then (A[M])*(~)<=e 2 and from the relation 
m 2-< [m]. 

We get by Lemma 3 

< 1  
(3) IP(M*(T)>e=~-IE([M] (T)/~ (r/+c2))+IP([M] (T)>t/) 

for all finite stopping time T and e, ~ > 0. 
Now, given a finite stopping time T o f F ,  put Nt=gr+t, L(t)=M(T+t)-M(T) 
(teN+). Le~do 2'1~ [G, IP], and from (3) we obtain 

(4) IP( sup ]M(s)-M(T)I>e)<-_~+~C2-+IP([M](T+6)-[M](T)>rl) 
T < s < T + 6  

for all e, 3, r/> 0. 
Condition (1) of Proposition 1 can be easily obtained using (3) as well as the 

C-tightness of ([M.] ;neN). 
Finally let N e N  and consider a sequence (T.; neN) of random variables as 

in Proposition 1. Hence T. is an lF.-stopping time bounded by N (heN). 
Therefore we find 

IP([M.] (T. + 6) - [M.] (T.) > r/) < Ip(w2N([M.], 6) > ~/) and from (4) 

n + c  2 
(5) IP( sup IM.(s)-M.(T.)I>e)<~+IP(WZN([M.] ,  6)>~/) 

Tn <=s< Tn+6 
se[0, N] 

for all e, 3, q > 0. 
Condition (2) of Proposition 1 is obtained using (5) as well as the C-tightness 

of ([M.], hEN) and this completes the proof. [] 

12. Proposition. Let (m,)e l~ ~1o~ OF,, IP] and suppose that 
N 

(1) (Mn) satisfies the ARJ(1) condition, 
(2) ([Mn]) is C-tight. 

Then (Mn) is C-tight. 

Proof. Let (Mn~; reiN) be an arbitrary subsequence. Call L~=M,,., (reN) and 
consider a real sequence (Ck; keN) such that Ck$O as kT~. Apply 1emma 10 to 
(Lr) and (Ck) and denote as (rk; keN) and (Nk; kEN) respectively the integer and 
local martingale sequences constructed using this lemma. Hence (INk]) is 

r see the Appendix 
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contiguous with ( [ ,L j )  and the C-tightness of the last sequence implies C- 
tightness of the first (c.f. [1]). Then by the preceding lemma (Nk) is C-tight since 
(ANk)*(oo)<c k and ck$0. But we also have that (Nk) and (Lr~) are contiguous, 
making (L~) C-tight and from this we obtain C-tightness of the entire (M,) 
sequence. [] 

13. Remark. If M E ~  ~ [IF, IP] such that (AM)*(oo)<c, with c constant >0, is a 
well known fact that the process defined by E ~[M]( t )=exp(ZM(t )  
-4c(2)  (M)(t ) )  (tEN+) is a positive supermartingale for all )~>0, where 

~bc(2) = (exp(2 c) - 1 - )~ c) c - 2 (c.f. [,12, 81). 

Now consider (M,,)EI~ J#lo~ [IFn, IP] in which (AM,,)*(oo)<c for all hEN. Sup- 
N 

pose that for all hEN, tEIR+: 

(1) { M , ) ( 0 < a ( 0 ;  where a is an increasing and positive real function. 

Since E ;~ [M,]  is a supermartingale and E ~ [-M,] (0)= 1 for all neN,  we obtain 

~E(E* [,M.] (t)) < 1 (L tE~'.+, hEN) 

but 

IE(exp(2M,(t) - qb(Z) a(t))) < IE(E z [Mn] (t)) 

and 

(2) lE(exp(i~M,(t))<exp4)(2)a(t), (2, tEIR+, hEN). 

From (1) and (2) is clear that for all t d R + ,  the sequences (M,(t); hEN) and 
(M~(t)-(M,)(t);  heN) are uniformly integrable. We shall use this fact in the 
proof of Proposition II.1. 

14. Proof of Proposition lI.1. Suppose (1) to hold. Then for all t e N + ,  
c 2 ( M , )  (t) @ 0. Hence by Lemma 7 and Corollary 4, 

([,M.] - <M.5)* (t) ~ 0 (tE~.+) 

i.e. ([M,]) and ( (M, ) )  are contiguous sequences and therefore 

[M,]  (t) ~ A(t) (teN+). 

If (2) holds, we can apply Lemma,7 *and Corollary4 once again since 
(AEM,])*(oo)<c 2. In this way ([M,]) and ( (M,) )  are also contiguous and 
relation (1) follows from (2). 

Let us prove the second part of the proposition. Define, for all n~N 

R~=in f{ t>0 :  (M,)( t)>A(t)+l} (infqb= +oo). 

This is a predictable stopping time of IF, and (1) implies that 

IP(R,<t)  n - ~  ~ 0 for all t eN+ .  
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Choose a sequence (R,k; keN) announcing Rn, i.e. 

R,kTR . as kToo and Rnk<R . on {0<R,<oo}. 

Construct a sequence (kn, neN) of positive integers such that 

( 1) 1 
IP R . - R . k  > < ~  

hence 

(3) IP(R.k. < t) ~ 0 

and 

(4) (M, )  (co, t)<=A(t)+ 1 

If we put down 

(5) N. = ~R~ 

We find 

for all te]R+ 

V(o~, t)e[[0, R,k ]]. 

R. Rebotledo 

(7) Q(C)=I,  

IP((N, - M,)* (t) > e) < IP(R,k ~ < t), 

IP(((N,) - (M,) )*  (t) > ~) <= IP(Rnk ~ < t). 

Thus (N,) and (M,) (respectively ((N,)) and ((M,)))  are contiguous. Further- 
more, (ANn)*(~)<cn<Co and by (4), (N , ) ( t )<A( t )+  1 for all telR+, neN. Then 
by applying Remark 13 we obtain that 

(6) (N,(t), neN) and (N2( t ) - (N , ) ( t ) ;  ne]N) are uniformly integrabIe sequences 
of  random variables, for all telR+. 

Now, condition (2) together with the jumps condition imply that (M,) is C- 
tight (Lemma 11). We shall prove that the set of limit points of (5~(M,)) is 
reduced to a single point; {~q~ so that M, ~-~-*~ M (M being the gaussian 
continuous martingale introduced in II). 

We suppose that (M,k) is an arbitrary subsequence converging in distribu- 
tion. Call P the weak limit of (~(M,k)). 

Consider the canonical projections over D: 

X(w, t)=w(t), weD, t~lR+ ; X=(X( t ) ;  tclR+). 

Define % as being ~ a(X(u);u<=s), (teN+). Put 
S > /  

~ 3 = ~ o =  V %, IB=(%;telR+). 

The distribution oL~~ is characterized in the following way. A probability 
measure Q on (D, ~3) is equal to ~C~(M) if and only if 
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(8) X is a (IB, Q)-martingale, 
(9) X 2 -  A is a (II3, Q)-martingale. 

Remark that (9) is equivalent to: 
(9') X is a (IB, F(Q))-martingale, where F(Q) is the image measure of Q by the 
mapping F: D--~D defined by w~--~w 2 - A ,  (weD). (This mapping is continuous 
when restricted to C.) 

Then let us prove that P satisfies (7), (8), (9'). By a contiguity argument, 

(10) 5~(N,~) ~ P (N,,~ constructed by (5)). 

For the same reason, (N,k)(t) k--~--~A(t) (telR+), and since A is continuous and 
increasing, and (N,~) is increasing, this implies that 

(11) ((N,~)-A)*(t) k~-~ O. 

Thus the sequences (N~-A; keN) and ( N ~ - ( N , k ) ;  keN)  are contiguous. The 
probability P satisfy (7) because (M,) is C-tight. Hence the mapping F is P- 
continuous, i.e. continuous over a set of probability one. Then by the Con- 
tinuous Mapping Principle (see [11), 

~(F(N~)) ~ F(P) 

and also, by a contiguity argument, 

(12) 5r (N,~)) ~ - ~  F(P). 

Finally, (6), (10) and (12) imply that P satisfies (8) and (9'). This is a classical 
argument: for each s, t e N +  and for each bounded, continuous, !B~-measurable 
function h: D -~ IR, 

hX(t) d(S(N~.)) ~ ~ hX(t) dP 
ktoo 

D D 

~hX(t)d(S(N,2k-(N~k)))~ ~hX(t)dF(P) (see [16] for example). 
D D 

The proof is now complete. [] 

15. Proof of Theorem 11.2. By Proposition 12, (M,) is C-tight. 
Let (Mnk) be an arbitrary subsequence converging in distribution. 
Let (c~) be a real sequence such that c l J.0 as l]'ov. Apply Lemma 10 to 

construct a sequence (k,; I eN) of integers and (Nl; leN) e [ I  /#g' loo l-IF IP] so 
L - -  Flkl, 

that (ANt)*(Go)<q; (M,~; /eN)  and (Nz,/eN) (respectively (M,~;/EN) and 
(Nl;/eN)) are contiguous. 

In this way, [ N ~ ] ( t ) - ~  A(t) (telR+) by contiguity. Applying Proposition II.1 11" co 

to the sequence (Nt) we obtain 

s 
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By contiguity, 

M n k ~  l ~ o~ 

That is, from every convergent subsequence we can get a further subsequence 
converging in distribution towards the same limit M. That actually means that 

~o 
M, , r o~' M" [] 

IV. Two Particular Cases 

1. Let us consider point process sequences (T2;meN, neN)  according to 
Bremaud and Jacod [2] with their respective counting processes (AT,; neN)  
defined by 

N , ( t )= fm si T~,<=t<T,," +1 
ov si To~<t, where T~" =lira T,,', (neN, teN+) .  

m 

We will suppose that each N, is non explosive (i.e. T~" = oc) and adapted to IF,. 
c 

Call N, the compensated counting process, i.e. 

C 

U, =An -5~, (neN). 

C C 

(AN,)*(o~) <_ 2(n~N), so N, is in fact a locally square integrable martingale. 
C 

Now we shall deal with stochastic integrals with respect to N, that are local 
martingales not locally square integrable. Let us consider a sequence of pro- 
cesses (Y,; neN)  in which each Y, is lF,-predictable and 

(1) S 
]0, t] 

C 

In this case, the stochastic integral Y. N, is an element loc �9 of Jr [IF,, IP] (c.f. [23), 
for all heN.  Now suppose that N, processes are quasi-left-continuous, i.e. N, 
processes are continuous or, equivalently, the stopping times T,~' are totally 
inaccessible�9 In this case, 

VY,'N,]=Y,Z'N, = E Y,2(T;) 
T,~ < .  

(because AN,(t)=O or 1), and for all e>0,  n~N 

c 

=~[Y,. N,]= ~ IY~(T2)] IEIy.(r~.)I>, j 
T~, < . 

= [I1,1 l[lr.(.)l >~J" 5[, 

c 

(recall that A (I1,. AT,) = Y,A N,). 
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Therefore 

c 

a~ Eg,' N.]  = IYol ztir.(.)l >~j N.. 

2. Corollary. Using the notations of Theorem 11.2 and the preceding ones, suppose 
that 

ntoo 
1o, t] 

for all teN+, ~>0; 

(2) ~ Y,~(T') ~----, A(t), 
ni"oo 

T,~ _-<t 
for all t~IR+ 

Then 
c 

n'fco 

Remark that a sufficient condition to obtain (1) is: 
(1') IE( ~ Ig.(~)lI[ly.(r~)l>~a) . ~ T 0  

T,~  < t 

for all t~lR+, and all e>0.  

3. We will consider a sequence of discrete parameter filtering families of or- 
algebras: 

~ .  = (~.,.~; melN), (n~N). 

Let (~.,~; n~N, rn~N) be a double sequence of random variables such that for 
all nEN, S .~J / / [~ . , IP]  where 

Sn(m)= ~ ~-.,k, ~n,o =0, (n,m) eNz. 
k = O  

Put '~ - 5. ~.,,-%,~n,] , IF.=(~., , ;  telR+) 

M.(t) = S.([nt]), (n~N, teN+)  

Mn~ J//[IF., IP] and 

Ira] 

k = 0  

[,~t] 

[ M . ] ( 0 =  ~ ~.,~,~2 (n~N,t~n~+,~>0).  
k = 0  

5 here i-u] denotes the integer part of u~lR. 
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An elementary calculation yields the following result 

[nt] 

~ [Mn] (t) = ~ IE~n'k-l(l~n ' k[ Itlcn, kl > e]) 
k = l  

0 

(by convention ; ( . . . )=0,(n~N, tE/R+, e>0)). 
k = l  

4. Corollary. In view of the above assumption, if moreover 

[ntl 

k = l  

[m] 

(2) ~ ?2. ~-~A(t); for all e>0, t~lR+ 
~ n , g  n T t ~  3 x r 

k=O 

then 

M . ~ M .  

We can also change time in a more general way. The methods developped in 
[16] may yield more general results in this context. 

V. Final Remarks 

In [16] (c.f. also [14]) we have proved an approximation procedure analogous 
to III.10 for (M n; n~N)sy[  Jgg' 1oc [lFn ' 1P] satisfying the ARJ (2) condition. This 

approximation procedure enables us to obtain the following complementary 
results to the Central Limit Theorem for Locally Square Integrable Martingales. 

1. Theorem. Let (M,; (nsN)c]--[ JClg' l~ and let us suppose that it satisfies 
N 

the ARJ (2) condition. Consider the two following relations. 

(1) (M, ) ( t ) - z~A( t )  (V t~lR+), 

(2) [ M , ] ( t ) - ~ A ( t )  (V t~lR+). 

I f  (1) (respectively (2)) holds, then relation (2) (resp. (1)) is also valid and 

The proof is straightforward from Proposition ILl. and the Approximation 
Procedure for Locally Square Integrable Martingales ([16], Lemma II.3.11; [14] 
Lemma 5). 

Appendix 

The Moduli Wc N and WD s. Let N~N and x~D. The modulus WcN(X,C~) (6>0) is 
defined by 
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WcN(X, 6) = sup Ix(t)--X(S)l. 
It-4<a 

s , te[O,N] 

To define W~, consider first the set S(c5), (c5>0), of all finte sets {ti} of points 
satisfying 

0 = t o < t  i <. . .  <tr=N 
[i--~i_l>(~, i =  1,2, . . . ,r.  

Thus 

WoN(x, cS)= inf max sup Ix(t)-x(s)l. 
{ti}eS(~) O < i < r  s , t~ [ t i -  t , t i[  

If (Ax)*(oo)<c, with c>0,  then 

This inequality is proved, by example, in [13] Chap. VII Lemma 6.4. 
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