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Introduction 

In the well known Laplace approximation one considers integrals of the form 
~cp(x) e'f(X)dx, where (p and f are sufficiently nice real valued functions of 
x ~ R  1, and n is a large positive number. It is based on the following argument:  
Suppose that f ( x )  attains its maximum at x = 0  e.g., and that f ( x ) - f ( O ) ~  
- A  Ixl  ~ for some A, a > 0  when Ixl  is small. Then e "~(~) will have a very sharp 
maximum at x = 0 ,  so the main contribution to the integral comes from a 
neighbourhood of 0, and we get: 

(p(x) e "r d x ~  ~ q)(x) e "r dx~qg(O) ~ e nf(~ dx 
ixl_<n ~/2~ ixl<n-1/za 

=cp(O) e,f(O)(nA) 1/a S e-lYl~dY 
[YI <nl/ea AWa 

~o(0 )  enZ(~ 1/a ~ e I'1~ dy=(p(0) e"Z(~ x/a 2F(1 + l/a). 

The meaning of ~ is that the ratio of the two expressions goes to 1 as n goes 
to oo. 

A complete proof  is straightforward and is given e.g. in [4]. 
In some recent work on the asymptotics of an epidemic process I-3] we met 

with the problem of deriving an analogous approximation for an expression of 
the form 

E. =E(e  "f(s~/'~ = ~ e "f(~/n) Fn*(dx), (1) 

where {S,} are the partial sums of i.i.d random variables {Xi} with a common 
distribution F(x), f ( x )  is a sufficiently nice function of x ~ R  x, and n ~ o o .  In 
order to understand how the analogous approximation of E, is formed let us 
first consider the situation when X 1 has a density. Then under appropriate 
conditions the central limit theorem for large deviations tells us that q),(x), the 
density of S,/n, is approximatively given by the following formula: 

(p. (x) ~ (n/2 ~z) 1/2 ( _ h"(x)) a/2 e.h(~). (2) 
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Here h(x) is the entropy function of the distribution F(x), which is defined 
below. 

A proof  of the above formula is given e.g. in [9]. Using it in the expression 
for E n we can then make the Laplace approximation of the resulting integral as 
follows: 

Suppose that f ( x ) +  h(x) has its maximum at x = 0 e.g. and that 

f (x) + h ( x ) - f  (O)- h(O) ~ - A Ixl a (3) 

with A, a > 0  as Ixl--,0, then we get 

E, ~(n/27c) 1/2 ~ ( -h" (x ) )  1/2 e n(~(x)+h(:')) dx 

~(2~) -  1/2 2F(1 + l/a) A -  1/a(_h,,(O))l/2 nl/2 l/a e,(i~o)+h(o)). (4) 

When f ( x )  is twice continuously differentiable near 0 then 2 A = - f " ( 0 ) - h " ( 0 ) ,  
and a = 2 if A > 0, so in this case the formula reduces to 

E , ~ ( 1  +f"(O)/h"(O)) 1/2 en(f(o)+h(o)). (5) 

In the following we give a complete proof  of the above asymptotic formulas 
with rather weak assumptions about  F(x) and f (x) .  (Theorem 2 and 3 below.) 

Concerning f ( x )  it is enough to assume that it is H61der continuous near 
the maximum at x = 0  and that it can be approximated by piecewise linear 
functions as explained in (26). 

Concerning F(x) we have to assume that its generating function 

e g(t) = ~ e 'x F(dx) = E(e ix1) (6) 

is defined in some open interval D g c R  1, so that laws of large deviations can 
be established using saddlepoint methods. Then the entropy function h(x), 
defined by h(x )=in f (g ( t ) - t x ) ,  is finite and very regular in some open interval 

t 

D h. It is assumed that f ( x ) + h ( x )  attains its maximum at a unique point ~ in 
D h, which we can take to be ff = 0. 

It turns out that it is not necessary to assume that F(x) has a density. 
Either F is arithmetic, i.e. X 1 takes only values { + m .  cS, where m is integer and 
6>0 ,  and Reg(i t )  is periodic with period 2~/~ or if it is not, then it is enough 
to assume that the so called Cram6r condition 

s u p R e g ( i t ) < 0  for any u > 0  (7) 
Itl>u 

is fulfilled. 
Under these assumptions we can establish the formula (4) for any A, a > 0 .  

(In the arithmetic case the formula has to be modified when 0 < a <  1.) (Theo- 
rem 2 below.) 

When a- -2 ,  A > 0  it turns out that (5) is true even without assuming the 
Cram6r condition (7), and the arithmetic case need not be considered separate- 
ly. (Theorem 3 below.) 

We have treated explicitly only the case when f ( x ) + h ( x )  attains its max- 
imal value at only one point. If  it attains it at a finite number of points (4) is 
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of course replaced by a sum of similar terms, one for each maximum, and only 
those with the largest value of a will contribute as n ~ oo. 

The formula (4) is an example of the use of " thermodynamic"  probabili ty 
estimates familiar in statistical mechanics. I.e. one considers a "macroscopic 
variable" Sn/n whose probability distribution is asymptotically determined by 
an entropy function through a formula like (2), and in the resulting formula (4) 
all information about the underlying distribution F is contained in h and its 
derivatives at the maximal point ~. The formula (4) ought to be useful in other 
statistical and physical applications as well. 

(In [4] similar formulas are derived in a special situation when f(x)= ~x2.) 
The fact that S=/n behaves as if it had a density ~0=(x) proportional  to e nh(x) 

so that (p,(x)e =I(~) is proport ional  to e - 'a lx-~l~ near ff can be expressed more 
precisely in the form of a central limit theorem as follows: Let a modified 
probabili ty distribution for S, be defined by F=,l(dx)=e"I(~/")F"*(dx)/E,. Then 
for this distribution the following central limit theorem holds: (Theorem 4 
below). The distribution of nl/a(Sjn-Y~) defined by F=, I converges weakly to 
the one defined by the density 

e-Al~l~ as n ~ o o  if a > l .  

In particular when a = 2, A > 0  this limit distribution is Gaussian with variance 
1/2A = - 1/(f"(0) + h"(O)). 

The problem of deriving logarithmic estimates for the distribution of S=/n 
saying that l imn -1 log P(SJn~I)=sup h(x) has recently received much atten- 

tion following the work of Lanford [7], where this formula is established for 
intervals I using an elegant subadditivity argument. A survey of such results 
and their statistical background is given in the recent article [2] by Bahadur 
and Zabell. In a much more general context Varadhan [11] has shown how to 
derive the corresponding logarithmic estimate 

lim n - 1 log E, = sup (f(x) + h(x)) 
n ~  oo x 

using the above logarithmic estimates for the distribution of S=/n and argu- 
ments valid for distributions on more general metric spaces than R 1. 

Our more accurate formula for E,, valid in the sense of ~ ,  gives so to 
speak the accuracy of the central limit theorem, and it depends on the local 
behaviour of f(x)+h(x) near the maximal point ft. Analogous formulas for 
P(SjnEI) have recently been derived by H/Sglund [6]. 

1. Preparations 

Let us first recall the basic properties of g(t) defined by (6) and its Legendre 
transform or entropy function defined by 

h(x) = inf (g(t) - tx), (8) 
t 

which we will need to know in the following (c.f. [8, 10]). 
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Let  Dg b_e the maximal open interval in which g( t )<  oo, and let g ( t )=  + 
outside of Dg. Dg is assumed to be non  empty. Then  g(u+iv) is analytic in the 
vertical strip defined by uEDg and g(t) is cont inuous when t approaches  the 
endpoints  of Dg. In part icular  g(t) is infinitely differentiable when t~Dg. Since 
g " ( t ) > 0  g(t) is strictly convex, and the mapping t ~ x  defined by x=g'(t) is 
str increasing and infinitely differentiable. Hence  it is 1 - 1  from D~ onto  an 
open interval D h, and the inverse mapping is also strictly increasing and 
infinitely differentiable. When  x 6 D  h and x =g'(t) then inf in (8) is at tained at t, 
S O  t 

h(x )=g( t ) - t x ,  when x=g'(t). (9) 

F r o m  (8) follows that  h(x) is concave and closed (i.e. upper  semicontinuous)  and 
that  g(t) is determined from h(x) by 

g(t) = sup (h(x) + tx). (10) 
x 

F r o m  (9) it follows that  h(x) is infinitely differentiable and strictly concave in 
D h because we have 

h ' ( x )  = - t ,  (11) 

so the inverse mapping of x =g ' ( t )  is given by t =  -h'(x).  Therefore  

dx 
d t  = g"(t) = - 1/h"(x), (12) 

which shows that h"(x)<O, and h(x) is strictly concave in D h. Outside of D h it 
is l inear or - o o .  

We first derive a useful upper  bound  for E n defined in (1) in the special case 
when f (x )  is l inear in an interval and - a 2  outside it: 

L e m m a  1. For any interval I 

B , = E ( e t s~, S ,/n e I) < exp n sup (h (x) + t x). (13) 

Proof Take  first I to be open. If sup(h(x)+tx)=sup(h(x)+tx)=g( t )  then 
x ~ I  x 

Bn<E(etS")=e"g(t~, and (13) is true. 
If - o o  < s u p < s u p  then e.g. the left endpoin t  1 of I is finite, h(x) is finite to 

x ~ I  x 
the right of l, sup=h(I)+tl,  and the right derivative h'+(l)+t<O. (A convex 

X E I  

function is cont inuous and has one sided derivatives from the side where it is 
finite if it is closed as h is.) t+ = -h '+  ( l)> - o o  defines a support ing line to h(x) 
at l, i.e. h(x)<h(1)-t+ ( x - l )  for all x. This means that  g(t+)= sup (h(x)+ t+ x) 

x 

= h ( / ) + t +  l, and since t ( x - l ) < t + ( x - l )  for x e I  we have 

B n ~ E ( e n t + (  n 1 S ~ - I ) + n t l ) = e n g ( t + )  n t + t + n t l = e n ( h ( 1 ) + t l )  ' 

and (13) is valid. 
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Finally, if sup (h(x)+tx)= - oo then h(x)= - oo for all x~I, i.e. i n f (g ( t ) -  tx) 
xEI  t 

= - o o  for all x~I. This means that IC~Dh=O, So I lies e.g. to the right of D h. 
I.e. g'(t)<x for any t~Dg and any xeI ,  so g ( t ) - t x  is decreasing and 

i n f ( g ( t ) - t x ) =  lira ( g ( t ) - t x ) = - ~  for any x~I.  
t t ~ - b  oo 

Hence lim E(e "s" "~))=0 for any x~I, so that P(S,/n>=x)=O. If we now let x 

decrease to l we can conclude that P(n-~S,>l)=O. Hence B , = 0  and (13) is 
again valid. 

If  I is not open and e.g. I=[1, r) then we consider the slightly larger 
interval I ' = ( l - e , r )  and let e~0 .  Because h is closed we have that 
lim sup h(x)<h(I). This means that 
E~O ]x- l l<_e  

lim sup (h(x) + tx) = sup (h(x) + tx), 
~ 0  XEI" x ~ l  

and (13) follows by letting e--*O in (13'): 

B, < B~, _-< exp n sup (h(x) + tx). 

We next proceed to prove a local limit theorem for large deviations saying that 
if the Cram6r condition (7) is fulfilled, then (2) is true for suitably defined 
smoothed density, which is defined as follows: Let k(x) be the usual Fejer 
kernel k(x) = max (1 - Ix l ,  0) with Fourier transform /~'(t) = 2 (1 - cos t)/t 2, and let 
for c > 0  small kc(x)=c- lk(x /c)  be the corresponding approximate delta func- 
tion with/~'c(t) =/c'(ct). Since k(x) has compact  support k'(t) is an entire function. 
Define the smoothed density of S, as follows: 

(p,, c(x) = E(kc(S . - nx)) = S k c(Y - nx) F"* (d y). (14) 

Then the following asymptotic formula holds when n--, oo, c ~ 0 :  

Theorem 1. I f  the CramOr condition (7) is fulfilled, then 

~o,,c(x)=(2~zn)-l/2(--h"(x))l/Ze"h(x)(l+(9(n-1/Z+c+e-"'t/c)) (15) 

uniformly when x varies on a compact subset of D h for some y>0.  In the 
arithmetic case the same asymptotic formula is valid for P(S,=nx)/6 uniformly 
when x = ~ +mc~/n varies on compact subsets of D h and m is an integer. (Exclud- 
ing of course the error terms involving c.) 

Proof We use Parsevals relation and the usual change of the path of in- 
tegration used in the saddlepoint method to express (p,,c(x) as follows: 

~o,,c(x ) = ~ e"(g(i"~-i"x) l~c(u ) du/2~. 

If x=g'(t) with t~Dg change the path of integration so that iu---,t+iu. (Here 
we use the fact that g(t+iu) is analytic when t~Dg and that /{c(u) is entire.) 
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Then  g ( t ) - t x = h ( x )  by (9) so we get: 

(p,,~(x) = [. e" (g(' + i,)- ~ + ,,)x~ ~ (u - i t) du/2 re 

= e  "h(~) ~ en(g(t+iu)-g(t)-iug'(t)) kc(U- it) du/2re. (16) 

We now split the integral  into three parts  I 1 + I 2 + I  3 corresponding  to the 
regions [ u l < d , / n  1/2, d l / n l / a < [ u [ < d 2 ,  d2<lu l  respectively, where d 1 is large, 
da/n 1/2 is small  and  d 2 > 0  as n ~  o0. Each par t  is es t imated separately:  

I1: When  [ul is small 
g(t + i u ) -  g(t) - iug'(t)  = - u 2 v/2 + (9 [u[3, (17) 

where v = g" (t) = - 1/h"(x)  > O. 
This holds uniformly when t eKg  = compac t  C Dg and l ul < d l / n  1/2. Replacing 

u by u/n 1/2 in 11 we get 

11= ~ e-~"~/2(1 +C(]ul3/na/2)) ~ ( u / n l / 2 - i t )  du /n l /22~ .  
lul_-<da 

Let us put  

I o = ~ e ~,2/2 ~cc(u/nl/2 _ it) du/H 1/2 2~ 

= ~ e . . . .  2/2 Icc(u -- it) du/2re 

= ~ (2~z nv)-  1/2 e-~Z/2,~ et~ k~(x) dx .  

The last equat ion  follows f rom Parsevals  realtion. We see that  I o 
=(27cnv)-1 /2(1+(9(c) )  as c--+0 uni formly  when n ~ o o  and tCKg. It is easy to 
check that  

F F,(u - iOI < K / (1  + u 2) (18) 

for some K > 0  uni formly  when tEKg.  
Hence  

111-101=(9( ~ lulBe ~u2/adu/n+ [, 
lul_-<dl lul>dl 

= (9((nv)-  1/2 (n-  1/2 -t- e -  vd~/2), 

SO we have 

e-~.2/2 du/nl/2) 

11 = (2~nv) 1/2(1 + C(c + n -  1/2 + e-~d~/2)). (19) 

I2: F r o m  (17) we see that  in 12 we have g ( t + i u ) - g ( t ) - i u g ' ( t ) > - u 2 v / 4  when 
lul <d2 is small  enough. Hence  using (18) we have 

12=(9( ~ e-VU214du/nl /2)=(9((nv)- l /Ze  ~e~/4). (20) 
lul=>dl 

13: To  es t imate  13 we need the Cram6r  condi t ion (7) and (18). If  we can show 
that  R e g ( t + i u ) - g ( t ) < 7 < O  when [u] >d2 and t~Kg then we have 

13 = (9(e -n '  ~ du/(1 + (cu)2)) = (9(e "'/c). (21) 
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To see that  the above  bound  for Re g holds we use the fact that  

e g (t + i, ) - g (,) = ~ ei, x dx  g (t) F (dx) = ~ e i" x F~ (dx) (22) 

where F,(dx) is absolutely cont inuous  with respect to F(dx) .  In [1], L e m m a  4 it 
is shown that  the Cram6r  condi t ion is preserved when the dis tr ibut ion F is 
changed to one which is absolutely cont inuous  with respect  to F. Hence  
sup R e g ( t + i u ) - g ( t ) < O  for each t. But it is easy to check that  g ( t + i u ) - g ( t )  

lul >_-da 
is cont inuous  in t uniformly in u, so that  sup sup R e g ( t + i u ) - g ( t ) < 7 < O  also. 

teKg ]t/I ~d2 
If  we now put  v ~ / 2 d l = n  1/4 e.g. and add the expressions in (19), (20) and (21) 
we get the desired formula  (15) because v = - l / h " ( x ) > 0 .  The p roof  in the 
ar i thmetic  case follows the same lines start ing f rom the inversion formula  for 
the individual  a toms of the distr ibution of S,: 

P ( S , - - n x ) = c ~  ~ e"(g(iu)-iXU) du/2rz 
lul__<~/o 

=6e"h(~) S e,,(g<t+i,)-g(,)-i,g'(m du /2n  (23) 
[ul < n/,~ 

where x-~ ~ + m c S/n, m integer and g ' ( t )= x, In  this case we take d 2 = n/g; and the 
te rm 13 is absent.  

2. First Proof of the Laplace Approximation 

We now show that  T h e o r e m  1 can be used to establish the asympto t ic  fo rmula  
(4) in the way indicated in the introduct ion.  We assume that  f ( x ) +  h(x) attains 
its m a x i m u m  at only one point,  x = 0  e.g., and that  OED h. Near  this point  we 
assume (3) and that  f ( x )  is H61der cont inuous:  

I f ( x + y ) - f ( x ) f < A ' l y f  a" for some A', a ' > 0 .  (24) 

Consider  now E n defined by (1) and split it into the cont r ibut ion  f rom a 
ne ighbourhood  of 0 and the rest: 

E., 1 = E(e.:(s./.) 12d(S./n)) 

E n ,  2 = E n  - -  E,,, 1, 

(25) 

where Id(x ) is the indicator  of  the interval I - d ,  d]. Let  us est imate E,, 2 first 
with the help of  L e m m a  1. To  this end we make  the following regulari ty 
assumpt ion :  

For  any d > 0  there is a piecewise linear funct ion fa(x) with at mos t  d M 
pieces for some M > 0 such that  

efe{x)-d<~ef(x)<=efa(x}+d when h(x) > - m.  (26) 

f ( x )  and fa(x) are al lowed to take the value - o o .  (This is true e.g. if f ( x )  is 
piecewise cont inuous  and asymptot ica l ly  l inear at infinity.) 
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Take now b > 0  such that f ( x ) + h ( x ) < f ( O ) + h ( O ) - 3 b  when Ixl>d (this 
means that b = C ( d  a) when d is small), and take fb(X) as in (26). In each interval 
d where fb is linear we can use Lemma 1 to get the following bound: 

E(e "I(s"/"), Shined ) <=E(e "yb(s~/")+"b, S J n e d )  

_-< exp n sup (fb(x) + h(x) + b) 
x~J  

< exp n sup ( f ( x )  + h(x) + 2b) 
x~J  

< exp n(f(O) + h(O)-  b) 

if I x l>2d  in J. We hence get the following bound for E.,2: 

En, 2 <= e n(f (O)+ h(O)) " b - M " e - "b. (27) 

(Intervals where h(x)= - o o  do not contribute to E.. z.) 
Coming now to E., 1 we consider the non arithmetic case first and want to use 
Theorem 1. Therefore we approximate the integrand by convolving it with kc/.: 

E., 3 = E(kc/. * (e"ilza) (S Jn)) 
(28) 

E n , 4 = E n ,  1 - E n ,  3~ 

E,, 3 = ~ (n/c) k((n/c) ( x / n -  y)) e "~(') I2e(y) d y F"* (dx) 

= n ~ e "y(y) I2a(y ) qG,~(Y) dx (29) 

When we approximate (G,c(Y) by using Theorem 1 the main term is: 

E.,s=(n/2rt)  1/2 ~ ( -h" (x ) ) l / 2  e"(Y(~)+h(X)) dx 
Ixl < 2d 

=(n/2r@/2(-h"(O))  1/2 e "(f(~176 ~ (l+C(d))e-nl~l~176 
lxl_<2d 

We have 5 e (~mlXlOdx =(nB)-  ~/a 2F(1 + 1/a), and for the tail of this integral the 
following simple estimate holds: 

Lemma 2. 

c */~ ~ e ~~ dx < e ~a~ (cd~) ~1/~)- * (30) 
d 

when cd ~ > 2/a. 

Proof  

e C ~ ~  . . . .  + acxae . . . .  dx 
d d d 

> - d e - C e ~ + a c d a  ~ e . . . .  dx.  
d 

Hence (acd a -  1) S e . . . .  dx <de  -cd~ and (30) follows because acd a -  1 > acda/2. 
d 
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Using this estimate we see that the integral in E,,5 can be bounded  above 
and below by 

(riB)- 1/~ 2F(1 + 1/a) (1 + (9(d) + (_9(e-~B(2d)~(nB(2d)~)(*/~)- 1)), 

where B can be made arbitrarily close to A by chosing d small. Hence, if d-~ 0, 
but  n d ~  Go we have 

E., 5 = (2~)- 1/2 2F(1 + l/a) A -  1/2( _ h,,(O))l/z ni/2 - 1/~ e.(i(o)+ h(o))(1 + O(1)) (31) 

and the same holds for E., 3 if the error  terms in Theorem 1 go to zero, i.e. if 
c + 0  and e -7" / c~O.  

It now remains to bound  the term E.,4 in (28), and we split it into two 
pieces as follows: 

E., 4 = E (I d (e "~ 12 d -- k~/. * (e "f 12 d)) (S./n)) 

+ E((1 - I d ) ( e " f l z e -  k~/. * (e"YI2d))(S./n))= E., 6 + E., 7. 

In En, 6 the argument  of the integrand lies in the interval Ix[ <d.  If also c/n < d  
then in the integral defining k~/. �9 (enSI2d) the argument  of the last factor lies in 
the interval lYl <2d ,  so the integrand in En, 6 is given by: 

(e "z - k~/. * e "f) (x) = ~ (e "*(') - e "y(x - ,7) kc/. (y) dy 

= e "~(~) ~ (1 - e  "(y(~-y)-z(~))) kc/.(y) dy, 

so using (24) it is bounded  by: 

[(e "s -kc / .  * e "I) (x)l < e "y(x) 2A'  n(c/n)"" (32) 

when Ix]<d and d is small. 
Hence we have: 

IE.,6] <=2A' n(c/n)~" E.  (33) 

when d is small and c /n<d.  
For  En, 7 we have the estimate 

rE,, 7 ]=< E((1 - I d )  enZ (Sn/n)) + E((1 - I d )  k~/n * (enSI2d) (S,/n)). 

The first term is bounded  just as En, 2 above by (27). In the second term 
kc/n * (e"~I2d) (X)=~ kc/,(y ) e"~(~- ' ) I2d(x--y  ) dy is zero if Ixl > 2 d + c / n  because kc/,, 
has compact  support.  Hence  in the second term it can be bounded  using (24) 
and (32) by e.g. 2e "s(x) when d is small, so the second term can be bounded  just 
as the first, and 

IE., "71 <= 3 b - M  e-"b e"(I(~ h(0)) (34) 

when d is small and c/n < d. 
Collecting all our  estimates (27), (31), (33) and (34) we get the desired 

formula for E .  

E =(27r)-1/Z2F(l  +1/a)A-Z/2(_h,,(O))Z/2n1/2-1/~e,(f(O)+h(O))(l +o(1)) (35) 
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if c and d can be chosen suitably. We need to have d~O, nd"-,oe, c/n<d, 
n(c/n)"'~O, e-~"/c--,O, nl/"-l/2b-Me-"b--*O with b=(9(d"). This can easily be 
achieved if e.g. d=n -~/2~ and c/n=n -1 with l large enough. 

It finally remains to estimate En, 1 in the ari thmetic case. N o w  we can use 
Theorem 1 to estimate the a toms of the distr ibution of  S. directly and get: 

E.,~=(2~n)-l /26 ~ (-h"(x))l/2en(f(x)+n(x))(l+(_9(n-1/z)), (36) 
Ixl<_d 

where the summat ion  is taken over x=~+m~5/n, m integer, In  estimating the 
sum in (36) we use (3) and the fact that  h"(x) is cont inuous  at x = 0 .  We have 
to consider the cases a > 1, a = 1, a < 1 separatively however. 

When  a > 1 the sum can be approximated  from above and below by 

( 2~tl)1/2 ( - h " ( 0 ) )  1/2 en(f(~176 2 e-"Blxl~(6/n) (1 + (fl(d)) 
I~l-<d 

with B arbitrarily close to A if d is small. The sum is a R iemann  sum 

approximat ing  the integral ~ e "Blxl~dx, so it follows that  (35) holds as 
Ixl=<a 

above if d is chosen as before. 
W h e n  a < l  the sum is domina ted  by its largest terms as follows: Let 

x 0 < 0 < x ~  be those x-values in the sum which are closest to x = 0 .  For  a tail of 
the sum we then have the estimate 

~, e '~BlYI"<e-nBIxL" + ~ e-nBlYlady~2e-nBlxl~ 
y>x x 

as n-~ ~ using L e m m a  2. 

Hence ~ e nBlYl~ nBIxl+a/,l" e.g., and since xl=O6/n with 0_<0<1  
y>Xl 

this is negligible compared  to e -"Btxll~ because 

n(I OcS/n + g~/n] =) -106/nl")= n a " ~a(lO + 11" --[0l") > n I -a  ~5a(2 ~ _ 1). 

We conclude that  the two terms corresponding to x o and x 1 dominate  in the 
sum, so we have: 

E . = ( 2 n n )  1/2(--h"(0))1/2 6(e"(I(~~176 +O(1)) (37) 

when 0 < a < l .  
When  a = 1 all the terms contr ibute  however:  

f (x )  + h(x) = f ( x  1) + h(x 0 - A(x - xl) + o(x 1 + x) 

for x = x  I +rn~5/n gives 
oo 

Z en(f(x)+h(x))=en(f(xl)+h(xl))2 e-amo( 1 +o(1 ) )  
x>xt 0 

= en(f(x')+h(xD)/(1 -- e -AO) (1 + o(1)), 
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so in this case we see that 

E. = (2nn)- 1/2 ( _ h,,(0))i/2 (6/(1 - e- A~)) 

�9 (e"(f(x~176 e "(f(xl)+h(~))) (1 + o(1)) (38) 

and we have finally proved the following result: 

Theorem 2. I f  f (x )+h(x)  has a single maximum at x=O~D h and if (3) and (24) 
hold near x = 0  and the regularity condition (26) holds for f ( x )  and the Cramkr 
condition (7) holds for the distribution F(x) then the asymptotic formula (35) 
holds for E. defined by (1) in the non arithmetic case�9 In the arithmetic case (7) 
does not hold but (35) is true if a > 1, whereas (37) holds if a < 1 and (38) holds if 
a = l .  

3. Second Proof of the Laplace Approximation 

In this section we show that the asymptotic formula (5) for E. holds when f (x )  
is twice continuously differentiable near 0 and 2A=-( f" (O)+h"(O))>O,  a = 2  
without assuming that the Cram6r condition (7) holds. 

From (3) it  follows that 

t ~ f ' ( 0 ) = - h ' ( 0 ) ,  so g'(t)=0, 

and we have with B = f " ( 0 )  

f (x) =f(0)  + t x + B x2 /2 + o(x2). 

(39) 

(40) 

]E., 1 - E . ,  31< [e "d2r(e)- l iE. ,  3 (43) 

where r(d)--+O when d--*0. 
In estimating E., a we have to consider the case B >0  and B <0  separately. 

When B < 0 we use the fact that 

e -z2/z =E(e izv) (44) 

where U is a standard Gaussian random variable independent of {X~}. 

and have 

Again we split E. into En, ~ + E., 2 with 

E., 1 =E(e"s(s"/"), JS./n[ <d) (41) 

and estimate En, 2 a s  before by (27) with b=O(dZ). Because of (40) we approxi- 
mate E., 1 by 

E., 3 = E(e"(~~ t(s./.)+ ~(s~ [S./nl <= d) (42) 
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Hence  

E,. 3 = e'Y(~ E ( e(t + ic v)s,~, [S,/n[ < d) 

=e"f(~ (~+icv)s") - E ( e  (t+icv)'s", IS,/nl >d))  

= E , , 4 - E , ,  5 (45) 

with c=-(IB[/n)l /a~o as n--. oo. 
Since le('+~cv)S"l=d s" E,, 5 can be bounded  using L e m m a  1 by 

IE,, 51 < e "y(~ (exp n sup (h(x) + tx) + exp n sup (h(x) + tx)). 
x > d  x <  - d  

F r o m  (10) and the fact that  t =  -h ' (O)  we see that  

g(t) = max  (h(x) + tx) = h(0) + 0. (46) 
x 

Since h is concave it follows that  s u p = h ( d ) + t d  and sup = h ( - d ) - t d = h ( O )  
x > d  x <  --d 

+ d 2 h ' (0) /2  + O(d3), so we have  

LE,,sl<2e,(Y(o)+h(o)) e ,aah,,(o)/4 e.g. (47) 

when d is small enough. 
Consider  now E,,4. Using (46) we see that  

En, 4 = en(f(O)+h(~ E( e'(g(t+ icU)--g(t))) .  (48) 

Since [eg(t+~V)-g(~)[<l it is no p r o b l e m  to t runcate  at [UI=D, D ~ o o  in (48). 
We  have  P(IUI>D)=O(e-~  W h e n  IUI<D we use the Taylor  expans ion  of 
g and  get (with g ' ( t )=0 ,  v -=g" ( t )=  -1 /h" (0 ) ) :  

n(g(t + i c U ) -  g(t)) = n ( -  c 2 U 2 v/2 + 0 (cD)3) = By U2 /2-k O(D3 /nl/2), 

and 

En, 6 - E( en(g(t + icU)-g (z))) 

= E(e "vv2, I uL <D) (1 + O(D3/nl/2)) + O(e-  D2/2) 

= E(e B"tl2/2) (1 + O(D3/nl/2)) + O(e -D2/2) 

= (1 - B y ) -  1/2(1 + O(Da/nl/2)) + O(e-D2/2). (49) 

If  we choose D = n 1Is e.g. we see that  

E., 6 = (1 - B y ) -  i/2(1 + o(1)). (50) 

Collect ing all the est imates (27), (43), (47), (48), (50) and  put t ing  d=D1/n  ~/2 we 
see that  we have 

E, =(1 - B y ) -  1/2 en(f(O)+h(O))(1 + O(1)) (51) 

if we first choose D 1 large enough  and then n so big tha t  r(d) in (43) is small 
enough. 
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When  B > 0 the above  p roo f  has to be modif ied somewhat .  N o w  we use (44) 
with z imaginary,  and (45) is changed into: 

E,, 3 = e"f(~ E( e('+ cv)s,, ISJnl < d) (52) 

with c=(B/n)l/2--+O as n ~ o e .  
Let  d = [ u ,  u+] be the interval such that  t + c J  corresponds  to the interval  

[ - d ,  d] ~ D  h in the m a p p i n g  t ~ x  =g'( t ) ,  i.e. u• are de termined by 

g ' ( t+cu+)= •  (53) 

0 ~ J  because g ' ( t )=0 .  We want  to compare  the integral in (52) to 

E., 7 =E(  e('+cv)s", U e J ) = E ( e  "g~+cv), U~J) 

= e nh(O) E(e "(g(t+~v)-g(O), U~J), (54) 

and to this end we show that  the two integrals 

and 

are negligible. 
For  a fixed value 

L e m m a  I by 

E,, 8 =E(  E(r+cv)s", [S,/nl >d, UeJ)  (55) 

E,, 9 =E(  eft+or)s", JS,/nl <d, UCJ) (56) 

U = u  the integral in (55) e.g. can be bounded  using 

E(e "+c")s', ISjnl >d)  < e x p  n sup (h(x)+(t  +cu)x)  
x>d 

+ e x p n  sup (h(x)+( t+cu)  x). 
x <  - d  

Since u~J in (55) h ' (x )+( t+cu)+O when ]x[<d,  so the sup above  are at ta ined 
for x =  _+d respectively, and since t =  - h'(O) we have 

h(+_d)+_td<h(O)-d2/2g if 

~ =  sup g"(t + cu) = sup ( -  1/h"(x)). (57) 
uEJ Ix I < d  

F r o m  this we see that  

En, 8 <= enh(O)- na2/2v E( e"ca u + e-  ,ca v) 

= enh(O)-nd2/2e 2e(ncd)2/2 = 2 e~h(O) e-ha2(1 - B~)/2e (58) 

because (nc) 2 = riB. 
By the same a rgument  we can bound  E,, 9 as in (58). 
Return ing  now to (54) we have 

n (g(t + c U) -- g(t)) = n c 2 U 2 v/2 + 0 (n(c d) 3) = Bu U2/2 + 0 (d3/n 1/2)  

when UeJ,  so 

En, 7 = e"h(~ E ( e~v2/2, U ~J) (1 + O(d3 /nl/2)). 
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From (53) we see that 

cu+ = - h ' (  + d ) - t =  - h ' (  +_d)+h'(O)=O(d), 

so u+ ~ + o9 if d/c=nl/2d/B1/2--, oo, and 

En, 7 = enh(O) (E(eB~v~/2) + O(d3 /nl/2) + O(e-(1- B~).2 /2)) 

= e"h(~ -Bv)- l /z+o(da/nl /2)+O(e-(1-B~)"~/z)) .  (59) 

Collecting the estimates (27), (43), (52), (54), (58), (59) we see again that (51) is 
true if we choose d=D1/n 1/2 with D~ large enough and then choose n big 
enough as before. Let us sum up this result: 

Theorem 3. I f  f ( x ) + h ( x )  has a single maximum at x=0eDh ,  and if f (x) is twice 
continuously differentiable near 0 with - 2 A = f " ( 0 ) + h " ( 0 ) < 0 ,  so (3) holds with 
a= 2, and if the regularity condition (26) holds then the asymptotic formula 

E.--(1 + f"(O)/h"(O))-1/2 en(f(O)+h(O))(1 q-o(1)) (60) 

holds for E. defined by (1) as n --+ oo. 

4. The Central Limit Theorem for n~l"(S.[n-2) 

In this section we show that a simple modification of the proofs of Theorem 1 
and 2 shows that the limit distribution of Y~=nl/a(S,,/n-~2) described in the 
introduction is obtained as n ~ oo. 

The modified distribution of S. was defined by Fn, f (dx)= e ns(x/")Fn*(dx)/E", 
so the characteristic function of Yn is given by: (we take ~ = 0) 

E., ~ (e/st") = E (e ~I (s./~)+ is ~1/o (s./~))/E (e ~s (s~/.)) 

=En(s)/E ~ for seR ~. (61) 

By the continuity theorem for characteristic functions it is enough to show that 
E.(s)/E. converges to ~ ei~-alXl~ + 1/a) as n ~ oo when a > 1. 

E.(s) is obtained from E. simply by perturbing f ( x )  to fn (x )=f (x )  
+isnl/~-~x.  If we note that since a > l  f ( x )  and hence f.(x) uniformly in n 
satisfy a Lip. condition, ] f~ (x ) - f . ( y ) l<A ' [x -y l ,  near 0 and that le~f~(~)I=e ~f(x) 
we can repeat all the steps of the proofs of Theorem 1 and 2 almost as before 
and get a corresponding asymptotic formula for E~(s): (27) still holds for 
]En, 2(s)[. In E., s we have d = n  -1/2~, and n( f . (x /na/~)+h(x /n l /a) )~-Alx l~+isx ,  
so by bounded convergence we have 

E.,5(s)=(n/2rc)l/Z(-h"(O))l/2 en(f(~176 ~ e is~ alXl" dx(l  +o(1)). (62) 

(33) and (34) hold just as before, so from (35) we see that 

E. (s)/E. = ~ e ~ -  A t~ I ~ A 1/a dx/2F(1 + 1/a) (1 + o (1)). (63) 
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In  the proof  of Theorem 2 we have to add a term isn-i/2Sn in the exponent  in 
(41) and  (42). Since c = ( - B / n )  1/2 the exponent  in (45) changes to ( t+ic(U 
+s/(-B)I/2))S, .  The only change in the following is hence that  U is changed 
into U + s / ( - B )  ~/2 (with ( - B )  1/2 imaginary  if B > 0) .  The rest of the proof  then 
goes as before, and  tile ma in  term in (49) and  (59) is changed into 

and  we have 

E(e~V(v+s/( - m'/2]~/2) = e-SZV/2(1 _ BY)l( l --B@/2, 

E n ( S ) / E  n = e - s a y ~ 2 ( 1  - By) (1  At- O (1)), (64) 

so the l imit d is t r ibut ion is Gauss ian  with variance v / ( 1 - B v ) = - l / ( f " ( o )  
+h"(0)). Let us sum up this result:  

Theorem 4. Under the assumptions of Theorem 2 and 3 respectively, when S n is 
given the distribution F,, ~(dx)= e "I<x/'> F ' *  (dx)/E, then when a > 1 the distribution 
of Yn=nl/a(SJn-2) converges weakly to the one defined by the density 
e-AiXl~ +l/a) as n--,oo. When a=2, a > 0  this is a Gaussian with 
variance 

1/2A = - 1/(f"(0) + h"(O)). 
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