A Laplace Approximation for Sums of Independent Random Variables

Anders Martin-Löf

Dept. of Math. Statistics, Univ. of Stockholm, Box 6701, S-11385 Sweden

Introduction

In the well known Laplace approximation one considers integrals of the form $\int \varphi(x) e^{n f(x)} d x$, where φ and f are sufficiently nice real valued functions of $x \in R^{1}$, and n is a large positive number. It is based on the following argument: Suppose that $f(x)$ attains its maximum at $x=0$ e.g., and that $f(x)-f(0) \sim$ $-A|x|^{a}$ for some $A, a>0$ when $|x|$ is small. Then $e^{n f(x)}$ will have a very sharp maximum at $x=0$, so the main contribution to the integral comes from a neighbourhood of 0 , and we get:

$$
\begin{aligned}
\int \varphi(x) & e^{n f(x)} d x \sim \int_{|x| \leqq n^{-1 / 2 a}} \varphi(x) e^{n f(x)} d x \sim \varphi(0) \int_{|x| \leqq n^{-1 / 2 a}} e^{n f(0)-n A|x|^{a}} d x \\
& =\varphi(0) e^{n f(0)}(n A)^{-1 / a} \int_{|y| \leqq n^{1 / 2 a} A^{1 / a}} e^{-|y|^{a}} d y \\
& \sim \varphi(0) e^{n f(0)}(n A)^{-1 / a} \int e^{-|y|^{a}} d y=\varphi(0) e^{n f(0)}(n A)^{-1 / a} 2 \Gamma(1+1 / a) .
\end{aligned}
$$

The meaning of \sim is that the ratio of the two expressions goes to 1 as n goes to ∞.

A complete proof is straightforward and is given e.g. in [4].
In some recent work on the asymptotics of an epidemic process [3] we met with the problem of deriving an analogous approximation for an expression of the form

$$
\begin{equation*}
E_{n}=E\left(e^{n f\left(S_{n} / n\right)}\right)=\int e^{n f(x / n)} F^{n *}(d x), \tag{1}
\end{equation*}
$$

where $\left\{S_{n}\right\}$ are the partial sums of i.i.d random variables $\left\{X_{i}\right\}$ with a common distribution $F(x), f(x)$ is a sufficiently nice function of $x \in R^{1}$, and $n \rightarrow \infty$. In order to understand how the analogous approximation of E_{n} is formed let us first consider the situation when X_{1} has a density. Then under appropriate conditions the central limit theorem for large deviations tells us that $\varphi_{n}(x)$, the density of S_{n} / n, is approximatively given by the following formula:

$$
\begin{equation*}
\varphi_{n}(x) \sim(n / 2 \pi)^{1 / 2}\left(-h^{\prime \prime}(x)\right)^{1 / 2} e^{n h(x)} \tag{2}
\end{equation*}
$$

Here $h(x)$ is the entropy function of the distribution $F(x)$, which is defined below.

A proof of the above formula is given e.g. in [9]. Using it in the expression for E_{n} we can then make the Laplace approximation of the resulting integral as follows:

Suppose that $f(x)+h(x)$ has its maximum at $x=0$ e.g. and that

$$
\begin{equation*}
f(x)+h(x)-f(0)-h(0) \sim-A|x|^{a} \tag{3}
\end{equation*}
$$

with $A, a>0$ as $|x| \rightarrow 0$, then we get

$$
\begin{align*}
E_{n} & \sim(n / 2 \pi)^{1 / 2} \int\left(-h^{\prime \prime}(x)\right)^{1 / 2} e^{n(f(x)+h(x))} d x \\
& \sim(2 \pi)^{-1 / 2} 2 \Gamma(1+1 / a) A^{-1 / a}\left(-h^{\prime \prime}(0)\right)^{1 / 2} n^{1 / 2-1 / a} e^{n(f(0)+h(0))} . \tag{4}
\end{align*}
$$

When $f(x)$ is twice continuously differentiable near 0 then $2 A=-f^{\prime \prime}(0)-h^{\prime \prime}(0)$, and $a=2$ if $A>0$, so in this case the formula reduces to

$$
\begin{equation*}
E_{n} \sim\left(1+f^{\prime \prime}(0) / h^{\prime \prime}(0)\right)^{-1 / 2} e^{n(f(0)+h(0))} \tag{5}
\end{equation*}
$$

In the following we give a complete proof of the above asymptotic formulas with rather weak assumptions about $F(x)$ and $f(x)$. (Theorem 2 and 3 below.)

Concerning $f(x)$ it is enough to assume that it is Hölder continuous near the maximum at $x=0$ and that it can be approximated by piecewise linear functions as explained in (26).

Concerning $F(x)$ we have to assume that its generating function

$$
\begin{equation*}
e^{g(t)}=\int e^{t x} F(d x)=E\left(e^{t X_{1}}\right) \tag{6}
\end{equation*}
$$

is defined in some open interval $D_{g} \subset R^{1}$, so that laws of large deviations can be established using saddlepoint methods. Then the entropy function $h(x)$, defined by $h(x)=\inf _{t}(g(t)-t x)$, is finite and very regular in some open interval D_{h}. It is assumed that $f(x)+h(x)$ attains its maximum at a unique point \bar{x} in D_{h}, which we can take to be $\bar{x}=0$.

It turns out that it is not necessary to assume that $F(x)$ has a density. Either F is arithmetic, i.e. X_{1} takes only values $\xi+m \cdot \delta$, where m is integer and $\delta>0$, and $\operatorname{Re} g(i t)$ is periodic with period $2 \pi / \delta$ or if it is not, then it is enough to assume that the so called Cramér condition

$$
\begin{equation*}
\sup _{|t| \geqq u} \operatorname{Re} g(i t)<0 \quad \text { for any } u>0 \tag{7}
\end{equation*}
$$

is fulfilled.
Under these assumptions we can establish the formula (4) for any $A, a>0$. (In the arithmetic case the formula has to be modified when $0<a \leqq 1$.) (Theorem 2 below.)

When $a=2, A>0$ it turns out that (5) is true even without assuming the Cramér condition (7), and the arithmetic case need not be considered separately. (Theorem 3 below.)

We have treated explicitly only the case when $f(x)+h(x)$ attains its maximal value at only one point. If it attains it at a finite number of points (4) is
of course replaced by a sum of similar terms, one for each maximum, and only those with the largest value of a will contribute as $n \rightarrow \infty$.

The formula (4) is an example of the use of "thermodynamic" probability estimates familiar in statistical mechanics. I.e. one considers a "macroscopic variable" S_{n} / n whose probability distribution is asymptotically determined by an entropy function through a formula like (2), and in the resulting formula (4) all information about the underlying distribution F is contained in h and its derivatives at the maximal point \bar{x}. The formula (4) ought to be useful in other statistical and physical applications as well.
(In [4] similar formulas are derived in a special situation when $f(x)=\alpha x^{2}$.)
The fact that S_{n} / n behaves as if it had a density $\varphi_{n}(x)$ proportional to $e^{n h(x)}$ so that $\varphi_{n}(x) e^{n f(x)}$ is proportional to $e^{-n A|x-\bar{x}|^{a}}$ near \bar{x} can be expressed more precisely in the form of a central limit theorem as follows: Let a modified probability distribution for S_{n} be defined by $F_{n, f}(d x)=e^{n f(x / n)} F^{n *}(d x) / E_{n}$. Then for this distribution the following central limit theorem holds: (Theorem 4 below). The distribution of $n^{1 / a}\left(S_{n} / n-\bar{x}\right)$ defined by $F_{n, f}$ converges weakly to the one defined by the density

$$
e^{-A|x|^{a}} A^{1 / a} d x / 2 \Gamma(1+1 / a) \quad \text { as } n \rightarrow \infty \quad \text { if } a>1
$$

In particular when $a=2, A>0$ this limit distribution is Gaussian with variance $1 / 2 A=-1 /\left(f^{\prime \prime}(0)+h^{\prime \prime}(0)\right)$.

The problem of deriving logarithmic estimates for the distribution of S_{n} / n saying that $\lim _{n \rightarrow \infty} n^{-1} \log P\left(S_{n} / n \in I\right)=\sup _{x \in I} h(x)$ has recently received much attention following the work of Lanford [7], where this formula is established for intervals I using an elegant subadditivity argument. A survey of such results and their statistical background is given in the recent article [2] by Bahadur and Zabell. In a much more general context Varadhan [11] has shown how to derive the corresponding logarithmic estimate

$$
\lim _{n \rightarrow \infty} n^{-1} \log E_{n}=\sup _{x}(f(x)+h(x))
$$

using the above logarithmic estimates for the distribution of S_{n} / n and arguments valid for distributions on more general metric spaces than R^{1}.

Our more accurate formula for E_{n}, valid in the sense of \sim, gives so to speak the accuracy of the central limit theorem, and it depends on the local behaviour of $f(x)+h(x)$ near the maximal point \bar{x}. Analogous formulas for $P\left(S_{n} / n \in I\right)$ have recently been derived by Höglund [6].

1. Preparations

Let us first recall the basic properties of $g(t)$ defined by (6) and its Legendre transform or entropy function defined by

$$
\begin{equation*}
h(x)=\inf _{t}(g(t)-t x), \tag{8}
\end{equation*}
$$

which we will need to know in the following (c.f. $[8,10]$).

Let D_{g} be the maximal open interval in which $g(t)<\infty$, and let $g(t)=+\infty$ outside of $\bar{D}_{g} . D_{\mathrm{g}}$ is assumed to be non empty. Then $g(u+i v)$ is analytic in the vertical strip defined by $u \in D_{g}$ and $g(t)$ is continuous when t approaches the endpoints of D_{g}. In particular $g(t)$ is infinitely differentiable when $t \in D_{g}$. Since $g^{\prime \prime}(t)>0 g(t)$ is strictly convex, and the mapping $t \rightarrow x$ defined by $x=g^{\prime}(t)$ is strictly increasing and infinitely differentiable. Hence it is $1-1$ from D_{g} onto an open interval D_{h}, and the inverse mapping is also strictly increasing and infinitely differentiable. When $x \in D_{h}$ and $x=g^{\prime}(t)$ then inf in (8) is attained at t, so

$$
\begin{equation*}
h(x)=g(t)-t x, \quad \text { when } x=g^{\prime}(t) . \tag{9}
\end{equation*}
$$

From (8) follows that $h(x)$ is concave and closed (i.e. upper semicontinuous) and that $g(t)$ is determined from $h(x)$ by

$$
\begin{equation*}
g(t)=\sup _{x}(h(x)+t x) . \tag{10}
\end{equation*}
$$

From (9) it follows that $h(x)$ is infinitely differentiable and strictly concave in D_{h} because we have

$$
\begin{equation*}
h^{\prime}(x)=-t, \tag{11}
\end{equation*}
$$

so the inverse mapping of $x=g^{\prime}(t)$ is given by $t=-h^{\prime}(x)$. Therefore

$$
\begin{equation*}
\frac{d x}{d t}=g^{\prime \prime}(t)=-1 / h^{\prime \prime}(x) \tag{12}
\end{equation*}
$$

which shows that $h^{\prime \prime}(x)<0$, and $h(x)$ is strictly concave in D_{h}. Outside of D_{h} it is linear or $-\infty$.

We first derive a useful upper bound for E_{n} defined in (1) in the special case when $f(x)$ is linear in an interval and $-\infty$ outside it:
Lemma 1. For any interval I

$$
\begin{equation*}
B_{n}=E\left(e^{t S_{n}}, S_{n} / n \in I\right) \leqq \exp n \sup _{x \in I}(h(x)+t x) \tag{13}
\end{equation*}
$$

Proof. Take first I to be open. If $\sup _{x \in I}(h(x)+t x)=\sup _{x}(h(x)+t x)=g(t)$ then $B_{n} \leqq E\left(e^{t S_{n}}\right)=e^{n g(t)}$, and (13) is true.

If $-\infty<\sup <\sup$ then e.g. the left endpoint l of I is finite, $h(x)$ is finite to the right of $l, \sup _{x \in I}^{x \in I}=h(l)+t l$, and the right derivative $h_{+}^{\prime}(l)+t \leqq 0$. (A convex function is continuous and has one sided derivatives from the side where it is finite if it is closed as h is.) $t_{+}=-h_{+}^{\prime}(l)>-\infty$ defines a supporting line to $h(x)$ at l, i.e. $h(x) \leqq h(l)-t_{+}(x-l)$ for all x. This means that $g\left(t_{+}\right)=\sup \left(h(x)+t_{+} x\right)$ $=h(l)+t_{+} l$, and since $t(x-l) \leqq t_{+}(x-l)$ for $x \in I$ we have

$$
B_{n} \leqq E\left(e^{n t+\left(n^{-1} S_{n}-l\right)+n t l}\right)=e^{n g(t+)-n t+l+n t l}=e^{n(h(l)+t l)}
$$

and (13) is valid.

Finally, if $\sup _{x \in I}(h(x)+t x)=-\infty$ then $h(x)=-\infty$ for all $x \in I$, i.e. $\inf _{t}(g(t)-t x)$ $=-\infty$ for all $x \in I$. This means that $I \cap D_{h}=\emptyset$, so I lies e.g. to the right of D_{h}. I.e. $g^{\prime}(t)<x$ for any $t \in D_{g}$ and any $x \in I$, so $g(t)-t x$ is decreasing and

$$
\inf _{t}(g(t)-t x)=\lim _{t \rightarrow+\infty}(g(t)-t x)=-\infty \quad \text { for any } x \in I
$$

Hence $\lim _{t \rightarrow+\infty} E\left(e^{t\left(S_{n}-n x\right)}\right)=0$ for any $x \in I$, so that $P\left(S_{n} / n \geqq x\right)=0$. If we now let x decrease to l we can conclude that $P\left(n^{-1} S_{n}>l\right)=0$. Hence $B_{n}=0$ and (13) is again valid.

If I is not open and e.g. $I=[l, r)$ then we consider the slightly larger interval $I^{\prime}=(l-\varepsilon, r)$ and let $\varepsilon \rightarrow 0$. Because h is closed we have that $\lim _{\varepsilon \rightarrow 0} \sup _{|x-I| \leqq \varepsilon} h(x) \leqq h(l)$. This means that

$$
\lim _{\varepsilon \rightarrow 0} \sup _{x \in I^{\prime}}(h(x)+t x)=\sup _{x \in I}(h(x)+t x),
$$

and (13) follows by letting $\varepsilon \rightarrow 0$ in (13'):

$$
B_{n} \leqq B_{n}^{\prime} \leqq \exp n \sup _{x \in I^{\prime}}(h(x)+t x) .
$$

We next proceed to prove a local limit theorem for large deviations saying that if the Cramér condition (7) is fulfilled, then (2) is true for suitably defined smoothed density, which is defined as follows: Let $k(x)$ be the usual Fejer kernel $k(x)=\max (1-|x|, 0)$ with Fourier transform $\hat{k}(t)=2(1-\cos t) / t^{2}$, and let for $c>0$ small $k_{c}(x)=c^{-1} k(x / c)$ be the corresponding approximate delta function with $\hat{k}_{c}(t)=\hat{k}(c t)$. Since $k(x)$ has compact support $\widehat{k}(t)$ is an entire function. Define the smoothed density of S_{n} as follows:

$$
\begin{equation*}
\varphi_{n, c}(x)=E\left(k_{c}\left(S_{n}-n x\right)\right)=\int k_{c}(y-n x) F^{n *}(d y) \tag{14}
\end{equation*}
$$

Then the following asymptotic formula holds when $n \rightarrow \infty, c \rightarrow 0$:
Theorem 1. If the Cramér condition (7) is fulfilled, then

$$
\begin{equation*}
\varphi_{n, c}(x)=(2 \pi n)^{-1 / 2}\left(-h^{\prime \prime}(x)\right)^{1 / 2} e^{n h(x)}\left(1+\mathcal{O}\left(n^{-1 / 2}+c+e^{-n y} / c\right)\right) \tag{15}
\end{equation*}
$$

uniformly when x varies on a compact subset of D_{h} for some $\gamma>0$. In the arithmetic case the same asymptotic formula is valid for $P\left(S_{n}=n x\right) / \delta$ uniformly when $x=\xi+m \delta / n$ varies on compact subsets of D_{h} and m is an integer. (Excluding of course the error terms involving c.)
Proof. We use Parsevals relation and the usual change of the path of integration used in the saddlepoint method to express $\varphi_{n, c}(x)$ as follows:

$$
\varphi_{n, c}(x)=\int e^{n(g(i u)-i u x)} \hat{k}_{c}(u) d u / 2 \pi
$$

If $x=g^{\prime}(t)$ with $t \in D_{\mathrm{g}}$ change the path of integration so that $i u \rightarrow t+i u$. (Here we use the fact that $g(t+i u)$ is analytic when $t \in D_{g}$ and that $\hat{k}_{c}(u)$ is entire.)

Then $g(t)-t x=h(x)$ by (9) so we get:

$$
\begin{align*}
\varphi_{n, c}(x) & =\int e^{n(g(t+i u)-(t+i u) x)} \hat{k}_{c}(u-i t) d u / 2 \pi \\
& =e^{n h(x)} \int e^{n\left(g(t+i u)-g(t)-i u g^{\prime}(t)\right)} \widehat{k}_{c}(u-i t) d u / 2 \pi \tag{16}
\end{align*}
$$

We now split the integral into three parts $I_{1}+I_{2}+I_{3}$ corresponding to the regions $|u| \leqq d_{1} / n^{1 / 2}, d_{1} / n^{1 / 2}<|u| \leqq d_{2}, d_{2}<|u|$ respectively, where d_{1} is large, $d_{1} / n^{1 / 2}$ is small and $d_{2}>0$ as $n \rightarrow \infty$. Each part is estimated separately:
I_{1} : When $|u|$ is small

$$
\begin{equation*}
g(t+i u)-g(t)-i u g^{\prime}(t)=-u^{2} v / 2+\mathcal{O}|u|^{3} \tag{17}
\end{equation*}
$$

where $v=g^{\prime \prime}(t)=-1 / h^{\prime \prime}(x)>0$.
This holds uniformly when $t \in K_{g}=$ compact $\subset D_{g}$ and $|\dot{u}| \leqq d_{1} / n^{1 / 2}$. Replacing u by $u / n^{1 / 2}$ in I_{1} we get

$$
I_{1}=\int_{|u| \leqq d_{1}} e^{-v u^{2} / 2}\left(1+\mathcal{O}\left(|u|^{3} / n^{1 / 2}\right)\right) \hat{k}_{c}\left(u / n^{1 / 2}-i t\right) d u / n^{1 / 2} 2 \pi
$$

Let us put

$$
\begin{aligned}
I_{0} & =\int e^{-v u^{2} / 2} \widehat{k}_{c}\left(u / n^{1 / 2}-i t\right) d u / n^{1 / 2} 2 \pi \\
& =\int e^{-n v u^{2} / 2} \hat{k}_{c}(u-i t) d u / 2 \pi \\
& =\int(2 \pi n v)^{-1 / 2} e^{-x^{2} / 2 n v} e^{t x} k_{c}(x) d x .
\end{aligned}
$$

The last equation follows from Parsevals realtion. We see that I_{0} $=(2 \pi n v)^{-1 / 2}(1+\mathcal{O}(c))$ as $c \rightarrow 0$ uniformly when $n \rightarrow \infty$ and $t \in K_{g}$. It is easy to check that

$$
\begin{equation*}
|\hat{k}(u-i t)| \leqq K /\left(1+u^{2}\right) \tag{18}
\end{equation*}
$$

for some $K>0$ uniformly when $t \in K_{g}$.
Hence

$$
\begin{aligned}
\left|I_{1}-I_{0}\right| & =\mathcal{O}\left(\int_{|u| \leqq d_{1}}|u|^{3} e^{-v u^{2} / 2} d u / n+\int_{|u|>d_{1}} e^{-v u^{2} / 2} d u / n^{1 / 2}\right) \\
& =\mathcal{O}\left((n v)^{-1 / 2}\left(n^{-1 / 2}+e^{-v d_{1}^{2} / 2}\right),\right.
\end{aligned}
$$

so we have

$$
\begin{equation*}
I_{1}=(2 \pi n v)^{-1 / 2}\left(1+\mathcal{O}\left(c+n^{-1 / 2}+e^{-v d_{1}^{2} / 2}\right)\right) \tag{19}
\end{equation*}
$$

I_{2} : From (17) we see that in I_{2} we have $g(t+i u)-g(t)-i u g^{\prime}(t) \geqq-u^{2} v / 4$ when $|u| \leqq d_{2}$ is small enough. Hence using (18) we have

$$
\begin{equation*}
I_{2}=\mathcal{O}\left(\int_{|u| \geqq d_{1}} e^{-v u^{2} / 4} d u / n^{1 / 2}\right)=\mathcal{O}\left((n v)^{-1 / 2} e^{-v d d_{1}^{2} / 4}\right) . \tag{20}
\end{equation*}
$$

I_{3} : To estimate I_{3} we need the Cramér condition (7) and (18). If we can show that $\operatorname{Re} g(t+i u)-g(t) \leqq \gamma<0$ when $|u| \geqq d_{2}$ and $t \in K_{g}$ then we have

$$
\begin{equation*}
I_{3}=\mathcal{O}\left(e^{-n \gamma} \int d u /\left(1+(c u)^{2}\right)\right)=\mathcal{O}\left(e^{-n \gamma} / c\right) \tag{21}
\end{equation*}
$$

To see that the above bound for $\operatorname{Re} g$ holds we use the fact that

$$
\begin{equation*}
e^{g(t+i u)-g(t)}=\int e^{i u x} e^{t x-g(t)} F(d x)=\int e^{i u x} F_{t}(d x) \tag{22}
\end{equation*}
$$

where $F_{t}(d x)$ is absolutely continuous with respect to $F(d x)$. In [1], Lemma 4 it is shown that the Cramer condition is preserved when the distribution F is changed to one which is absolutely continuous with respect to F. Hence $\sup _{\operatorname{Re}} g(t+i u)-g(t)<0$ for each t. But it is easy to check that $g(t+i u)-g(t)$ $|u| \geqq d_{2}$
 If we now put $v^{1 / 2} d_{1}=n^{1 / 4}$ e.g. and add the expressions in (19), (20) and (21) we get the desired formula (15) because $v=-1 / h^{\prime \prime}(x)>0$. The proof in the arithmetic case follows the same lines starting from the inversion formula for the individual atoms of the distribution of S_{n} :

$$
\begin{align*}
P\left(S_{n}=n x\right) & =\delta \int_{|u| \leqq \pi / \delta} e^{n(g(i u)-i x u)} d u / 2 \pi \\
& =\delta e^{n h(x)} \int_{|u| \leqq \pi / \delta} e^{n\left(g(t+i u)-g(t)-i u g^{\prime}(t)\right)} d u / 2 \pi \tag{23}
\end{align*}
$$

where $x=\xi+m \delta / n, m$ integer and $g^{\prime}(t)=x$. In this case we take $d_{2}=\pi / \delta$ and the term I_{3} is absent.

2. First Proof of the Laplace Approximation

We now show that Theorem 1 can be used to establish the asymptotic formula (4) in the way indicated in the introduction. We assume that $f(x)+h(x)$ attains its maximum at only one point, $x=0$ e.g., and that $0 \in D_{h}$. Near this point we assume (3) and that $f(x)$ is Hölder continuous:

$$
\begin{equation*}
|f(x+y)-f(x)| \leqq A^{\prime}|y|^{a^{\prime}} \quad \text { for some } A^{\prime}, a^{\prime}>0 \tag{24}
\end{equation*}
$$

Consider now E_{n} defined by (1) and split it into the contribution from a neighbourhood of 0 and the rest:

$$
\begin{align*}
& E_{n, 1}=E\left(e^{n f\left(S_{n} / n\right)} I_{2 d}\left(S_{n} / n\right)\right) \tag{25}\\
& E_{n, 2}=E_{n}-E_{n, 1},
\end{align*}
$$

where $I_{d}(x)$ is the indicator of the interval $[-d, d]$. Let us estimate $E_{n, 2}$ first with the help of Lemma 1. To this end we make the following regularity assumption:

For any $d>0$ there is a piecewise linear function $f_{d}(x)$ with at most d^{-M} pieces for some $M>0$ such that

$$
\begin{equation*}
e^{f_{d}(x)-d} \leqq e^{f(x)} \leqq e^{f_{d}(x)+d} \quad \text { when } h(x)>-\infty . \tag{26}
\end{equation*}
$$

$f(x)$ and $f_{d}(x)$ are allowed to take the value $-\infty$. (This is true e.g. if $f(x)$ is piecewise continuous and asymptotically linear at infinity.)

Take now $b>0$ such that $f(x)+h(x) \leqq f(0)+h(0)-3 b$ when $|x|>d$ (this means that $b=\mathcal{O}\left(d^{a}\right)$ when d is small), and take $f_{b}(x)$ as in (26). In each interval J where f_{b} is linear we can use Lemma 1 to get the following bound:

$$
\begin{aligned}
E\left(e^{n f\left(S_{n} / n\right)}, S_{n} / n \in J\right) & \leqq E\left(e^{n f_{b}\left(S_{n} / n\right)+n b}, S_{n} / n \in J\right) \\
& \leqq \exp n \sup _{x \in J}\left(f_{b}(x)+h(x)+b\right) \\
& \leqq \exp n \sup _{x \in J}(f(x)+h(x)+2 b) \\
& \leqq \exp n(f(0)+h(0)-b)
\end{aligned}
$$

if $|x| \geqq 2 d$ in J. We hence get the following bound for $E_{n, 2}$:

$$
\begin{equation*}
E_{n, 2} \leqq e^{n(f(0)+h(0))} \cdot b^{-M} \cdot e^{-n b} . \tag{27}
\end{equation*}
$$

(Intervals where $h(x)=-\infty$ do not contribute to $E_{n, 2}$.)
Coming now to $E_{n, 1}$ we consider the non arithmetic case first and want to use Theorem 1. Therefore we approximate the integrand by convolving it with $k_{c / n}$:

$$
\begin{gather*}
E_{n, 3}=E\left(k_{c / n} *\left(e^{n f} I_{2 d}\right)\left(S_{n} / n\right)\right) \\
E_{n, 4}=E_{n, 1}-E_{n, 3} \tag{28}\\
E_{n, 3}=\iint(n / c) k((n / c)(x / n-y)) e^{n f(y)} I_{2 d}(y) d y F^{n *}(d x) \\
=n \int e^{n f(y)} I_{2 d}(y) \varphi_{n, c}(y) d x \tag{29}
\end{gather*}
$$

When we approximate $\varphi_{n, c}(y)$ by using Theorem 1 the main term is:

$$
\begin{aligned}
E_{n, 5} & =(n / 2 \pi)^{1 / 2} \int_{|x| \leqq 2 d}\left(-h^{\prime \prime}(x)\right)^{1 / 2} e^{n(f(x)+h(x))} d x \\
& =(n / 2 \pi)^{1 / 2}\left(-h^{\prime \prime}(0)\right)^{1 / 2} e^{n(f(0)+h(0))} \cdot \int_{|x| \leqq 2 d}(1+\mathcal{O}(d)) e^{-n|x| a_{(}(A+o(1))} d x .
\end{aligned}
$$

We have $\int e^{-(n B)|x|^{a}} d x=(n B)^{-1 / a} 2 \Gamma(1+1 / a)$, and for the tail of this integral the following simple estimate holds:

Lemma 2.

$$
\begin{equation*}
c^{1 / a} \int_{d}^{\infty} e^{-c x^{a}} d x \leqq e^{-c d^{a}}(2 / a)\left(c d^{a}\right)^{1 / a)-1} \tag{30}
\end{equation*}
$$

when $c d^{a} \geqq 2 / a$.
Proof.

$$
\begin{aligned}
\int_{d}^{\infty} e^{-c x^{a}} d x & ={ }_{d}^{\infty} x e^{-c x^{a}}+\int_{d}^{\infty} a c x^{a} e^{-c x^{a}} d x \\
& \geqq-d e^{-c d^{a}}+a c d^{a} \int_{d}^{\infty} e^{-c x^{a}} d x
\end{aligned}
$$

Hence $\left(a c d^{a}-1\right) \int_{d}^{\infty} e^{-c x^{a}} d x \leqq d e^{-c d^{a}}$, and (30) follows because $a c d^{a}-1 \geqq a c d^{a} / 2$.

Using this estimate we see that the integral in $E_{n, 5}$ can be bounded above and below by

$$
(n B)^{-1 / a} 2 \Gamma(1+1 / a)\left(1+\mathcal{O}(d)+\mathcal{O}\left(e^{-n B(2 d)^{a}}\left(n B(2 d)^{a}\right)^{(1 / a)-1}\right)\right),
$$

where B can be made arbitrarily close to A by chosing d small. Hence, if $d \rightarrow 0$, but $n d^{a} \rightarrow \infty$ we have

$$
\begin{equation*}
E_{n, 5}=(2 \pi)^{-1 / 2} 2 \Gamma(1+1 / a) A^{-1 / 2}\left(-h^{\prime \prime}(0)\right)^{1 / 2} n^{1 / 2-1 / a} e^{n(f(0)+h(0))}(1+o(1)) \tag{31}
\end{equation*}
$$

and the same holds for $E_{n, 3}$ if the error terms in Theorem 1 go to zero, i.e. if $c \rightarrow 0$ and $e^{-\gamma n} / c \rightarrow 0$.

It now remains to bound the term $E_{n, 4}$ in (28), and we split it into two pieces as follows:

$$
\begin{aligned}
E_{n, 4}= & E\left(I_{d}\left(e^{n f} I_{2 d}-k_{c / n} *\left(e^{n f} I_{2 d}\right)\right)\left(S_{n} / n\right)\right) \\
& +E\left(\left(1-I_{d}\right)\left(e^{n f} I_{2 d}-k_{c / n} *\left(e^{n f} I_{2 d}\right)\right)\left(S_{n} / n\right)\right)=E_{n, 6}+E_{n, 7} .
\end{aligned}
$$

In $E_{n, 6}$ the argument of the integrand lies in the interval $|x| \leqq d$. If also $c / n<d$ then in the integral defining $k_{c / n} *\left(e^{n f} I_{2 d}\right)$ the argument of the last factor lies in the interval $|y| \leqq 2 d$, so the integrand in $E_{n, \sigma}$ is given by:

$$
\begin{aligned}
\left(e^{n f}-k_{c / n} * e^{n f}\right)(x) & =\int\left(e^{n f(x)}-e^{n f(x-y)}\right) k_{c / n}(y) d y \\
& =e^{n f(x)} \int\left(1-e^{n(f(x-y)-f(x))}\right) k_{c / n}(y) d y
\end{aligned}
$$

so using (24) it is bounded by:

$$
\begin{equation*}
\left|\left(e^{n f}-k_{c / n} * e^{n f}\right)(x)\right| \leqq e^{n f(x)} 2 A^{\prime} n(c / n)^{a^{\prime}} \tag{32}
\end{equation*}
$$

when $|x| \leqq d$ and d is small.
Hence we have:

$$
\begin{equation*}
\left|E_{n, 6}\right| \leqq 2 A^{\prime} n(c / n)^{a^{\prime}} E_{n} \tag{33}
\end{equation*}
$$

when d is small and $c / n<d$.
For $E_{n, 7}$ we have the estimate

$$
\left|E_{n, 7}\right| \leqq E\left(\left(1-I_{d}\right) e^{n f}\left(S_{n} / n\right)\right)+E\left(\left(1-I_{d}\right) k_{c / n} *\left(e^{n f} I_{2 d}\right)\left(S_{n} / n\right)\right)
$$

The first term is bounded just as $E_{n, 2}$ above by (27). In the second term $k_{c / n} *\left(e^{n f} I_{2 d}\right)(x)=\int k_{c / n}(y) e^{n f(x-y)} I_{2 d}(x-y) d y$ is zero if $|x|>2 d+c / n$ because $k_{c / n}$ has compact support. Hence in the second term it can be bounded using (24) and (32) by e.g. $2 e^{n f(x)}$ when d is small, so the second term can be bounded just as the first, and

$$
\begin{equation*}
\left|E_{n, 7}\right| \leqq 3 b^{-M} e^{-n b} e^{n(f(0)+h(0))} \tag{34}
\end{equation*}
$$

when d is small and $c / n<d$.
Collecting all our estimates (27), (31), (33) and (34) we get the desired formula for E_{n}

$$
\begin{equation*}
E_{n}=(2 \pi)^{-1 / 2} 2 \Gamma(1+1 / a) A^{-1 / 2}\left(-h^{\prime \prime}(0)\right)^{1 / 2} n^{1 / 2-1 / a} e^{n(f(0)+h(0))}(1+o(1)) \tag{35}
\end{equation*}
$$

if c and d can be chosen suitably. We need to have $d \rightarrow 0, n d^{a} \rightarrow \infty, c / n<d$, $n(c / n)^{a^{\alpha}} \rightarrow 0, e^{-\nu n} / c \rightarrow 0, n^{1 / a-1 / 2} b^{-M} e^{-n b} \rightarrow 0$ with $b=\mathcal{O}\left(d^{a}\right)$. This can easily be achieved if e.g. $d=n^{-1 / 2 a}$ and $c / n=n^{-t}$ with l large enough.

It finally remains to estimate $E_{n, 1}$ in the arithmetic case. Now we can use Theorem 1 to estimate the atoms of the distribution of S_{n} directly and get:

$$
\begin{equation*}
E_{n, 1}=(2 \pi n)^{-1 / 2} \delta \sum_{|x| \leqq d}\left(-h^{\prime \prime}(x)\right)^{1 / 2} e^{n(f(x)+h(x))}\left(1+\mathcal{O}\left(n^{-1 / 2}\right)\right), \tag{36}
\end{equation*}
$$

where the summation is taken over $x=\xi+m \delta / n, m$ integer. In estimating the sum in (36) we use (3) and the fact that $h^{\prime \prime}(x)$ is continuous at $x=0$. We have to consider the cases $a>1, a=1, a<1$ separatively however.

When $a>1$ the sum can be approximated from above and below by

$$
(2 \pi n)^{1 / 2}\left(-h^{\prime \prime}(0)\right)^{1 / 2} e^{n(f(0)+h(0))} \sum_{|x| \leqq d} e^{-n B|x|^{\mid a}}(\delta / n)(1+\mathcal{O}(d))
$$

with B arbitrarily close to A if d is small. The sum is a Riemann sum approximating the integral $\int_{|x| \leqq d} e^{-n B|x|^{a}} d x$, so it follows that (35) holds as above if d is chosen as before.

When $a \leqq 1$ the sum is dominated by its largest terms as follows: Let $x_{0} \leqq 0<x_{1}$ be those x-values in the sum which are closest to $x=0$. For a tail of the sum we then have the estimate

$$
\sum_{y \leqq x} e^{-n B|y|^{a}} \leqq e^{-n B|x|^{\alpha}}+\int_{x}^{\infty} e^{-n B|y|^{a}} d y \leqq 2 e^{-n B|x|^{a}}
$$

as $n \rightarrow \infty$ using Lemma 2.
Hence $\sum_{y>x_{1}} e^{-n B|y| a} \leqq 2 e^{-n B\left|x_{1}+\delta / n\right|^{a}}$ e.g., and since $x_{1}=\theta \delta / n$ with $0 \leqq \theta \leqq 1$ this is negligible compared to $e^{-n B\left|x_{1}\right|^{a}}$ because

$$
\left.n\left(|\theta \delta / n+\delta / n|^{a}\right)-|\theta \delta / n|^{a}\right)=n^{1-a} \delta^{a}\left(|\theta+1|^{a}-|\theta|^{a}\right)>n^{1-a} \delta^{a}\left(2^{a}-1\right)
$$

We conclude that the two terms corresponding to x_{0} and x_{1} dominate in the sum, so we have:

$$
\begin{equation*}
E_{n}=(2 \pi n)^{-1 / 2}\left(-h^{\prime \prime}(0)\right)^{1 / 2} \delta\left(e^{n\left(f\left(x_{0}\right)+h\left(x_{0}\right)\right)}+e^{n\left(f\left(x_{1}\right)+h\left(x_{1}\right)\right)}\right)(1+o(1)) \tag{37}
\end{equation*}
$$

when $0<a<1$.
When $a=1$ all the terms contribute however:

$$
f(x)+h(x)=f\left(x_{1}\right)+h\left(x_{1}\right)-A\left(x-x_{1}\right)+o\left(x_{1}+x\right)
$$

for $x=x_{1}+m \delta / n$ gives

$$
\begin{aligned}
\sum_{x \geqq x_{1}} e^{n(f(x)+h(x))} & =e^{n\left(f\left(x_{1}\right)+h\left(x_{1}\right)\right)} \sum_{0}^{\infty} e^{-A m \delta}(1+o(1)) \\
& =e^{n\left(f\left(x_{1}\right)+h\left(x_{1}\right)\right)} /\left(1-e^{-A \delta}\right)(1+o(1)),
\end{aligned}
$$

so in this case we see that

$$
\begin{align*}
E_{n}= & (2 \pi n)^{-1 / 2}\left(-h^{\prime \prime}(0)\right)^{1 / 2}\left(\delta /\left(1-e^{-A \delta}\right)\right) \\
& \cdot\left(e^{n\left(f\left(x_{0}\right)+h\left(x_{0}\right)\right)}+e^{n\left(f\left(x_{1}\right)+h\left(x_{1}\right)\right)}\right)(1+o(1)) \tag{38}
\end{align*}
$$

and we have finally proved the following result:
Theorem 2. If $f(x)+h(x)$ has a single maximum at $x=0 \in D_{h}$ and if (3) and (24) hold near $x=0$ and the regularity condition (26) holds for $f(x)$ and the Cramér condition (7) holds for the distribution $F(x)$ then the asymptotic formula (35) holds for E_{n} defined by (1) in the non arithmetic case. In the arithmetic case (7) does not hold but (35) is true if $a>1$, whereas (37) holds if $a<1$ and (38) holds if $a=1$.

3. Second Proof of the Laplace Approximation

In this section we show that the asymptotic formula (5) for E_{n} holds when $f(x)$ is twice continuously differentiable near 0 and $2 A=-\left(f^{\prime \prime}(0)+h^{\prime \prime}(0)\right)>0, a=2$ without assuming that the Cramér condition (7) holds.

From (3) it follows that

$$
\begin{equation*}
t \equiv f^{\prime}(0)=-h^{\prime}(0), \quad \text { so } g^{\prime}(t)=0 \tag{39}
\end{equation*}
$$

and we have with $B=f^{\prime \prime}(0)$

$$
\begin{equation*}
f(x)=f(0)+t x+B x^{2} / 2+o\left(x^{2}\right) \tag{40}
\end{equation*}
$$

Again we split E_{n} into $E_{n, 1}+E_{n, 2}$ with

$$
\begin{equation*}
E_{n, 1}=E\left(e^{n f\left(S_{n} / n\right)},\left|S_{n} / n\right| \leqq d\right) \tag{41}
\end{equation*}
$$

and estimate $E_{n, 2}$ as before by (27) with $b=O\left(d^{2}\right)$. Because of (40) we approximate $E_{n, 1}$ by

$$
\begin{equation*}
E_{n, 3}=E\left(e^{n\left(f(0)+t\left(S_{n} / n\right)+B\left(S_{n} / n\right)^{2} / 2\right)},\left|S_{n} / n\right| \leqq d\right) \tag{42}
\end{equation*}
$$

and have

$$
\begin{equation*}
\left|E_{n, 1}-E_{n, 3}\right| \leqq\left|e^{n d^{2} r(d)}-1\right| E_{n, 3} \tag{43}
\end{equation*}
$$

where $r(d) \rightarrow 0$ when $d \rightarrow 0$.
In estimating $E_{n, 3}$ we have to consider the case $B>0$ and $B \leqq 0$ separately. When $B \leqq 0$ we use the fact that

$$
\begin{equation*}
e^{-z^{2} / 2}=E\left(e^{i z U}\right) \tag{44}
\end{equation*}
$$

where U is a standard Gaussian random variable independent of $\left\{X_{i}\right\}$.

Hence

$$
\begin{align*}
E_{n, 3} & =e^{n f(0)} E\left(e^{(t+i c U) S_{n}},\left|S_{n} / n\right| \leqq d\right) \\
& =e^{n f(0)}\left(E\left(e^{(t+i c U) S_{n}}\right)-E\left(e^{(t+i c U), S_{n}},\left|S_{n} / n\right|>d\right)\right) \\
& =E_{n, 4}-E_{n, 5} \tag{45}
\end{align*}
$$

with $c \equiv(|B| / n)^{1 / 2} \rightarrow 0$ as $n \rightarrow \infty$.
Since $\left|e^{(t+i c U) S_{n}}\right|=e^{t S_{n}} E_{n, 5}$ can be bounded using Lemma 1 by

$$
\left|E_{n, 5}\right| \leqq e^{n f(0)}\left(\exp n \sup _{x>d}(h(x)+t x)+\exp n \sup _{x<-d}(h(x)+t x)\right) .
$$

From (10) and the fact that $t=-h^{\prime}(0)$ we see that

$$
\begin{equation*}
g(t)=\max _{x}(h(x)+t x)=h(0)+0 . \tag{46}
\end{equation*}
$$

Since h is concave it follows that $\sup _{x>d}=h(d)+t d$ and $\sup _{x<-d}=h(-d)-t d=h(0)$ $+d^{2} h^{\prime \prime}(0) / 2+O\left(d^{3}\right)$, so we have

$$
\begin{equation*}
\left|E_{n, 5}\right| \leqq 2 e^{n(f(0)+h(0))} e^{-n d^{2} h^{\prime}(0) / 4} \quad \text { e.g. } \tag{47}
\end{equation*}
$$

when d is small enough.
Consider now $E_{n, 4}$. Using (46) we see that

$$
\begin{equation*}
E_{n, 4}=e^{n(f(0)+h(0))} E\left(e^{n(g(t+i c U)-g(t))}\right) . \tag{48}
\end{equation*}
$$

Since $\left|e^{g(t+i c t)-g(t)}\right| \leqq 1$ it is no problem to truncate at $|U|=D, D \rightarrow \infty$ in (48). We have $P(|U|>D)=O\left(e^{-D^{2} / 2}\right)$. When $|U| \leqq D$ we use the Taylor expansion of g and get (with $\left.g^{\prime}(t)=0, v \equiv g^{\prime \prime}(t)=-1 / h^{\prime \prime}(0)\right)$:

$$
n(g(t+i c U)-g(t))=n\left(-c^{2} U^{2} v / 2+O(c D)^{3}\right)=B v U^{2} / 2+O\left(D^{3} / n^{1 / 2}\right)
$$

and

$$
\begin{align*}
E_{n, 6} & \equiv E\left(e^{n(g(t+i c U)-g(t))}\right) \\
& =E\left(e^{B v U^{2}},|U| \leqq D\right)\left(1+O\left(D^{3} / n^{1 / 2}\right)\right)+O\left(e^{-D^{2} / 2}\right) \\
& =E\left(e^{B v U^{2} / 2}\right)\left(1+O\left(D^{3} / n^{1 / 2}\right)\right)+O\left(e^{-D^{2} / 2}\right) \\
& =(1-B v)^{-1 / 2}\left(1+O\left(D^{3} / n^{1 / 2}\right)\right)+O\left(e^{-D^{2} / 2}\right) . \tag{49}
\end{align*}
$$

If we choose $D=n^{1 / 8}$ e.g. we see that

$$
\begin{equation*}
E_{n, 6}=(1-B v)^{-1 / 2}(1+o(1)) . \tag{50}
\end{equation*}
$$

Collecting all the estimates (27), (43), (47), (48), (50) and putting $d=D_{1} / h^{1 / 2}$ we see that we have

$$
\begin{equation*}
E_{n}=(1-B v)^{-1 / 2} e^{n(f(0)+h(0)}(1+o(1)) \tag{51}
\end{equation*}
$$

if we first choose D_{1} large enough and then n so big that $r(d)$ in (43) is small enough.

When $B>0$ the above proof has to be modified somewhat. Now we use (44) with z imaginary, and (45) is changed into:

$$
\begin{equation*}
E_{n, 3}=e^{n f(0)} E\left(e^{(t+c U) S_{n}},\left|S_{n} / n\right| \leqq d\right) \tag{52}
\end{equation*}
$$

with $c=(B / n)^{1 / 2} \rightarrow 0$ as $n \rightarrow \infty$.
Let $J=\left[u_{-}, u_{+}\right]$be the interval such that $t+c J$ corresponds to the interval $[-d, d] \subset D_{h}$ in the mapping $t \rightarrow x=g^{\prime}(t)$, i.e. $u_{ \pm}$are determined by

$$
\begin{equation*}
g^{\prime}\left(t+c u_{ \pm}\right)= \pm d \tag{53}
\end{equation*}
$$

$0 \in J$ because $g^{\prime}(t)=0$. We want to compare the integral in (52) to

$$
\begin{align*}
E_{n, 7} & =E\left(e^{(t+c U) S_{n}}, \quad U \in J\right)=E\left(e^{n g(t+c U)}, U \in J\right) \\
& =e^{n h(0)} E\left(e^{n(g(t+c U)-g(t)}, U \in J\right), \tag{54}
\end{align*}
$$

and to this end we show that the two integrals

$$
\begin{equation*}
E_{n, 8}=E\left(E^{(t+c U) S_{n}},\left|S_{n} / n\right|>d, U \in J\right) \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{n, 9}=E\left(e^{(t+c U) S_{n}},\left|S_{n} / n\right| \leqq d, U \notin J\right) \tag{56}
\end{equation*}
$$

are negligible.
For a fixed value $U=u$ the integral in (55) e.g. can be bounded using Lemma 1 by

$$
\begin{aligned}
E\left(e^{(t+c u) S_{n}},\left|S_{n} / n\right|>d\right) \leqq & \exp n \sup _{x>d}(h(x)+(t+c u) x) \\
& +\exp n \sup _{x<-d}(h(x)+(t+c u) x) .
\end{aligned}
$$

Since $u \in J$ in (55) $h^{\prime}(x)+(t+c u) \neq 0$ when $|x|<d$, so the sup above are attained for $x= \pm d$ respectively, and since $t=-h^{\prime}(0)$ we have

$$
\begin{gather*}
h(\pm d) \pm t d \leqq h(0)-d^{2} / 2 \bar{v} \quad \text { if } \\
\bar{v}=\sup _{u \in J} g^{\prime \prime}(t+c u)=\sup _{|x| \leqq d}\left(-1 / h^{\prime \prime}(x)\right) . \tag{57}
\end{gather*}
$$

From this we see that

$$
\begin{align*}
E_{n, 8} & \leqq e^{n h(0)-n d^{2} / 2 \bar{v}} E\left(e^{n c d U}+e^{-n c d U}\right) \\
& =e^{n h(0)-n d^{2} / 2 \bar{v}} 2 e^{(n c d)^{2} / 2}=2 e^{n h(0)} e^{-n d^{2}(1-B \bar{v}) / 2 \bar{v}} \tag{58}
\end{align*}
$$

because $(n c)^{2}=n B$.
By the same argument we can bound $E_{n, 9}$ as in (58).
Returning now to (54) we have

$$
n(g(t+c U)-g(t))=n c^{2} U^{2} v / 2+O\left(n(c d)^{3}\right)=B u U^{2} / 2+O\left(d^{3} / n^{1 / 2}\right)
$$

when $U \in J$, so

$$
E_{n, 7}=e^{n h(0)} E\left(e^{B v U^{2} / 2}, U \in J\right)\left(1+O\left(d^{3} / n^{1 / 2}\right)\right)
$$

From (53) we see that

$$
c u_{ \pm}=-h^{\prime}(\pm d)-t=-h^{\prime}(\pm d)+h^{\prime}(0)=O(d)
$$

so $u_{ \pm} \rightarrow \pm \infty$ if $d / c=n^{1 / 2} d / B^{1 / 2} \rightarrow \infty$, and

$$
\begin{align*}
E_{n, 7} & =e^{n h(0)}\left(E\left(e^{B v U^{2} / 2}\right)+O\left(d^{3} / n^{1 / 2}\right)+O\left(e^{-(1-B v) u_{ \pm}^{2} / 2}\right)\right) \\
& =e^{n h(0)}\left((1-B v)^{-1 / 2}+O\left(d^{3} / n^{1 / 2}\right)+O\left(e^{-(1-B v) u_{ \pm}^{2} / 2}\right)\right) \tag{59}
\end{align*}
$$

Collecting the estimates (27), (43), (52), (54), (58), (59) we see again that (51) is true if we choose $d=D_{1} / n^{1 / 2}$ with D_{1} large enough and then choose n big enough as before. Let us sum up this result:

Theorem 3. If $f(x)+h(x)$ has a single maximum at $x=0 \in D_{h}$, and if $f(x)$ is twice continuously differentiable near 0 with $-2 A=f^{\prime \prime}(0)+h^{\prime \prime}(0)<0$, so (3) holds with $a=2$, and if the regularity condition (26) holds then the asymptotic formula

$$
\begin{equation*}
E_{n}=\left(1+f^{\prime \prime}(0) / h^{\prime \prime}(0)\right)^{-1 / 2} e^{n(f(0)+h(0))}(1+o(1)) \tag{60}
\end{equation*}
$$

holds for E_{n} defined by (1) as $n \rightarrow \infty$.

4. The Central Limit Theorem for $\boldsymbol{n}^{1 / a}\left(S_{n} / n-\bar{x}\right)$

In this section we show that a simple modification of the proofs of Theorem 1 and 2 shows that the limit distribution of $Y_{n}=n^{1 / a}\left(S_{n} / n-\bar{x}\right)$ described in the introduction is obtained as $n \rightarrow \infty$.

The modified distribution of S_{n} was defined by $F_{n, f}(d x)=e^{n f(x / n)} F^{n *}(d x) / E_{n}$, so the characteristic function of Y_{n} is given by: (we take $\bar{x}=0$)

$$
\begin{align*}
E_{n, f}\left(e^{i s Y_{n}}\right) & =E\left(e^{n f\left(S_{n} / n\right)+i s n^{1 / a}\left(S_{n} / n\right)}\right) / E\left(e^{n f\left(S_{n} / n\right)}\right) \\
& =E_{n}(s) / E_{n} \quad \text { for } s \in R^{1} . \tag{61}
\end{align*}
$$

By the continuity theorem for characteristic functions it is enough to show that $E_{n}(s) / E_{n}$ converges to $\int e^{i s x-A|x|^{a}} A^{1 / a} d x / 2 \Gamma(1+1 / a)$ as $n \rightarrow \infty$ when $a>1$.
$E_{n}(s)$ is obtained from E_{n} simply by perturbing $f(x)$ to $f_{n}(x)=f(x)$ $+i S n^{1 / a-1} x$. If we note that since $a>1 f(x)$ and hence $f_{n}(x)$ uniformly in n satisfy a Lip. condition, $\left|f_{n}(x)-f_{n}(y)\right| \leqq A^{\prime}|x-y|$, near 0 and that $\left|e^{n f_{n}(x)}\right|=e^{n f(x)}$ we can repeat all the steps of the proofs of Theorem 1 and 2 almost as before and get a corresponding asymptotic formula for $E_{n}(s):(27)$ still holds for $\left|E_{n, 2}(s)\right|$. In $E_{n, 5}$ we have $d=n^{-1 / 2 a}$, and $n\left(f_{n}\left(x / n^{1 / a}\right)+h\left(x / n^{1 / a}\right)\right) \rightarrow-A|x|^{a}+i s x$, so by bounded convergence we have

$$
\begin{equation*}
E_{n, 5}(s)=(n / 2 \pi)^{1 / 2}\left(-h^{\prime \prime}(0)\right)^{1 / 2} e^{n(f(0)+h(0))} n^{-1 / a} \int e^{i s x-A|x| a} d x(1+o(1)) \tag{62}
\end{equation*}
$$

(33) and (34) hold just as before, so from (35) we see that

$$
\begin{equation*}
E_{n}(s) / E_{n}=\int e^{i s x-A|x|^{a}} A^{1 / a} d x / 2 \Gamma(1+1 / a)(1+o(1)) \tag{63}
\end{equation*}
$$

In the proof of Theorem 2 we have to add a term $i s n^{-1 / 2} S_{n}$ in the exponent in (41) and (42). Since $c=(-B / n)^{1 / 2}$ the exponent in (45) changes to $(t+i c(U$ $\left.+s /(-B)^{1 / 2}\right)$) S_{n}. The only change in the following is hence that U is changed into $U+s /(-B)^{1 / 2}$ (with $(-B)^{1 / 2}$ imaginary if $B>0$). The rest of the proof then goes as before, and the main term in (49) and (59) is changed into

$$
E\left(e^{B v\left(U+s /(-B)^{1 / 2}\right)^{2 / 2}}\right)=e^{-s^{2} v / 2(1-B v)} /(1-B v)^{1 / 2},
$$

and we have

$$
\begin{equation*}
E_{n}(s) / E_{n}=e^{-s^{2} v / 2(1-B v)}(1+o(1)), \tag{64}
\end{equation*}
$$

so the limit distribution is Gaussian with variance $v /(1-B v)=-1 /\left(f^{\prime \prime}(o)\right.$ $\left.+h^{\prime \prime}(0)\right)$. Let us sum up this result:

Theorem 4. Under the assumptions of Theorem 2 and 3 respectively, when S_{n} is given the distribution $F_{n, f}(d x)=e^{n f(x / n)} F^{n *}(d x) / E_{n}$ then when $a>1$ the distribution of $Y_{n}=n^{1 / a}\left(S_{n} / n-\bar{x}\right)$ converges weakly to the one defined by the density $e^{-A|x|^{a}} A^{1 / a} d x / 2 \Gamma(1+1 / a)$ as $n \rightarrow \infty$. When $a=2, A>0$ this is a Gaussian with variance

$$
1 / 2 A=-1 /\left(f^{\prime \prime}(0)+h^{\prime \prime}(0)\right) .
$$

References

1. Bahadur, R.R., Ranga Rao, R.: On Deviations of the Sample Mean. Ann. Math. Statist. 31, 1015-1027 (1960)
2. Bahadur, R.R., Zabel1, S.L.: Large Deviations of the Sample Mean in General Vector Spaces. Ann. Probability 7, 587-621 (1979)
3. von Bahr, B., Martin-Löf, A.: Threshold Limit Theorems for Some Epidemic Processes. Adv. Appl. Probability 12, 319-349 (1980)
4. Copson, E.T.: Asymptotic Expansions. Cambridge University Press 1965
5. Ellis, R.S., Newman, C.M.: Limit Theorems for Sums of Dependent Random Variables Occurring in Statistical Mechanics. Z. Wahrscheinlichkeitstheorie verw. Geb. 44, 117-139 (1978)
6. Höglund, T.: A Unified Central Limit Theorem for Small and Large Deviations from the Mean. Z. Wahrscheinlichkeitstheorie verw. Geb. 49, 105-117 (1979)
7. Lanford, O.E.: in Statistical Mechanics and Mathematical Problems, Lecture Notes in Physics no. 20, Berlin-Heidelberg-New York: Springer 1971
8. Lucas, E.: Characteristic Functions. New York: Griffin \& Co. (1960)
9. Martin-Löf, P.: Statistiska Modeller. Lecture Notes, Dept. of Mathematical Statistics University of Stockholm (1969)
10. Rockafellar, R.T.: Convex Analysis. Princeton Univ. Press (1970)
11. Varadhan, S.R.S.: Asymptotic Probabilities and Differential Equations. Comm. Pure Appl. Math. 19, 261-286 (1966)

Received March 19, 1980; in revised form August 31, 1981

