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Summary. Let X and Y be two transient locally Hunt Markov processes. If 
X and Y enjoy the same last exit distributions from compact sets, then Y is 
equivalent to a time change of X by the inverse of a strictly increasing 
continuous additive functional. This result can also be interpreted (with 
natural auxiliary hypotheses) as a statement in potential theory involving 
equilibrium measures. 

O. Introduction 

In 1962, Blumenthal, Getoor and McKean published a paper entitled "Markov 
Processes with Identical Hitting Distributions" [3] in which they proved the 
following theorem: 

(B-G-McK) Let X and f(  be standard processes so that for each compact 
subset K of EA, PK(X, ")=ilK(X, ") for all x. There exists a continuous additive 
functional A t of X t which is strictly increasing and finite on [0, ~) so that if T t is 
the right continuous inverse of At, then X(Tt) and f(t have the same joint 
distributions. 

Here, PK(x, ") is the distribution of the first hitting time of K starting from 
the point x. This remarkable theorem has been proved again by Chacon and 
Jamison in quite a different style from the original proof by Blumenthal, 
Getoor and McKean (see [4] for their proof under the additional assumptions 
that there are no holding points and the lifetimes are infinite). 

The importance of last exit times in the theory of Markov processes has 
become increasingly apparent in recent years (the reader may wish to consult 
the following small sampler of papers: [1, 5, 8, 9]), and it seems altogether 
natural to formulate the following question: if two Markov processes enjoy the 
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same last exit distributions, then after a time change, are they equivalent in 
distribution? This question may also be phrased in terms of potential theory 
(see Sect. 2) and is a natural one there also. The answer to the question is yes 
(modulo appropriate hypotheses), and the proof is given in Sect. 1. The pre- 
sentation of these results is intended to be accessible to a reader familiar with 
standard processes as discussed in [2]. We have given complete references to 
any results we use which are not in [2]. 

The reader may recall that (B-G-McK) was proved by: 

(1) Reducing to the case where X and 2 are transient by killing the 
processes; 

(2) Producing a continuous additive functional A t as described above so 
that the potential kernel of X(Tt), UAf(x)=E: '~f (X(Tt) )dt ,  is the same as the 
potential kernel of f(t, (Y f (x) = p,x ~ f ( f(~) d t; 

(3) Observing that any two transient processes with the same potential 
kernels have the same resolvents and therefore have the same joint distri- 
butions; 

(4) And finally "pasting" these results together to obtain the result for the 
original (possibly recurrent) processes X and X. 

Our proof is "basically" the same, but is a little simpler. To ensure that the 
last exit times are finite, we need to make a transience hypothesis, which 
eliminates the need for steps (1) and (4) above. In step (2) we find it more 
convenient to produce an additive functional A t of 2 7 and an additive func- 
tional A t of X~ so that 0~=  U A. We have also used the techniques of "pro- 
jections" of raw additive functionals (rather than the connections between 
natural additive functionals and their potentials as described in Chaps. IV and 
V of [-2]) since they seem to provide more natural proofs. An appendix has 
been provided at the end of the paper giving detailed definitions and references 
to the results about projections of raw additive functionals used herein. 

1. The Main Theorem 

Let E denote a locally compact space with countable base with a metric d 
chosen so that closed, bounded sets are compact. Adjoin a point A to E as the 
point at infinity if E is non-compact and as an isolated point if E is compact 
to obtain a compact metrizable space E A. Let EA denote the sigma-algebra of 
Borel sets of E A. We assume that X=( f2 ,F ,  Ft, Xt, Ot, P x) is a standard process 
on (EA, EA), by which we mean ([-2], p. 45): 

(i) f2 is the space of right continuous paths in E, and F and F t are the 
natural Borel field and filtration on f2 generated by the coordinate maps Xt, 
and completed in the usual manner. 

(ii) X t is a normal strong Markov process with lifetime ~= in f{ t>0 :  X t 
=A}. 

(iii) X t is quasi-left-continuous (i.e. if (T,) is an increasing sequence of (E)- 
optional times with limit T, then almost surely X(T,)  converges to X r on 
{ T< ~}). 
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Recall that a standard process is called a Hunt process if X(Tn) converges 
to X T on { r <  oo} almost surely whenever (T,) is an increasing sequence of (Ft)- 
optional times with limit T. We shall call a standard process locally Hunt if we 
can find a sequence (E,) of open sets with compact closures increasing to E so 
that whenever (Tk) is an increasing sequence of (Ft)-optional times with limit T 
so that for some m, X(Tk)EEmu{A } for all k, then X(T~) converges to X r on 
{T< Go}. Let N,=inf{t :  Xt~E~}. It follows from IV-T28 of [7] that the locally 
Hunt process X t has left limits on (0, N,] almost surely. Since lim N, = ~ almost 

n ~ o o  

surely, X t has left limits on (0,~) almost surely. Finally, if A={o):N,(co)=~(co) 
for some n} and F={co: X~(co) has left limits on (0, oe)}, then W(Fc~A)=PX(A) 
for all x. 

Let K be a compact set, and define LK=sup{t>O:XteK}(supO=O ). If 
LK< oQ a.s. for all compact sets K contained in E, then X will be called 
transient. In this paper we shall deal exclusively with transient locally Hunt 
processes. This class is larger than the class of transient Hunt processes (e.g. it 
includes the case of Brownian motion killed the first time it leaves the open 
unit ball), but is smaller than the class of all standard processes (e.g. it excludes 
the process which performs uniform motion around a circle and which dies 
when it reaches a distinguished point 0). 

We now assume that we are given two transient locally Hunt processes 

X = (g2, F, Ft, X t, 0~, W) and Y= ((2, G, G t, Yt, Of, Q~) on (EA, E~). 

The processes are named differently simply to aid the reader. Only the mea- 
sures and the completions of the sigma-algebras on (2 change. Our goal in this 
section is to prove the following theorem. 

(1.1) Theorem. Let X and Y be two transient locally Hunt processes on (E~,E~) 
so that W(f(XLr,_);LK>O)=Q~(f(YL,,_);LK>O) for all bounded functions f on 
E and for all bounded open sets K contained in E. There exists a strictly 
increasing continuous additive functional A t so that if T~ is the right continuous 
inverse of A ,  then (Yt, Qx) and (X(Tt), P'~) have the same joint distributions. 

Remark. Our assumptions imply that XLK- and YLK exist almost surely. We 
observed that XLK_ exists on {LK< if}. Suppose P~(LK= ~, N, < ~ for all n )>0  
for some x. Let T(n)=inf{t>=N,: X t e K  }. Since N, increases to ~, we have that 
T =  lim T(n)=~ on {LK=~}. Then X(T(n)) does not converge to X(T)  with 

n ~ o o  

positive probability, in contradiction to the locally Hunt assumption (Note 
that X(T(n))~Is So it must be that W ( { L K = ~ } - A ) = O ,  and we con- 
clude that XL~ , also exists on {L K= ~}. 

To begin, let (q~) be a countable collection of points which is dense in E. If 
q is a point in E, let B~(q) be the open ball of radius r about q (so B~(q) 
= { x s E :  d(q,x)<r}), and let L~(q)=sup{t>O: XtsB~(q)}(supO=O ). For the 
next lemma, recall that F~ t>0}  =o-{Y,: t>0} :  no completions! 

(1.2) Lemma. The map (t, r, co)~ l(o<L,,(q)<t} is B(IR +) x B(IR +) x F~ 

Proof The map co ~L,(q) is  F~ since B,(q) is open. Since r~L~(q) is 
left continuous, (r, co)~L~(q) is B(IR +) x F~ Thus (r, c0)~l(o<L,.(q)__<~ 
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is B(IR +) x F~ for each t. Since this last process is right continuous 
in t, the result follows. 

Thus if we set 
1 

A, = Z 2-J~ 1~o </.r~qj~ ~,~ dr, 
j 0 

AteB(IR +) x F ~ Moreover, A t is increasing, right continuous and satisfies At+ s 
= A t + A s o O  t (by virtue of the fact that L,.(qj)oOt=(L~(q~)-t)+). We call such a 
process A t a raw additive functional. For a discussion of additive functionals, 
see [-2] and [-11]. If we set u(x)=PX(Aoo) (resp. v(x)=QX(A~)),  then u(x) (resp. 
v(x)) is excessive for X (resp. Y) and is the potential of a natural additive 
functional B t of X (resp. C t of Y) as described in [-2]. For our purposes, it is 
important to know that B t (resp. Ct) is exactly the dual predictable projection 
of A t with respect to the measure W (resp. QX) (see the Appendix for references 
and a discussion of these terms). Therefore, B t is characterized as the unique 
increasing predictable process so that 

W ~ Z t d A t = W ~ Z t d B ,  

for all bounded (Ft)-predictable processes Z t (and C t is characterized similarly). 
This fact permits the proof of the following important result. 

(1.3) Proposition. B~ (resp. Ct) is continuous a.s. P~ (resp. Q~) for all x in E. 

Proof  Since B t is predictable, J={( t ,  co): Bt(o)#Bt_(o~)} is a predictable set. 
Assume J is not W-evanescent. By the section theorem ([-7]), we may choose 
an (Ft)-predictable time T with W ( B  r - B r _ )  >0. But this is simply 

1 

W ~ lm(s ) dB~ = W ~ lm(s ) dAs = Z 2 -  j W ~ 1{0 < L~(qj)= rl dr, 
j o 

(where [T] = {(t, co): t = T(co) < oo}). 
The only way this last expression can be positive is if, for some j, 

(1.4) px(o < L~(qj) = L~+ s(qj) = T) > 0 

for some positive r and for some positive s. Note that T< r on {0<L,(qj)= T} 
by the local Hunt character of X. Therefore, X T = X  T_ on { O < L , ( q j ) = T }  
since T is predictable. This fact together with (1.4) imply that X T is in the 
intersection of the boundaries of B~(qj) and B,+~(qj). But this intersection is 
empty! Thus J must be P~-evanescent, and the proposition is proved for B r 
The same argument applies to C t. 

(1.5) Proposition. B t (resp. Ct) is strictly increasing a.s. px (resp. Q~) for all x in 
E. 

Proof  As in (1.3), we shall prove the result for B t, and the same reasoning will 
apply to C~. Let R = i n f { t > 0 :  Bt>0}, let p ( x ) = W ( e - S ) ,  and let F = { x :  p(x)=l}. 
Then F is the support of the continuous additive functional Bt, and we need to 
show F = E .  So assume x is in E - - F ,  and define T~(qj)=inf{t>0: Xt~B~(qj)}. 
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Now R > 0 a.s. px and 

1 

0 = px S 1(0, RJ (S) dBs = px ~ 1 (o, Rl(s) dAs= ~ 2 -  ~ f W(O < Lr(qj ) < R) dr, 
j o 

the second equality holding because the set (0,R] is predictable. This implies 
that for each qj with d(qj, x ) <  1, 

(1.6) 2{r: d(qj, x) < r < 1, PX(T~(qj)o O R < o9) ~ 1} = 0 

where 2 is Lebesgue measure. 
So let 7~=inf{t>0:  d ( X t , x ) < n - 1 } .  We are interested in examining the 

sequence of times (S,) defined by S n = R + T ,  oO R. This sequence increases to 
some optional time S. Note that S=<( and S < ~  a.s. px by (1.6). Since 

X ( S , ) e B I ( x ) w { A }  for all n, the local Hunt character of X t implies that S<( .  
Thus lira X ( S n ) = X ( S ) = x  a.s.W. But this contradicts the transience hypothesis 

n~co 
(for an application of the strong Markov property tells us that the process will 
always return to x as time progresses). Thus, F = E ,  and this concludes the 
proof of the proposition. 

Finally, we come to the desired result. 

Proof  o f  Theorem (1.1). Let f be a positive continuous function on E. Then 

px ~f (Xt )  dB t = P~ ~ f ( X  t_ ) dB t = px f f ( X  ' _ ) dA t 
1 

= ~ 2 -  ~ ~ nx(f(XLr(qj)_); Lr(qj ) > O) dr 
j o 

1 

x X = ~ 2 - j  ~ Q ( f (L~(q j ) - ) ,  L~(qj) > O) dr 
j 0 

= Q~ f f ( X , _ )  dCt = Q~ t f ( X t )  ac t  

(reasons: the first and sixth equalities by continuity of B t and C,; the second 
and fifth equalities by predictability of f(X,_);  the fourth equality by hy- 
pothesis; the third equality by definition). If we denote by S t (resp. Tt), the right 
continuous inverse of B t (resp. Ct), we have that S t and T t are continuous and 
strictly increasing, since B t and C t are, and 

(1.7) P~ ~ f (Xs~ )d t  = Q:' ~ f(Yr~) dt. 

But (X(St ) ,W)  and (Y(Tt),Q ~) are strong Markov processes on (E~,E~) ([2], 
p.212), with bounded resolvents (U")o>o and (V"),>0, respectively. Equation 
(1.7) implies U~ V ~ It is simple to ve~fy (see e.g. [2], p. 238) that this implies 
u a = v  ~ for all nonnegative a. Therefore, (X(St) ,P ~) and (Y(Tt),Q ~) have the 
same joint distributions. Since T t is a strictly increasing continuous additive 
functional of (Y(Tt), Q~), there is a strictly increasing continuous additive func- 
tional D t of (X(St),P~) so that if U t is the right continuous inverse of Dr, then 

t, Q ) have the same joint distributions. It is easy to (X(Sv(t)), px) and (Y(Tc(o) = Y 
check that X(Sv(t) ) is a time-change of X t by a strictly increasing continuous 
additive functional, and this completes the proof. 
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It is perhaps worth noting that the conclusion of Theorem (1.1) remains 
true if in the hypothesis of (1.1) one replaces the condition "bounded open 
sets" with "compact sets." For suppose 

(1.8) P~(f(XcK_); LK>O)=QX(f(YLK_); LK>0 ) for all compacts sets K. 

Let G be any bounded open set, and let K n be a sequence of compact sets 
increasing to G. Then {(t,m): Xt(co)~Kn} increases to {(t, co): X~(co)eG}, and it 
follows that lira L~: n = La a.s. and 

n ~ o 0  

lim f ( X L K  _ ) I~LI~ ~ > O~ = f ( X L ~ - )  I~L~ > o~ a.s. 
n ~ a o  

for every continuous bounded function f Thus (1.8) implies the hypothesis of 
Theorem (1.1) is true. 

2. The Connection with Potential Theory 

The quantity vi(x)=PX(f(X~K ); LK>0) has an interpretation in terms of the 
potential theory of the process if we admit certain (natural) auxiliary hy- 
potheses. Chung [5] gave an interpretation of vi(x ) in terms of the equilibrium 
measure of the process X assuming that the potential kernel u(x,y) of the 
process X satisfies certain analytic conditions. Getoor and Sharpe [8] gave a 
similar interpretation assuming that X has a dual J~ (as in Chap. VI of [2]), 
and Meyer [9] gave the interpretation under assumptions slightly weaker than 
duality. We very briefly indicate the result of Getoor and Sharpe in our setting. 
For further historical comments, consult the paper of Chung. 

(2.1) Theorem. Suppose X and X are transient locally Hunt processes in duality 
with respect to a sigma-finite excessive reference measure m(dx). I f  K is bounded, 
then vs(x)=Su(x,y)f(y)p~(dy), where u(x,y) is the potential density, and PK is 
the equilibrium measure of K. 

Proof As observed in Sect. l, vs(x)=EXSf(Xt_)dDt, where D t is the dual 
predictable projection of l~o<L~,=_<t~. Thus, by the representation theory of 
Revuz [10], vi(x)=Su(x,y)f(y)z(dy ) for some measure z(dy). But vl(x) 
=P~(T K < oo)=PK I(X)= UpK(x ), where PK is the equilibrium measure of K ([2], 
VI-4), and therefore z = p~. 

Therefore, Theorem (1.1) may be restated as follows: 

(2.2) Theorem. Suppose X and Y are two transient locally Hunt processes, each 
possessing a dual (or satisfying the auxiliary analytic hypotheses of Chung, or 
those of Meyer). Suppose X (resp. Y) has potential kernel U and equilibrium 
measures PK (resp. potential kernel V and equilibrium measures qK). I f  UfPK(X) 
= VfqK(X ) for all bounded functions f on E and for all bounded open sets K 
contained in E, then the class of excessive functions for X coincides with the class 
of excessive functions for Y. Thus X and Y have the same potential theories. 
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Proof Simply observe that if two processes X and Y are related by a time- 
change by a strictly increasing continuous additive functional as in Theorem 
(1.1), then they have the same excessive functions. 

3. Two Examples 

We first write down the equilibrium measures of balls for Brownian motion in 
IR 3. If X is Brownian motion in 11( 3, it is in duality with itself with respect to 
Lebesgue measure on 11t 3, so the discussion in Section2 applies. Let L be the 
last exit time of X t from the ball B of radius r centered about q. Then 
PX(f(X L ); L>O)=~lx-y l - l f (y )p(dy) ,  where p is the equilibrium measure of 
the ball. Since X exits B continuously, p charges only the boundary of B, and 
the spherical symmetry of the Brownian motion implies that p(dy) is simply 
Lebesgue surface measure on the skin of the ball normalized so that ~lx 
- Yl- 1 p(dy) = 1 for all x in B. 

Now let X be a linear diffusion on the interval (0, 1) so that X~_ s{0, 1}. 
Recall that X is determined by a scale function s(x)=Px(X~_ =1) and a speed 
measure m(dx) (we assume 0 < s ( x ) <  1). A well-known theorem states that by a 
change of scale and time, X may be transformed into a Brownian motion 
which is killed the first time it leaves (0, 1). This fact is contained in Theorem 
(1.1) (it is, of course, a "simpler" result than Theorem (1.1) since the massive 
Markov machinery was used to prove (1.1)). For s(Xt) is a local martingale on 
[0,~), and it is easy to compute the quantity px(rr, q<OO), where T~,q 
=inf{t>O:Xt~Br(q)}. Using this and s(x), one can compute the last exit 
distribution of the process from a ball. Therefore, the scale function completely 
determines the last exit distributions. If we let Yt=s(Xt), and QS(x~=p~, then 
(Yt, Q~) has scale function x (natural scale). Therefore, Yt can be time-changed 
into a Brownian motion since Brownian motion also has scale function x.(Thi s 
same result can be proved with the Blumenthal, Getoor, and McKean Theo- 
rem by using an analogous argument.) 

4. Similarly 

One may attempt to find other collections of "last" times which determine the 
process up to time-change (and which, therefore, determine the potential 
theory of the processes). We indicate an example below. In this section, for 
simplicity, we shall let X and Y be Hunt processes (with the same notations as 
in Sect. 1). 

Let D be a countable collection of points which is dense in E, and let Br(q) 
denote the ball of radius r about q. Let G={(p,q): p~D, qsD}. Enumerate the 
pairs in G: (Pl,qa), (Pz,q2), etc. Let Mr(j)=sup(t:Xt~Br(pj),Xt~Br(qi)}, and 
set 

1 

A t = ~ 2- j S e-~ 1(o < M~tj)_<~ l~j)c~B~(qj)_ 0} dr. 
j 0 
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Let B t (resp. C~) denote the dual predictable projection of At for X (resp. Y). 
The fact that B t is continuous boils down to the observation that P~(0<M~(j) 
=T)lwr(vj)~B,(qj)=o}=O for all predictable times T since M~(])is contained in 
the. jumps of the process X t (provided the balls do not intersect). It may 
happen, however, that B t and Ct do not increase (e.g. in the case of diffusions!). 
The reader may easily formulate hypotheses on the process (perhaps involving 
the L6vy system) and an analogue of Theorem (1.1) in this situation. 

Appendix 

Let P denote the sigma algebra on R + x • generated by the left continuous 
processes which are adapted to the filtration (Ft): P is called the predictable 
sigma algebra. Sets B in P are called predictable sets and P-measurable 
processes Zt(oo ) are called predictable processes. If T is any (F,)-stopping time 
so that [T, oe)={(t, co):t>r(co)}eP, then r is a predictable time (see IV-47 
through IV-78 in [13] for a discussion of these objects). 

If Zt(co)eB(IR +) x F is a bounded process, the PX-predictable projection of 
Z is the process PZ t (unique up to PX-indistinguishability) satisfying PZ T 
=Ex(ZrlFT_) for every (Ft)-predictable time T (Appendice 1, Thm. 6, [14]). (We 
refer to the discussion in Appendice i rather than ChapitreVI since (Ft) is not 
PX-complete for any x, and hence does not satisfy what are known as the 
"usual conditions".) If At~B(IR+)xF is any process with right continuous 
increasing paths so that E~A~ < o% then the pX-dual predictable projection of 
A is defined to be the unique predictable process Af with right continuous 
increasing paths satisfying E x S PZt dAt = Ex ~ Zt dAf for all bounded processes 
Zt~B(IR +) x F (Appendicel, Thin. 12, [14]). Notice that the predictable and 
dual predictable projections depend on the underlying probability measure. In 
the Markovian framework, however, one can choose versions of vZ and A v so 
that they are the PX-predictable projection of Z and the pX-dual predictable 
projection of A for all x (assuming appropriate integrability conditions: boun- 
dedness of Z and A certainly suffices; see (3.12) and (3.32) in [15]). If A t has 
the additive property: At+s=At+A~oOt, then the last sentence of (3.18) in [15] 
states that A v also has this property: Av,+s=Af+A~oOt. Thus the dual predict- 
able projection of a raw additive functional is an additive functional. The 
interested reader may wish to consult [12] also, where it is shown (in detail) 
that the dual optional projection of a raw additive functional is an additive 
functional. Note: in general, if A~4:Ar it may be that A~q=A~. 

Returning to the notation in Sect. i, we have that u(x)=P'~(Aoo) is the 
bounded potential of a natural additive functional B t. We may also write u(x) 

_ _  X p - P  (Aoo). We showed in (1.3) that A, p is continuous, so A f = B  t (since two 
natural additive functionals with the same finite potential must be equal [2]). 

The reader may wish to consult the related references: [11], Chaps. IV and 
III; [2], pp. 29~302; [7]; [8]. 
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