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Summary. This paper introduces a mathematical framework within 
which a wide variety of known and new inequalities can be viewed from a 
common perspective. Probability and expectation inequalities of the follow- 
ing types are considered: (a) P(ZEA)>=P(Z'~A) for some class of sets A, (b) 
gk(Z)>=Ck(Z') for some class of functions k, and (c) gl(Z)>=gk(Z') for 
some class of pairs of functions l and k. It is shown, sometimes using 
explicit constructions of Z and Z', that, in several cases, (a) ,*~ (b) ~=~ (c); 
included here are cases of normal and elliptically contoured distributions. 
A case where (a) ~ (b) r (c) is studied and is expressed in terms of "n- 
monotone"  functions for (some of) which integral representations are ob- 
tained. Also, necessary and sufficient conditions for (c) are given. 

1. Introduction 

Let Z and Z' be n-dimensional random vectors and consider probability and 
expectation inequalities of the following forms: 

(C1) P(Z~A)>=P(Z'~A), A~4,  
(c2) ~k(Z)>~k(Z'), k e y ,  
(c3) ~l(z)>=~k(z'), (l,k)e~, 

where d is a class of (Borel) subsets of ]R n, f f  is a class of real (measurable) 
functions on IR n, and N is a class of pairs of (measurable) functions on ]R n. 
When the classes aff, f f ,  N are progressively richer, then conditions (C1), (C2), 
(C3) are progressively stronger. Specifically, if 1 d c i f ,  i.e. 1A ~ ~ for all A ~ aft, 
then (C1) ~ (C2); and if f i e { k :  (k,k)eff} = ~ ,  then (C2) ~ (C3). The more 

* Research supported by the Air Force Office of Scientific Research under Grants AFOSR-75- 
2796 and AFOSR-80-0080 
** Research supported by the National Science Foundation under Grants MCS78-01240 and 
MCS81-00748 

0044-3719/82/0059/0001/$05.00 



2 s. Cambanis and G. Simons 

interesting questions are therefore those which lead from (C1) to (C2) to (C3), 
and these are the object of this paper. 

There is a vast literature on the question of describing conditions on the 
distributions of Z and Z' which guarantee (C 1) for specific classes d of sets. A 
recent survey is in the book by Tong [17]. This question is touched only 
peripherally in this paper in Sect. 3. The first question considered in this paper 
is, given a class of sets d ,  to describe a class of functions ~ ,  depending of 
course on d ,  for which (C1) ~ (C2); if such a class ~,~ contains ld, then in 
fact (C1) <=~ (C2). The second question is given a class of functions ~ ,  to 
describe a class N of pairs of functions for which (C2) ~ (C3). If, furthermore, 
Y c ~ ,  then (C2) ~=~ (C3). Clearly this equivalence holds for the class fr 
defined by what may be called the separation approach." 

~ =  {(l,k)" l>_m>_k for some m ~ Y ,  (1.1) 

and the expectations in (C3) are defined}, 

which is most useful when there is a direct description of ff~. Following is a 
brief description of the results of the type 

(CI) ~ (C2) <=~ (C3) (1.2) 

(C1) <=> (C2) <=> (C3) (1.3) 

available in the literature and of those derived here. Most of the known results 
can be found in the book of Marshall and Olkin [71. 

Kemperman [63 and Kamae, Krengel and O'Brien [5] established (1.3) (for 
more general partially ordered spaces) with ~ the class of all measurable 
increasing sets (i.e. a~A,  a<b  ~ b cA), ~ the class of all measurable increas- 
ing functions for which the expectations in (C2) exist, and N = f @  the class of 

> ,  all pairs of functions l, k satisfying l(z)>k(z'), z _ z ,  for which the expectations 
in (1.3) are defined - provided the "separating" increasing function m defined, 
for instance, by m(x)=sup {k(y), x > y }  is measurable (this is always true in IR 1 
but may fail even in IR2). Nevius, Proschan and Sethuraman [83 established 
(1.3) (also for more general partially ordered spaces) with ~ the class of all 
measurable Schur-convex sets, ~ the class of all measurable Schur-convex 
functions for which the expectations in (C2) exist, and fg=N~ the class of all 

> , pairs of functions l,k satisfying l (z)=k(z)  for all z which majorize z' (see, for 
instance, [73) and for which the expectations in (C3) are defined. Both of these 
results are put in common perspective in Sect. 4, where a more general result of 
the type (1.3) is obtained via a generalization of a theorem due to Strassen 
[143. As a special case, we have (1.3) with d the class of all sets homothetic to 
a symmetric convex compact set S, fr the class of all pairs of functions 1, k 
satisfying l(z)>k(z'), I[Z[ls > Ilz'lls, for which the expectations in (C3) exist, and 
~ - ~ -  ~, where IlZlls is the norm corresponding to S (see Example 4.4). 

In Sect. 2, (1.2) is established for n = 2  with d the class of all closed 
symmetric rectangles, Y the class of all functions k(x,y) of the form f ( x  2 +y2) 
with f a nonincreasing and convex function on [0, co), and fr defined as in 
(2.11). For  n>2 ,  it is shown that (C1) ~ (C2) with d the class of all closed 
symmetric rectangles and @ the class of all functions k(z) of the form f(tlzll 2) 
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with f an n-monotone function on [0, oe). Section 2 includes also, in Lemma 
2.3,'integral representations for certain n-monotone functions which may be of 
independent interest. Even though only the representations of the form (2.16) 
or (2.18) are used here, we also include the very interesting form (2.17) suggest- 
ed to us by Daryl Daley. 

For two-dimensional random vectors Z =(X, Y) and Z'= (X', Y') with com- 
mon marginal distributions, Cambanis, Simons and Stout [3] and Tchen [16] 
established that (C1) ~:> (C2) with d the class of all principal lower ideals 
( -  o% x] x ( -  ~ ,  y] in IR 2, and Y the class of all quasi-monotone functions, i.e. 
functions k which satisfy the inequalities 

k(xl,yl)+k(x2,Y2)>=k(xa,y2)+k(Xz,yl), Xl~X2, yl <=y2, (1.4) 

for which the expectations in (C2) are defined and which satisfy certain minor 
regularity conditions. Thus (1.3) holds true with f~=f f f ,  but we have been 
unable to obtain a direct description of f~s- When (1,k)~f~, the functions l 
and k are separated by a quasi-monotone function, and thus 

l(xl,Yx)+l(x2,y2)>k(xl,Y2)+k(x2,Yl), x~ <x2, YI <Y2. (1.5) 

If we denote by ff the (larger than .ft,) class of pairs of functions (1, k) which 
satisfy (1.5) (plus appropriate regularity conditions) and for which the expec- 
tations in (C3) are defined, then in general (C1) does not imply (C3). However, 
in the special cases where Z and Z' have normal or elliptically contoured 
distributions, it is shown in Sect. 3 that (1.3) is valid. It is not currently known 
whether (1.3) is valid for other classes of bivariate distributions. A generali- 
zation from two to higher dimensions is also described in Sect. 3 (Theorem 
3.3). 

Higher dimensional generalizations of the results in [3, 16], described in the 
previous paragraph, have been obtained by Bergmann [1] and Rtischendorf 
[10]. They established (C1) ~- (C2) with ~r the class of all principal upper 
ideals [z, oe) in IR" (zslR"), and g in [1] the class of all functions of the form 
k(Xl,...,x,)=fl(xO...f,(x,) where each fi is nonnegative and nondecreasing, 
and in [10] the class of all right continuous functions on IR" which are quasi- 
or A-monotone as functions of any k of the n variables, 1 __< k < n, and for which 
the expectations in (C2) are defined and finite. Rtischendorf [10] also estab- 
lished (C1) ~ (C2) with d as before and ~ the class of all right continuous 
functions which are A-monotone as functions of all n variables and vanish 
when any variable approaches - ~ ,  and for which the expectations in (C2) are 
defined and finite. Bergmann [1] also established (C1) ~ (C2) with d the 
class of all principal lower ideals ( -o% z] in IR" (z ~ IR"), and ~ the class of all 
functions of the form k(xl, ...,x,)=fl(xl)...f,(x,) where each f/ is nonpositive 
and nondecreasing. Of course, the above results imply (1.2) or (1.3) (accord- 
ingly) with N = f i r ,  and it is an open problem to obtain a direct description of 
ff~ or to find a larger class N with simple description (cf. previous paragraph), 
for which the results are valid for special classes of distributions such as 
normal or elliptically contoured. 



4 S. Cambanis and G. Simons 

A final comment on the methods used here: The results in Sect. 2 are 
established through straight analysis. Sections 3 and 4 use a novel and powerful 
approach which may be called the surrogate approach and which is described 
there. The surrogate approach makes it possible to establish results of the type 
(1.3) for specific classes of distributions via special constructions, i.e. in an 
elementary way, and to our knowledge, this is the first time this is done in the 
literature (see Sect. 3 and 4). Also, in conjunction with a generalization of a 
theorem by Strassen [14], the surrogate approach gives results of the type (1.3) 
in a general context (see Sect. 4); in a special context, this has been used earlier 
by Kemperman [6] and by Kamae, Krengel and O'Brien [5]. 

2. n-monotone Functions 

In this section, we develop inequalities for expectations of n-monotone func- 
tions (to be defined below) of the squares of the moduli of n-dimensional 
random vectors. We begin with the case n = 2  (Theorem 2.1) and then proceed 
to the general case n > 2 (Theorem 2.2). In the process of establishing Theorem 
2.2, we develop an integral representation for certain n-monotone functions 
(Lemma 2.3) which may be of independent interest. 

Theorem 2.1. Suppose Z=(X ,  Y) and Z'=(X',  Y') are bivariate random vectors 
for which 

P([Xl<a,[Yl<-_b)>P(lX'l<__a, lY'[<b), a>O, b>=O. (2.1) 

Then for every nonincreasing convex function f on [0, oo), 

g f ( X  2 + y2) > gf(X,2 + y,Z). (2.2) 

Proof Condition (2.1) is equivalent to saying that aX '2v  bY  '2 is stochastically 
larger than a X 2 v b Y  2 for a>0 ,  b>0,  where u v v  denotes the maximum of u 
and v. Thus for any bounded nonincreasing function h on [0, oc), 

g h ( a X 2 v b Y 2 ) > g h ( a X ' 2 v b Y ' 2 ) ,  a>O, b>O, (2.3) 

and, consequently, 

=/2 

! 
rq2 [ X ,  2 y ,2  \ 

>=e ! ht v i  jsinOcosOdO (2.4) 

Now with the substitution of (x2+y2)u for (x2/cos 2 0)v (y2/sin2 0), the integral 
x/2 

S hE(x2~ c~ 0) v (yZ/sin2 0)] sin 0 cos 0 dO simplifies to (�89 S h((x 2 +y2) u) u -2 du. 
0 1 

Thus (2.2) holds for functions f of the form f (s)=~h(su)u-2du,  s>O. But, 
1 

according to Lemma 2.1 below, the class of such functions coincides with the 
class of bounded nonincreasing convex functions. The unwanted restriction of 
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boundedness is easily removed by truncation: If f is any nonincreasing convex 
function, then f v ( - n )  is a bounded nonincreasing convex function whose 
limit, as n ~ o% is f. Then (2.2) follows by means of the monotone convergence 
theorem. [3 

Lemma 2.1. A function f on [0, oo) is a bounded nonincreasing convex function if 
and only if it is of the form 

f(s)= ~ ~ d u ,  s>O, (2.5) 
1 

with h nonincreasing and bounded on [0, oo), or equivalently if and only if it is of 
the form 

f(s)=f(oo)+ ~ 1 -  u dl~(u), s>O, (2.6) 
[0, co) + 

with # a finite measure on [0, oo). 

Proof. Both characterizations follow from the characterization 

f(s)=f(oo)+ S g(u)du, s>0,  
$ 

f(O) >__f(c~) + ~ g(u) du, 
0 

with g nonnegative, nonincreasing and integrable over (0, oo) (cf. Roberts and 
Varberg [9], pp. 9-10), and the straightforward steps are omitted. Each of the 
functions g,h can be expressed in terms of the other as follows: 

h(0) =f(0), h(s)=f(oo)+sg(s)+ ~ g(u)du=f(oo)- S udg(u), s>0,  
8 8 

, ,  h(s) ~ (u), dh(u) 
g t s ) = - - - j z z - a u = -  ~ , s>0,  

S s U s 

and the measure /~ and function h can be expressed in terms of each other as 
follows: 

d#(s)= -dh(s) on [0, oo), 

i.e. # is the Lebesgue-Stieltjes measure corresponding to (the right continuous 
version of) - h ,  and 

h(s)=f(oo)+#{(s, oo)}, s__>0. 

Only characterization (2.5) is used here in the proof of Theorem 2.1. The 
characterization (2.6) is known (see [7], pp. 448-449) and has been included 
here only for completeness (in view of its generalization in Lemma 2.3). 

There are unbounded nonincreasing convex functions f which cannot be 
expressed in the integral form (2.5) with h nonincreasing and necessarily 
unbounded, e.g. f (s )=  - s ,  s>0.  An analogue of Lemma 2.1 can be established 
for nonincreasing convex functions f defined on the open interval (0, oc). 
Boundedness is not essential on (0, 1], but is on [1, oo). See Lemma 2.3 below. 
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Likewise, Theorem 2.1 can be modified to cover functions f defined on 
(0, oo) which are nonincreasing and convex. Such functions can be approxi- 
mated from below by functions of the type described in Theorem 2.1; and 
through use of the monotone convergence theorem, we can obtain: 

Corollary 2.1. I f  in addition to (2.1), P(Z=(0,0))=0,  then (P(Z'=(0,0))=0 and) 
(2.2) holds for each nonincreasing convex function f on (0, oo) for which the 
expectations contained therein exist. 

It is apparent from the nature of assumption (2.1), appearing in Theorem 
2.1, that inequality (2.2) can be extended to 

gf(eX2+flY2)>gf(aX'2+f iY '2) ,  ct>O, fl>O. 

There are, of course, many nonincreasing convex functions f to which 
Theorem 2.1 or its corollary is applicable. As an example the assumptions of 
Theorem 2.1 imply gR~<=gR '~, 0 < e < 2 ,  where R 2 = X 2 + Y  2 and R'2=X '2 
+y,2, while the assumptions of Corollary 2.1 permit the conclusion 
ER~>__gR '~, ~<0. 

The value of Theorem 2.1 and its corollary depends, of course, upon the 
reasonableness of assumption (2.1), an inequality of type (C1). Theorem 2.1 of 
Das Gupta et al. [-4] states easily checked conditions under which this in- 
equality holds for pairs of related elliptically contoured distributions, as well as 
conditions under which assumption (2.12) holds in Theorem 2.2 below and in 
its corollary. 

The requirements in Theorem 2.1 that f be nonincreasing and convex are 
both necessary for the generality of the theorem: I f  f is a function on [0, oo) 
which satisfies (2.2) whenever (2.1) holds and the expectations make sense, then f 
must be nonincreasing and convex. 

Proof The need for f to be nonincreasing can be seen by considering non- 
stochastic Z and Z' of the form (x, 0) and (x' 0), 0 <_x <_ x'< ~ .  Now suppose f 
is nonincreasing and satisfies (2.2) for all Z=(X,  Y) and Z'=(X',  Y') satisfying 

For s > 0  and pe(0,1],  let Z'=s~V and Z=s~V (1 P]-~ where V is (2.1). \ p 1 ] '  
uniformly distributed on the unit circle. Since Z and Z' are elliptically con- 
toured vectors which satisfy (2.1) (cf. Theorem 2.1 of [4]), inequality (2.2) holds, 
which translates into 

1 

f ( s )<~  -1 ~ (1-uZ)-~f(s[l+up])du,  s>0,  p~(0,1]. (2.7) 
- 1  

Replacing s by s - 1/n and letting n ~ ~ yields 

1 

f(s-)<Tc-X ~ (1-u2)-*f(s[l+up])du,  s>0,  pe(0,1],  
- 1  

which, in turn, due to the monotonicity of f, yields 
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0 1 

f ( s - )  <~-1  S (1 - u 2 ) - ~ f ( s - s p ) d u +  ~ (i - u Z ) - ~ f ( s + ) d u  
- 1  0 

= �89 - sp) + �89 +) 

for s > 0 and p ~ (0, 1]. Letting p ~ O, we obtain f (s  +) > f ( s - ) ,  s > O, which 
establishes the continuity o f f  on (0, c~). 

Now suppose f is not convex so that for some O<a<b,  we have f (a )>f (b)  
and 

i a + b \  
f(a) +f(b)  < 2 f  ( T ] "  (2.8) 

Consider lines t = m s + c, a < s < b, of negative slope m = (f(b) - f (a)) / (b - a). For 
large values of c, the line t = m s + c > f ( s )  over the entire iterval [a,b]. Let c 
decrease until the line first touches the graph of f at some point in the interval 
[a, b], and let s o be the smallest such point of contact with this line. (Since f is 
continuous on (0, oe), both c and s o are well-defined.) Due to (2.8), s o is in the 
open interval (a,b). Setting s=s  o and p=(1-a /So) /x  (b /so- l ) ,  so that 0 < p < l  
and a < s(1 + up) < b for - 1 -< u-< 1, we obtain from inequality (2.7): 

1 
f (So)<~ -1 ~ (1-uZ)-~f(So [1 +up])du 

- - 1  

1 

<~-1  ~ ( l _ u 2 ) - ~ ( m s o [ l + u p ] + c ) d u  
- 1  

= ms o + c =f(So). 

This can only happen if 

f(So [1 + up]) = ms o(1 + up) + c, - l_<u_<l ,  

which is impossible (for negative u) due to the way s o is defined. Thus f must 
be convex. [~ 

We remark that the random variables R 2 and R '2, associated with the 

random vectors Z = s ~ V  and Z ' = s  ~V (used in this proof), are not 

stochastically ordered since NR2= NR '2 =s. Thus condition (2.1) can hold with- 
out R 2 being stochastically smaller than R '2. It follows, of course, that con- 
dition (2.1) can hold without (2.2) holding for every nonincreasing function f 

Finally it should be pointed out that the argument used in establishing 
Theorem 2.1 shows that inequality (C2) holds for all functions k of the form 

~/~ ( Ix l  v IjI ~ k(x,y)= ! F0 \ ~  ~ !  dr(0), 

where Fo(r ) is jointly measurable in (0, r) and nonincreasing in r for each fixed 
0,/x is a measure on the open interval (0, re/2), and the indicated integral exists 
and is finite. By choosing, for instance, Fo(r)=h(r)g(O ) with h bounded and 
nonincreasing and g bounded and > 0  (e.g. g(0)=(sin 0)"(cos 0)') and kt Lebes- 
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gue measure, we can generate a large class of symmetric as well as non- 
symmetric functions k(x, y). The choice g(0) = sin 0 cos 0 gives Theorem 2.1 for 
bounded nonincreasing convex functions of x 2 +y2; k ( x , y ) = f ( x  2 +y2). 

We have thus shown in Theorem 2.1 that (C1) ~ (C2) with ~ '  the class of 
all closed symmetric rectangles and 

= {k(x, y) = f ( x  2 q- y2), f :  [0, ~ )  --* IR 1 nonincreasing and convex}. 

Using the separation approach, we obtain (C1) ~ (C2) <=~ (C3) with 

.~ = {(/, k): l(x, y) = g(x 2 + ya), k(x, y) = f ( x  2 + y2), g __> h > f  

h: [-0, oo) --+ IR 1 nonincreasing and convex}. 

In order to obtain a direct description of the class if, we note that functions f 
and g on the positive real line can be separated by a convex function h, 
g >__ h =>f, if and only if 

2 g ( s ) + ( 1 - 2 ) g ( t ) > f [ 2 s + ( 1 - 2 ) t ] ,  s<t ,  0<2_<1, (2.9) 

and then the convex separating function h can be defined (not necessarily 
uniquely) by 

h(u)=inf  g(s)+ u - s  g(t),s<u_<t . 

Also, this choice of h, or some simple modification of it, is nonincreasing if and 
only if 

g(s) > f(t) ,  s < t. (2.10) 
We thus have (1.2) with 

= {(l, k): l(x, y) = g(x 2 + y2), k(x, y) = f ( x  2 + y2): 

g , f  satisfy (2.9) and (2.10)}. (2.11) 

Theorem 2.1 can be generalized to higher dimensional vectors, and this is 
done in Theorem 2.2, where the following terminology is used. For  2 < n < 0% a 
function f defined on [-0, oo) or (0, oo) is said to be n-monotone if its k t~ order 
divided differences are of alternating signs for 1 < k_< n, of nonpositive sign for 
odd k and of nonnegative sign for even k. (Thus [Xo,Xl; f]  , defined by (f(Xo) 
- f ( x O ) / ( X o - X l )  , is nonpositive for distinct x o and x 1 in the domain of f ;  
I-X0, X1, x 2 ; f ]  , defined by (Ix0, x l; f ]  - Ix1, x 2 ; f ] ) / ( X  0 - -  X:2), is nonnegative for 
distinct x0, xl ,  and x2; etc.) It follows from Theorem A, page 238, of Roberts 
and Varberg [9] that f is n-monotone iff (i) it is nonincreasing on its domain, 
(ii) it is (n-2)- t imes continuously differentiable on (0, 0o) with 

(--1)k f(k)(S) >= O, S>0, k =  1 , . . . , n - 2 ,  

and (iii) ( - 1 ) " - 2 f  ("-2) is nonincreasing and convex on (0, oo). For future 
reference, we note that (iii) is equivalent to: (iii') ( - 1 ) " - 2 f  ("-2) is locally 
absolutely continuous with a nonpositive and nondrecreasing (Radon-Ni- 
kodym) derivative ( - 1 ) " - 2 f  ("-1). A function f defined on [0, co) or (0, oo) is 
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said to be oo-monotone if it is n -monotone  for all n, i.e. if f is nonincreasing on 
its domain,  and f is infinitely differentiable on (0, oo) with ( -1 )gfk(s )>O,  S>0,  
k > l .  In L e m m a  2.3, an integral representat ion is obtained for all bounded  n- 
m ono tone  functions defined on [0, oo), 2_< n_< oo. A well-known related not ion 
is that of complete monotonici ty .  A function f defined on [0, ~ )  or (0, oo) is 
called completely mono tone  if it is cont inuous on its domain,  and it is 
infinitely differentiable on (0, oo) with (-1)kf(k)(S)>0,  S>0,  k>0 .  Thus a com- 
pletely mono tone  function is oo-monotone,  and if f is oo-monotone on [0, oo) 
or (0, oo), then _f(1)  is completeley mono tone  on (0, oo). Complete ly  m o n o t o n e  
functions on [0, oo) are Laplace transforms of finite measures on [0, oo), and 
completely mono tone  functions on (0, oo) are Laplace transforms of (not nec- 
essarily finite) measures on [-0, oo) for which the Laplace t ransform is finite on 
(0, oo). (See Widder  [18].) 

Theorem 2.2. I f  the random vectors Z = ( Z 1 ,  . . . ,Z , )  and Z ' = ( Z '  1 . . . .  ,Z',), n> 2, 
satisfy 

P(I/ll ~ a l ,  . . . ,  IZ,I __<a,)__> P(I/ ' l l  < a l  . . . .  , IZ',l <= a.), (2.12) 
a l > 0  . . . .  , a , > 0 ,  

and if f is an n-monotone function on [-0, oo), then 

n n 

Remarks. 1. Theorem 2.2 can be viewed as an extension to higher dimensions 
of a well-known result in one dimension, provided one interprets a 1-mo- 
notone  function as a nonincreasing function. 

2. Some examples of oo-monotone functions on [.0, oo), to which Theorem 
2.2 is applicable are: e-~S(c~>0), - s ~ ( 0 < e < l ) ,  (s+a)~(c~<0, a>0 ) ,  - l o g ( s  
+ a) (a > 0). 

3. An example of an n-monotone  function which is not  (n + 1)-monotone is 
the function f defined by f(s) = ((1 - s) v 0)"- 1, s > 0 (n > 2). 

Before we prove Theorem 2.2, we must  gather together a number  of facts, 
some of which we state in the form of lemmas. 

Lem ma  2.2. I f  h is a bounded function and the random vector (V~, ..., V,), n> 2, is 
uniformly distributed on the surface of  the n-dimensional unit sphere, then 

{x~ x 2 ) r(n/2) ( u -  l)  "-2 
.. v " I1/1 ... V , ] -  ~ u" h(r2u)du' (2.14) Eh \V 2 v . ~ rc , / ; (n_2) ! * 

for every real vector (Xl, . . . ,x , ) ,  where r 2 = x 2 + . . .  + x  2. 

Proof  For  n = 2 ,  (2.14) is established in the proof  of Theorem 2.1. We now 
assume (2.14) is true when n in (2.14) is replaced by n - l ,  and proceed to 
establish its validity for n (n > 3). Using the facts that V, has density 

n - - 3  

F(n/2) (1 - v 2) 2 - 1 < v < 1, 
fv"(V) = ~{ FE(n - 1)/2] 
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that, conditioned on V,=v, ( 1 - v 2 ) - � 8 9  . . . ,  rn_l) is uniformly distributed on 
the (n-1)-dimensional unit sphere (see, for unstance, Lemma 2 in [2]), and 
therefore that (by the induction hypothesis) the conditional expectation of 
h[(xZ/V 2) v ... v (x2,/V2)] [V 1 ... Vn[ given V,=v is 

r[(n-1)/2] i) (1 __/)2)~- ~ (b/-- 1) n-3 I(I~2--X2) UVX2~dbl ' 
7.c(n_l)/2(y/__3) ! ?An-- 1 h ~ 1Z_~f v2] 1 

w e  obtain (after some minor simplifications) 

/ "  x2 \  " -1 ( h (  ~x/2] f i lV~l  V"=v) fv (v )dv  
~ h  t Y  V )  IF[ IV/I= i ~ 1 V/2] i 

(2.15) v(n/2) ~(u-1)"_ - 3 .  ((r~-x~)u x ~) 
-- V-'" v(1-vz)"-Zdvdu. 

~"/2(n-3) ! I u"- t  ! h  \ 1 - - 7  v 2 

2 2 2 Xn 2. With the change of variable v ~ y :  u(r - x , )  /)2 = r  J, (2.15) simplifies to 1_v2 v the inner integral in 

u~ * f x .Ir2y-x )" 
r2(n- 1) ~ h(r2Y) ( ~ - r  

/,/(p 2 __ X 2 ) _ C  X 2 

r 2  

and (2.15) becomes 

r(n/2) r_2(,_l) ~ h(r2y) 
rf/2(n--3) ! 1 Y" 

rZy--x 2 

( u - l )  "-3 
1 ( b/n-- 1 

The inner integral equals 

2 2 n 2 

1 -- r2(n-1)(y_ l) . -  2 ' 
n--2 

2 } 
4-(rZ-x2,) "-1 y-"dy,  

t- (r 2 - x2) "- 1} du dy. 

1 2 2 \ _ _  {r Y__Xn )n-2 
+ (r 2 _ x z),- 1 n -- 2 \ ~ r  --x,  1 

and thus (2.15) becomes 

r(n/2) ~ ( y - 1 )  " - 2  

/r"/Z(n--2) ! 1 Y" h(r2y)dy" [~ 

By using the same argument used in proving Theorem 2.1, together with 
Lemma 2.2, one can readily establish (2.13) for functions f defined on [0, oe) 
of the form 

(u - 1)"- 2 
f(s) u" h(us)du, s>=O, (2.16) 3 

1 
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where h is bounded and nonincreasing. The class of such functions is characte- 
rized in Lemma 2.3, which follows. 

Lemma 2.3. A function f on [0, co) is bounded n-monotone if and only if it is of 
the form (2.16) with h bounded nonincreasing on [0, co), or equivalently if and 
only if it is of the form 

( s )  "-1 
f ( s )= f ( co )+  S 1 -  u d#(u), s>O, (2.17) 

[0, ~) + 

with # a finite measure on [0, co). Also a function f on (0, co) is n-monotone on 
(0, co) and bounded on [1, co) if and only if it is of the form 

f ( s )=s  ~ (v-s)"-2  v ~  h(v)dv, s>O, (2.18) 
S 

with h nonincreasing on (0, co) and bounded on [-1, co), or equivalently if and only 
if it is of the form (2.17) on (0, co), with # a a-finite measure on (0, co), which is 
finite on [1, co). 

Proof We shall prove the second statement. Since the right-hand side of (2.18) 
is equal to the integral in (2.16) when s>O, the first statement is easily inferred 
from the second. 

Suppose f is of the form (2.18) with h nonincreasing on (0, co) and bounded 
on [1, co). It is clear from (2.16) that f is bounded on [1, co), and from (2.18) 
that f is (n-2)-times continuously differentiable on (0, co) with 

(n-Z)!  ~ (v-s )  "-k-2 
f(k)(s) = ( _  1)k- 1 ( n - k ) ! s  v" [ k v - ( n ' l ) s ] h ( v ) d v ,  

s>0,  l<_k<_n-2. (2.19) 

Also, f( , -2)  is locally absolutely continuous with a (Radon-Nikodym) de- 
rivative 

f(n-1)(S)=(--1)n-2(n--1)! ~ - n ) d v - k ( - 1 ) n - l ( n - 2 ) ! s - ( n - l ) h ( s )  a.e. on (0, co), 
s 

I J  

which, after integrating by parts, simplifies to the version we will use: 

f ("-a)(s)=(-1)"(n-2)!  ~ v-~"-l)dh(v), s>O. 
$ 

Clearly f{"-1)(oo) (= lim f("-1)(s)) exists and equals zero. In fact, 
S ~ o O  

(2.20) 

sk-lf(k)(S)-+O as s~co ,  l < k N n - 1 .  (2.21) 

This is obvious from (2.20) for k = n - 1  and from (2.18) for l < k < n - 2 .  
Observe that ( - 1 ) " - i f  ("-1) is nonincreasing. Since h is nonincreasing, it 
follows by (2.20) that ( - 1 ) " - i f  (n-l) is nonnegative. Proceeding by back- 
wards induction: From the nonnegativity of ( - 1 ) " - 1 f  ("-1~, we infer that 
( - - 1 ) n - 2 f  (n-2) is nonincreasing. Since f("-2)(co)=0 (implied by (2.21)), 
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( - 1 ) " - 2 f  (n-2) is nonnegative, etc. Thus ( - 1 ) i f  (3) is nonnegative for j = l , . . . ,  
n - 1 ,  and ( - 1 ) " - l f ( , - ~ )  is nonincreasing, which together say that f is n-mono- 
tone. 

Conversely, suppose f is n-monotone on (0, 0o) and bounded on [1, oc). 
Define h on (0, c~) by 

n - 1  ( _ _ l ) k  

h(v )=(n -1 )  ~ ~. vkf(k)(v), V>0, (2.22) 
k = O  

which is nonincreasing because each term in the sum is nonincreasing (a con- 
sequence of  f being n-monotone). Observe that h is of bounded local variation 
and 

( - 1 )  . -1  
_ _  u n - 1  dh(v): (n -2 ) !  df("-l)(v), v>0,  (2.23) 

i.e. 

h(v ) -  h(s) = ( -  1)"- 1 ( n - 2 ) ~  s i u"- ldf("- l ) (u) ,  0<s=<v<oo.  (2.24) 

Then for s > 0 (using (2.24)), 

oo 

s S ( v - s ) " - :  s v" (h(v)-  h(s)) dv 

( - 1 )  "-1 ~ (v - s ) " -2  i 
- - _ _  b l n - i  df("-l)(u)dv 

(n -2 ) !  s v" 
s s 

co 

--(-- 1)n-a(n-- 1)[ ! {un-l-(u--s)n-1}df(n-1)(u)-=Fn-x(S) '  

say, where we have applied Fubini's theorem for nonnegative functions (with- 
out knowing, as yet, that F,_ l(S) is finite). In what follows, we shall need to use 
(2.21), which should be justified in the present context. This is done in Lem- 
ma 2.4 below for the k th derivative of an arbitrary n-monotone function, 
2<_k<_n-1. The remainder of (2.21), for k = l ,  is valid in the present context 
since, by assumption, f is bounded on [-1, oo). 

Now, using integration by parts and (2.21) for k=  n - 1 ,  we obtain 

where 

V._l(s)- 
( - 1 )  "-1  

(n - 1) ! 
- -  s"- a f ( , -  1)(s ) +F,_2(s) ' 

F . _ : ( s ) = ( -  1) " - :  (n - 2 ) ~  yS {u" - 2 _ (u - s)" - 2} f ( . -  1)(U ) d/A. 

Proceeding by backwards induction, we are eventually led to 

( v-s)~-:  
S 13 n 

s 

n - - 1  

(h (v) - h (s)) dv = f (s) - k~=O ( -- 1)k sk f(g)(s)' 
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which, in view of (2.22), establishes (2.18). The boundedness of h on [1, oo) may 
be inferred from (2.18). The equivalence of the representations (2.18) and (2.17) 
follows easily by integration by parts, and the measure # and function h can be 
expressed in terms of each other as follows: d#(s)= - d h ( s ) / ( n - 1 )  on (0, oo), i.e. 
g is the Lebesgue-Stieltjes measure corresponding to (the right continuous 
version of) - h(s)/(n - 1), and h(s) --- ( n -  1) f (~)  + p {(s, oo)}, s > 0. [1 

If f is n-monotone on E0, m) or (0, oo), then ( - 1 ) k f  (k) is nonnegative and 
nonincreasing on (0, oo) for k = 1, ..., n -  1, and hence 

s 

0 < s ( -  1)kf(k)(S) <= 2(-- 1) k ~ f(k)(U) du 
s /2  

=2(--1)k{ f (k- t ) (s ) - - f (k-1)(S /2)} ,  S>0, l<_k<n- -1 .  (2.25) 

These inequalities permit us to describe the behavior of the derivatives of f as 
s ~ov and s$0: 

Lemma 2.4. If f is n-monotone on [0, oo) or (0, oo) for some n> 3, then 

sk- l  f(k)(s)--~O as s---,oO, 2 < k < n - 1 .  (2.26) 

Proof  This follows by induction from (2.25), provided (corresponding to k - 1  
=l)f(1)(s)-f( l)(s/2)--- ,O. But this is the case since f(1) is nonpositive and 
nondecreasing. [3 

Lemma 2.5. I f  f is n-monotone on [0, oo), or n-monowne on (0, oo) with f ( 0 + )  
finite, for some n > 2, then 

skf(k)(S)---,O as s+O, l < _ k < n - 1 .  (2.27) 

Proof  In either case, f ( 0 + )  exists and is finite. Thus f ( s ) - f ( s /2) - - - ,O as s]0, 
and (2.21) follows from (2.25) by induction. [3 

Proof  of  Theorem 2.2. In view of the remark preceding Lemma 2.3, we may 
take (2.13) to be established for all bounded n-monotone functions f on [0, oo). 
The proof for unbounded f requires the removal from f of its (possible) linear 
part and then a truncation argument. 

Suppose first that f ( s ) = - c s ,  s>O, where c>0.  Inequality (2.8) can be 
n /i 

expressed as ~ g Z [ < ~ C Z ' I  2, which must hold since (2.12)implies Z~ is sto- 
1 1 

chastically smaller than Z'i 2, i = 1, ..., n. 
Now suppose f is any unbounded n-monotone function on E0, oo), so that 

f (oo )=  - oo. Since f(1) is nonpositive and nondecreasing, the finite nonpositive 
limit f(1)(oo) exists. We shall assume, without loss of generality, that f(1)(~) 
--=0. For otherwise, we may express f as the sum of two n-monotone functions, 
f = f l + f 2  where f ( l ) ( ~ ) = 0  and f2(s)=f( l~(oo) .s ,  s>O, and treat the parts 
independently. We shall truncate f as follows: Define h on (0, oo) by (2.22) and 
h(0) = (n-1)f (0) .  For x > 0, let hx(v ) = h(v/x x), v > O, and define fx by (see (2.16)) 

fx(S) = 
( u -  1) n-2  

u n h x (u s) du, s > O. (2.28) 
1 
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Since h is nonincreasing on (0, oo) (see (2.23)) and h(O+)=(n-1)f(O+)<__(n 
- 1 ) f ( 0 ) = h ( 0 )  (cf. Lemma 2.5), it follows that h is nonincreasing on [0, ~ )  
and, consequently, h x is a bounded nonincreasing function on [0, oo) for every 
x >0 .  This implies that (2.13) holds for each function f~, and it only remains to 
show, if possible, that f,~,~f as x ~ o o  (so that (2.13) follows for f itself by the 
monotone convergence theorem). Since h x is nonincreasing in x, so is fx 
(apparent from (2.28)), and thus it is only necessary to show the pointwise 
convergence of fx to f 

From (2.28), we have f~(O)=(n-1)h(O)=f(O) for all x >0 .  Thus we may 
focus our attention exclusively on points s>0.  For  such points, it is more 
convenient to use the following variant of (2.28) (see (2.18)): 

v - s ) ' -2  hx(v)dv, s>0. fx(S)=S v~ 
s 

For x > s > 0, we have (using (2.24)) 

s v ~ h(v)dv+s v" dv.h(x) 
s s 

i iu,-  ] , v" / ( n - 2 ) !  , df("-l)(u) dv 

+ h(x) [ l _ ( l _ S ) " - l ] + h ( s )  , 1  (I F 
(-- 1)n--1 i [( xs~)n-1 ( S )  n-1 ] 

- u" 1 1 -  - 1 -  df("-a)(u) 
( n -  1)! , 

+h(_x) 1 [1 ( I - S )  " -~l  h(s) - 

( - 1 )  "-1 ~ h(x) 

n - 1  

By repeatedly integrating by parts (much as in the proof of Lemma 2.3), we 
obtain 

f~(s)=f(s)+ F, f(k)(x){xk--(x--s)k}, X>S>0. k=l 
Since, as x~oo ,  f(1)(x)~f(~)(oo)=O (assumed without loss of generality), it 
follows from Lemma 2.4 that the sum converges to zero as x ~ o o .  Thus 
f~(s) ~ f ( s )  as x ~ o% which completes the proof. 

Theorem 2.2 can be extended to n-monotone functions on (0, oo), to allow 
for functions which are unbounded at zero as well as at infinity. 

Corollary 2.2. I f  in addition to (2.12), P(ZI=O,.. . ,Zn=O)=O , then (P(Z'~ 
= 0 , . . . , Z ; = 0 ) = 0  and) (2.13) holds for each n-monotone function f on (0, co) 
for which the expectations in (2.13) are defined. 

Proof Let f be n-monotone on (0, oo) with f ( 0 + ) = o o  and f ( o o ) = - o o .  
(Functions f with smaller ranges can be handled similarly or more easily.) Let 



Probability and Expectation Inequalities 15 

/ 1 \  
s o be the zero o f f ,  f ( s0 )=0 ,  and for each k>(2/So)define f k ( s ) = f t s + ~ ) ,  

S>0. Then each fk is n-monotone on [0, o9), and by Theorem 2.2, 
gL(ll / l[2)>Efk([lz ' l[2).  Also as k]'oe, s  on (0, oo). More precisely, fk + T f  + 

1 
and by monotone convergence ~L+(IIZllZ)T~N+(IlZll2). Also for s>s o k' 
since 0__< _f(1)$, we have 

1 
s + - -  

O < f k - ( s ) - f - ( s ) < -  f s+ + f ( s ) = -  ~ f(1)(u)du 
s 

<__ _f(1) So_ k =  k 2 ' 

and thus 0 < f  k ( s ) - f - ( s ) <  f(1) 2 , s>O. It follows that Efk (112112) and 

Cf-(l l / l l  2) are finite or infinite together and thus CL-(ll/[12)$CN (112112) (by 
dominated convergence if they are finite or trivially if they are infinite). Since 
o~f(llZ[I 2) is defined by gf+(l lZl l2) -Gf- ( l lZl l  2) iff at least one of the two 
terms if finite, (2.13) follows. 

Some examples of an oo-monotone function, to which Corollary 2.2 is 
applicable, are: s ~ (c~ < 0), - log s. 

We have already shown that the 2-monotone functions provide the appro- 
priate class for the result of Theorem 2.1. The following example shows that 3- 
monotone functions provide the appropriate class for the result of Theorem 2.2 
for n = 3 (by constructing, for a 2-monotone function which is not 3-monotone, 
3-dimensional random vectors Z and Z '  which satisfy (2.12) and for which 
(2.13) fails), and we anticipate that similar examples would show the same for 
n>3 .  

Example. Suppose f is 2-monotone but not 3-monotone on [-0, oo). Then for 
some a and b, a > 0, b > 0, one has 

f (a + 3 b) - 3f(a + 2b) + 3f(a + b) - f ( a )  > O. (2.29) 

(Implicitly we are saying that functions f which are 2-monotone and satisfy the 
converse of (2.29) for all a and b are 3-monotone, which can be verified.) Let 
3c~2=a and 2cd+f l e=a+b  be used to define ~ and fi (0<c~<fl), and let Z and 
Z' be three-dimensional random vectors whose distributions are described in 
Table 1. From the last two columns of Table 1, it is apparent  that condition 
(2.12) holds. Now for R 2 = Z Z  t and R '2=Z 'Z  ", we have 

~ f(R2) = ~ ~ f (a) + ~ f ( a  + b) + ~ f  (a + 2 b) + ~ f ( a  + 3 b), 
~f(R,2)=a~ff(a) is is 36 + grf(a + b) + grf(a + 2 b) + gTf(a + 3 b). 

From (2.29), it follows that g f ( R  '2) >d~ Consequently, the assumption of 
3-monotonicity in Theorem 2.2 when Z and Z '  are three-dimensional is essen- 
tial; it is impossible to consider a larger class of functions. 
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Table 1 

z P(Z=z) P(Z'=z) P(Z-<z) P(Z'-<z) 

tl 9 II 9 
( ~ ,  a ,  a ) 8-7 8-T 8-7 8--7 

4 6 15 15 
( a, a, B) 8-7 8-5 8-7 8-5 
(a, B,a) • A I_5 L5 

81 81 81 81 
4 6 15 15 

( /9 ,  e ,  a) 8~- 8-i" 8U- 8"-7 
6 27 27 

( e, /9 ,  ,8) 81 8-~ 8--1 8-'~ 
8 6 27 27  

( B, a,  ,8) 8-5- 8-'-7 8-5- 8-5 
8 6 27  27 

( ,8, B, ~) 8"q" 8--]" 8-7 8"q" 
34 36 I I 

(,8, B,/3 ) 8--7 8--7 

We have thus shown in Theorem 2.2 that when n>2,  (C1) ~ (C2) with ~r 
the class of all closed symmetric rectangles in IR" and 

= {k(x 1 .. . .  , x,) =f(x~ +.. .  + x2), f: [0, oo) --, IR 1 n-monotone}. 

As in the case of Theorem 2.2, using the separation approach, we obtain (C1) 
(C2) <=> (C3) with g={(/ ,k) :  l(xa, . . . ,x , )=g(x2+.. .+x2,) ,  k ( x l , . . . , x , ) = f ( x  ~ 

+ ... +xZ,), g > h > f  h: [0, oo)--*IR 1 n-monotone}, but we have not succeeded in 
obtaining a direct description of the class ~. 

3. Normal and Elliptically Contoured Distributions 

In this section, we refer to the notation of Sect. 1 and consider two-dimen- 
sional random vectors Z =(X, Y) and Z' =(X',  Y') with common marginal dis- 
tributions and with bivariate distribution functions H and H', and we take d 
= { ( - o o ,  x] •  oo, y], x,y~IR1}. Then (C1) 4=> H>H' ,  and it is shown in [3, 
16] that (C1) 4=> (C2) with ~ the class of all quasi-monotone functions (cf. (1.4)) 
for which the expectations in (C2) are defined and which satisfy certain minor 
regularity conditions (see Theorem 1 in [3]). The separation approach yields 
(1.3) with fq~ defined by (1.1) as the class of all pairs of functions l, k which can 
be separated by a quasi-monotone function m: l = m+ f ,  k = m - g ,  where 
f , g > 0 .  While (1,k)eN~ implies (1.5), the converse is not generally true. There 
exist functions l,k satisfying (1.5) which are sufficiently close that no quasi- 
monotone function can exist between them. Also, (C1) in general does not imply 
(C3) with 

N =  {(/,k): (1.5) is satisfied, and the expectations appearing in 
(C3) make sense}. 

(3.1) 
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(k: o) ? ? (~.-- ol 
I 
, ] ( k : ~ = l )  b? ? oa:o) 
i I [ 
I I I 

(J~=O)o o o(k=O) 
0 

Fig. 1 

Proof Define k as -10,  say, and l as 10 at all points in the plane except for 
those points in an array as shown in Fig. 1 for which an explicit definition is 
given. Then (1.5) is satisfied, and it is easily checked that it is impossible to 
define a quasi-monotone function m at the points a and b satisfying l_>m>_k. 
Now let the distribution of Z (respectively Z') assign mass 1/3 to each of the 
points in Figure 1 at which l=  0 (respectively, k is explicitly defined). It is easily 
checked that (C1) holds, but gl(Z)<~k(Z'). D 

We now show that in certain special cases (C1) ~=~ (C3) with N defined in 
(3.1). This is accomplislied by using certain surrogate random variables which 
satisfy the properties described in the following condition. 

(CO) There exists a four-dimensional random vector (X1, X 2, Y1, Y2) whose 
values are in the set F = {(x l, x2, Y l, Y2): (X2 --X 1)(Y2 --21) ~ 0} and whose 
bivariate marginals Fll,Flz,Fzl,Fz2 for (Xt, Y1), (X1, Y2), (X2, Y1), (X2, 
Y2) respectively satisfy F~l+F22=2H and F12+F21=2H', where H and 
H' are the distribution functions of Z and Z' respectively. 

When (1.5) holds, condition (CO) implies 

l(X~, YO+l(X2, Y2)> k(X~, Y2)+k(Y2,X 0 a.s., (3.2) 

which, upon taking expectations (assuming they are defined), yields (C3). 
Hence (CO) ~ (C3), and the latter can be established by constructing surrogate 
random variables satisfying (CO), i.e. by using the surrogate approach. We 
begin with the normal case. 

Theorem 3.1. Suppose Z and Z' are bivariate normal random variables with 
common means and variances and with correlation coefficients p and p'. Then 

p>p' ~;.H>=H' <=> (CO) <=> (C2) <=~ (C3). (3.3) 

Proof Assume p __> p' and let (S, T, U) be normally distributed with a zero mean 
vector and the covariance matrix 

1 ( , , - , ! /  
(p'-p) (p'-p) 2 (p -p )~  

Define 

X t =#x + o-xS, Yl=#y+oyT, X2=~tx+ox(S+U), Y2 =/~y+ ~ T +  U), 
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2 a n d  2 where (#x,#y) is the common mean vector, and % % are the common 
variances of H and H'. It is easily checked that (X1, Y0 and (X2, Y2) have 
distribution function H and that (X1, I12) and (X2, Y1) have distribution func- 
tion H'. Moreover, (Xi-XO(Ye-Y, )=axayU2>O. Thus condition (CO) is 
satisfied. It follows that p>p' ~ (CO), and since (C0) ~ (C3) ~ (C2) ~ (C1) 

H > H', the result follows. [3 

The implication p > p' ~ H > H' is a special case of an n-dimensional result 
due to Slepian [12]. The equivalence H>H' .*:> (C2) is a slight improvement in 
a special case of Theorem 1 in E3], in that no regularity conditions are 
imposed beyond existence of expectations. The equivalences in Theorem 3.1 
involving (CO) and (C3) are novel results. 

Theorem 3.1 can be extended to higher dimensions and from normal to 
elliptically contoured distributions. If Z is an n-dimensional random (row) 
vector and, for some n-(row)-vector # and some n x n  nonnegative definite 
matrix X, the characteristic function ~bz_,(s ) of Z - #  is a function of the 
quadratic form sXs t, Cz_u(s)=f)(sXst), we say that Z has an elliptically con- 
toured distribution with parameters #, Z and ~b, and we write Z~EC,(,u, X, 0). 
When qS(u)=exp ( -u /2) ,  E C,,(#, X, qS) is the normal distribution N,(#, X). The 
class of admissible fuctions ~b depends on the rank k of X, r(X) = k, and consists 
of all functions of the form 

C~(U)= ~ ~Qk(r2u)dF(r), u>=O, 
[0, co) 

for some distribution function F on [0, o o), where ~-2k(lls]le), se lR k, is the 
characteristic function of the uniform distribution on the surface of the unit 
sphere of 1R k. This follows from a theorem of Schoenberg [11] and is discussed 
in [2] where the following useful stochastic representation is also introduced. 
Let X=AtA be a rank factorization of X, i.e. A is k x n  and r(X)=k=r(A). 
Then Z has the stochastic representation 

Z e= #+RU(k)A ' 

where the equality is in distribution, R is a nonnegative random variable (with 
distribution F), U (k) is a k-dimensional random vector uniformly distributed on 
the surface of the unit sphere in 1R k, and R and U (k) are independent. 

Theorem 3.2. Suppose that Z~EC2(#, X, 4)) and Z' ,,~EC2(#, X', ~b), where 

Then (3.3) is satisfied. 

Proof As in the proof  of Theorem 3.1, it suffices to show p =>p' ~ (CO). If p = 1 
and p ' = - l ,  we have Z a= #+RU(I)A1, Z,a= #+RU(1)A,1, where A l= (a l , a2 ) ,  
A'1=(al ,-~r2).  Since R and U (*) are independent, in order to show 
81(Z)>_>gk(Z'), it suffices to show 

El(#+rU(1)AO> gk(#+rU(1)A'l), r>O. (3.4) 
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Since k ( . )  and  1(.) satisfy (1.5), so do k(p+r.) and l(p+r.) for every # and 
r >0 .  Thus  it suffices to show (3.4) when g = 0  and r =  1, i.e. it suffices to show 
g l( U(1)A 1) > g k(U(1) A'I), which is wri t ten as 

l l ( - -  0"1, -- 0`2) +�89 0`2) ~ � 8 9  0"1,0"2)-]-1k(0`1, -- 0`2) 

and follows f rom (1.5). 
N o w  assume that  at least one of p, p'  differs f rom 1 in absolute  value. 

Put t ing 

t a,=<cos ' t 
0-1 sin c~ 0`2 cos ~ ' 0`1 sin ~' 0" 2 sin c( ' 

where e and e', - T r / 4 _ < e ' < e < r c / 4 ,  are defined by p = s i n 2 e  and p ' = s i n 2 c ( ,  we 
have s  and Z'=A'tA'. When - l < p ' < p < l ,  then bo th  Z,X' are full 
r ank  and r(A)=2=r(A'), so that  2=AtA,  Z'=A'tA ' are rank  factorizat ions of 
Z, U. It  then follows that  

Z a p+RU(Z)A, Z' d ~+RU(Z)A," (3.5) 

When  one, but  not  both,  of  p, p'  equals 1 in absolute  value, say - 1 < p'  < p = 1, 

then Z' a=_ ~+RU(2)A,, and g e x p  [is(Z'-py] =O(sZ'st)= ~ 02(rZsZ'st)dF(r), 
where F is a distr ibution of R. Since to, oo) 

exp[is(Z-#)  t]=d?(sZst)= ~ f22(r2sZst) dF(r), 
[0, oo) 

it is easily checked that  Z a= ]2+RU(2)A. Hence  (3.5) holds, provided at least 
one of p , p '  differs f rom 1 in absolute  value. Because of the independence of 
R, U ~2), arguing as before, it suffices to show that  CI(U(2)A)>gk(U(2)A'). This 
will be done  by defining a r a n d o m  vector  ( X I , X 2 ,  YI,Y2) which satisfies 
condi t ion (CO); (X1, I12) and (X2, Y2) will be distr ibuted as U(2)A, (X1, Y2) and 
(X2, Y1) will be distr ibuted as U{2)A ', and the p roduc t  ( X 2 - X I ) ( Y 2 - Y  0 will 
be nonnegative.  

The  r a n d o m  vector  U ~2) can be taken  to be (sin 0, cos 0), where 0 is uni- 
formly distr ibuted on any interval of length 2~z. Then  

U(2)A=(0`lsin(O+oO, 0`2cos(O-cO), u(Z)A'=(0`lsin(O+o:'),0`2cos(O-o:')). 

Let 

and define 

S = sin (0 - ~), T = cos (0 - ~), V = sin (c( - 0), 

Xl=Ol S, X2=al(S+2cos(~+o~')V), 
Ya = 0`2 T , Y2=0`z(T+2sin(o~-o:')V). 

Since 2 s i n ( ~ - c Q c o s ( ~ + ~ ' ) = s i n 2 c ~ - s i n 2 c ( = p - p ' > 0 ,  it follows that  
- X 1) (Y2 - Y1) > 0. By further t r igonometr ic  manipula t ions ,  one obtains  

(X2 

S+ 2cos(c~+oQ V=sin((2c(-O)+o:), T+ 2sin(o:-oQ V=cos((2o:'-O)-o O. 
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Since 2 ~ ' - 0  is uniformly distributed on an interval of length 2re, (X2, Y2) as 
well as (X 1, Y1) is distributed as U(Z)A. Similarly, one finds that (X 1, I12) and 
(X2, Y1) are distributed as U(Z)A '. This completes the proof. [3 

Remark. The success of this proof depends implicitly on an interesting geomet- 
ric fact about any two ellipses which are inscribed in the same rectangle. Each 
point on one of the ellipses is the vertex of a rectangle whose opposite vertex is 
on the same ellipse and whose adjacent vertices are on the other ellipse. (In 
fact, there are two such rectangles.) Whether this is a known fact of projective 
geometry is unknown to the authors. (In the present context, the two ellipses 
are the ranges of the random vectors u(Z)A and u(Z)A'.) 

Similar comments to those following the proof of Theorem 3.1 are applic- 
able to Theorem 3.2. A higher dimensional version of Theorem 3.2 can be 
proven by reducing the dimension to 2 through conditioning. 

Theorem 3.3. Suppose Z ~  E C,(#, Z, (9) and Z' ~ E C,(#, X', (9), where Z =(aij), Z' 
~--- (0''ij)' and 0"tii = 0"ii for 1 < i < n. Then 

{0"u>du, i#j} r H>H'  ~ (C1) ~ (C2) r162 (C3), (3.6) 

where d = { ( - ~ , z ] ,  zelR"}, ~ is the class of all pairs (l,k) of functions of n 
variables for which the expectations appearing in (C3) are defined and which 
satisfy (1.5) as functions of any two of the n variables for all fixed values of the 
remaining n -  2 variables, and ~ = ~ .  

Proof The main task (and the only one we shall address) is that of showing the 
first condition in (3.6) implies the last. According to the argument in the first 
paragraph of the proof of Theorem 5.1 in [4], it suffices to prove it in the case 
where 0"12>0"]2 and 0"ij=0"tij for all (i , j).(1,2), (2, 1). Write 

/Zll z1~) 
z=(z,,z2), #=(#1,#2), s =  ~z21 z22 ' 

where Z,,#1 are two-dimensional and S~1 is 2x2 .  It is easily seen via the 
characteristic function that 

I 
(Y1,Y2)=(Z1-~11,Z2-#2) (_z~;2z~21 ~ ) ~ E C ,  (O, (ZO * ~ 2 ) '  (~) ' 

where Z]2 is the self-adjoint generalized inverse of ~22 and S*=X11 
--~12~2-2~21. NOW let RU(")=R(U1, U2)~EC,(O,I, ~), where U 1 is two-dimen- 
sional. Then 

(Y1, Y2)d R(Ua ' U2 ) ( 0  ~-" 0 ]~=R(U,  X*~, U2Zz2) 
Z22] 

and 
Z =(Zl,  Z2) d (#1 +RU2X22Z;2212 §  z~*~, #2 §  

Since U (") is uniformly distributed on the surface of the n-dimensional unit 
sphere, (UIIU2=u2) d [1-u2ut2]~U (2), where [a] + = max (a, 0). (See, for in- 



Probability and Expectation Inequalities 21 

stance, Lemma 2 in [2].) Since R and V are independent, it follows that for all 
r > 0 and u2, 

( (Z l ,Z2) lR=r  ' U2 =u2) L (/2* + r* U(2) 2* ~, /22 +ru2222), (3.7) 
where 

/2~g • + t • 
- -b /2U2]~ ,  = Z:~l 1 --  Z~X 2 z~2+2 221  �9 =/21 q- r/,/2 ~ 2  z~22 Z~l 2, r*=r [1  S* 

Since 2 ' =  /~ ~/11 z~12 \), Z '=(Z '  1 Z'2)satisfies (3.7) with /2"=/2", r* '=r*,  and 
221 2 2 2 .  

2*'=Zr11--2122~2221. In order to verify CI(Z)>gk(Z') ,  it thus suffices to 
show that for all r > 0 and u2, 

1(/2" -+- r* U (2) X* ~,/22 + ru2 222)  ~ Or k(/2 g ~- r* U(2 )2  gt ~-, 122 -{- r/g 2 222) ,  

and this follows from Theorem 3.2 

The implication {aij>=a'ij } ~ H > H '  is a well-known result due to Slepian 
[12] for normal distributions, and for elliptically contoured distributions, it has 
been obtained by Das Gupta et al. [4] under the assumptions that the 
matrices S, Z' are invertible and that densities exist. 

The approach used in proving Theorem 3.3 can be used to extend the 
theorem to random vectors Z and Z' with more general distributions than 
elliptically contoured. For instance, the theorem holds for random variables 
with distributions Z d=/2+u(k)A R and Z' e=/2+U(k)A,R, where R is any ran- 
dom matrix with nonnegative components, which is independent of U (k). 

4. More on the Surrogate Approach 

It is possible to characterize the bivariate distribution functions H and H' 
which satisfy condition (CO). (Here, we freely refer to the notation of Sects. 1 
and 3.) This is accomplished by a straightforward generalization of the proof 
given by Sudakov [-15] of a theorem by Strassen [14]. Cast in our context, this 
slight extension of Strassen's theorem says that 

(c0)  .~  (c1 ' )  ~ .  (c3), 

where N is defined by (3.1) and 

(CI') P ( Z s A ) > P ( Z ' e A ' ) ,  ( A , A ' ) ~ = { ( A , A ' ) :  1A, 1 A, satisfy (1.5)} 

(with l=  1 A and k = 1A, ). 
Regarding (C1'), it should be noted that (A ,A ' ) eN  if and only if A=A' ,  

and for all xl <x2, yl <yz,  and a=(xx,yl) ,  b=(x2 ,y  O, c=(x2,y2), d=(xl ,y2),  
the number of points of {a,c} in A is larger than or equal to the number of 
points {b,d} in A'. By choosing various such pairs of sets, one finds that 

(C 1') ~ {H, H' have common marginals and H > H'}. 
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The converse is also true in the case of normal or elliptically contoured 
distribution functions /-/ and H', as shown in Theorems 3.1 and 3.2, while the 
case of more general distributions requires further investigation. 

The equivalence of (CO), (C1'), and (C3) is a special case of a more general 
situation, which provides new ways of obtaining inequalities of the type (C3) 
and of showing the existence of joint distributions with fixed support and with 
certain marginals fixed. To illustrate the power and novelty of this approach, 
let us consider a few examples, which have obvious 2n-dimensional analogues. 

Let F be a closed subset of IR 4 and consider an inequality between 
functions k and l of the following type (simpler than (1.5)) 

(CF) l(xl,yl)>=k(x2,Y2) , (x l , x2 ,y l , yz )~ f  , 

and the following conditions which depend on F. 

(COF) There exists a random vector (X1, X2, Y1, Yz) whose values are in the 
set F and which is such that the bivariate marginal distribution func- 
tions of (X 1, I11) and (X2, I12) are H and H' respectively. 

(C1F) P(ZEA)>=P(Z'~A'), (A,A')6N={(A,A'): 1A,1 A, satisfy (CF)}. 

(c3r~) ~l(Z)_>_~k(Z'), 
(l, k) e J~ = {(l, k): I, k satisfy (CF), and the expectations are defined}. 

By Strassen's theorem, (COF) ~, (C1F), and as before, (COF) ~ (C3F) 
(C 1 F). Thus 

(COF) ~=~ (C1F) *~ (C3F). 

Example 4.I. When F={xl>x2,  yt>y2}, (CF) becomes l(xl,yO>k(x2,y2) , 
Xl>X2, yl>y2; (C1F) is equivalent to {H(I)>H'(I) for all increasing sets I}; 
and the result includes Theorem l(i), (iv), and (vi) of Kamae, Krengel and 
O'Brien [-5]. (Here and below, the distribution functions H and H' are treated 
as if they were distributions.) Of course, any one or both of the inequalities in 
the definition of F could be reversed with corresponding results. 

Example 4.2. When F = {Ix1] > Ix21 o r  l yl l  > ly2l}, then (C 1 F) becomes equiva- 
lent to 

H(A)<H'(A), for all rectangles, A=[--a,a] x [-b,b],  (4.1) 

and the corresponding conditions (COF), (C3F), and (4.1) are equivalent. When 
H and H' are absolutely continuous elliptically contoured distributions 
EC(O,Z,O) and EC2(O,X',~), where Z,Z' are as in Theorem 3.2 with [p[__<lp'[, 
then (4.1) is Theorem 2.1 of [4], and thus (COF) and (C3F) hold, both new 
results. 

m 

Example 4.3. When F =  {(x I ,yl)>(x2,y2)} where for two-dimensional vectors, 
m 

(xl,yl)>=(x2,y2) means max(xl,yO>__max(x2,Y2) and xl+yl=x2+Y2,  then 
(C 1 F) becomes equivalent to 

H(A)>H'(A) for all measurable Schur-convex sets A (4.2) 
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r t l  

(A is Schur-convex if z6A and z ' >  z imply z'cA), and the corresponding 
conditions (COF), (C3F), and (4.2) are equivalent. This is Theorem 2.2 in [8]. 

Example 4.4. Let S be a (nonempty) convex, compact and symmetric subset of 
IR 2, and II" I[s the norm on IR 2 for which S is the unit sphere, i.e. II(x,y)lls--,t 
~=~ (x,y)e2S and 2 > 0  (see pp. 111-112 of Stein and Weiss [13]). When F 
={[](xl,Yl)lls<__ [l(x2,yz)l[s}, then (C1F) is equivalent to 

H(2S)>H'(2S) for all 2>0,  (4.3) 

and the corresponding conditions (COF), (C3F), and (4.3) are equivalent. As 
special cases, when S is an ellipse, S=  {x2/a 2 +y2/b2< 1}, then [l(x,y)ll~ =x2/a 2 
+ y2/bZ; when S is diamond-shaped, i.e. S=  {]x/a + y/bl < 1, Ix/a- y/bl < 1}, then 
H(x,y)lls=lX/a+y/bl if xy>O, =lx/a-y/b[ if xy<-_O; and when S is a rectangle, 
S = [ - a , a ]  x [-b,b],  then II(x,y)lls=max {lxl/a, lyl/b}. (Notice that, unlike (4.1) 
which is satisfied for all rectangles, when S is a ractangle, (4.3) is satisfied only 
for those rectangles which are homothetic to S.) When H and H' are absolutely 
continuous EC2(O,S,~) and ECz(O,S',d? ) distributions and S ' - S  is nonne- 
gative definite, then Theorem 3.3 of [4] implies (4.3), and therefore (COF) and 
(C3F) hold. For the special case where S is ,a square and S,S '  are as in 
Theorem 3.2 with ~1=a2, we now give a simple proof of (COF) through a 
construction similar to that used to prove Theorem 3.2. Thus, for S a square, 
we establish (C3F) (as well as (4.3)) without using Strassen's theorem (and also 
for not necessarily absolutely continuous elliptically contoured distributions). 
Even though we are assuming for simplicity of the construction that the 
common variances of S, X' are equal, no doubt a similar but somewhat more 
involved construction would be feasible when the variances are not equal. (An 
analogous construction may even be feasible for the stronger result corre- 
sponding to Example 4.2.) 

Theorem 4.1. Suppose that Z ~ E C 2 ( O  , z~, O) and Z ' ~ E C 2 ( O  , Z,', 0), where 

Then Ipl>lp'[  ~ (COF) ~ (C3F), with S a symmetric square [-a ,a]  x [-a,a].  

Proof As in the proof of Theorem 3.2, it suffices to show 
NI(U(Z)A)>gk(U'(Z)A ') (here #=0). This will be done by defining a random 
vector (XI,X2,  YI,Y2) which satisfies condition (COF); i.e. (Xt, I11)L U~2)A, 
(X2, Y2) d U,(2~A,, and max(lXll, Igll)<max(lX2l, [I12t). 

We can take U(2)=(cos 0, sin0) and U'(Z)=(cos 0', sin 0'), where 0 and 0' are 
uniformly distributed on intervals of length 2~, and 

(X1, Y1)=~(cos (0-c~), sin (0+ c0) , (X2, Y2)=tr(cos(O'-e'), sin(0' + e')), 

where s in2e=p ,  sin2c~'=p', -rc/4<c~, e'_-<n/4. We will now determine the 
joint distribution of (0, 0') so that the marginals will be uniform on intervals of 
length 2~ and 

max {tcos (0-~)l, Isin(0 + cQI} <__max {Icos (0'-c~')l, Isin (0' + c~')[}. (4.4) 
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O n e  can  easily check  tha t  

[cos(0'-e')l>[sin (O' +e')l ~ c o s 2 0 ' > 0  

Icos ( 0 -  e)l < ]cos (0' - e')l <:> sin (0 + 0' - 7) sin (0 - 0' - /~)  > 0 

Isin (0 + e)[ < Icos (0' - e')l <:> cos (0 + 0' + fi) cos (0 - 0' + 7) > 0 

[ c o s ( 0 - a ) [  < l s in  (0 '+e ' ) l  <:> cos (0 + 0' - /?) cos (0 - 0' - ?) < 0  

Isin ( 0 + e ) l < [ s i n  (0 '+e ' ) l  <:~ sin ( 0 + 0 ' + 7 ) s i n  ( 0 - 0 ' + / ~ ) < 0 ,  

where /~  = e -  e', 7 = e + e' (0 </~ < re/4, 0 < ? < ~/2). Thus  (4.4) is equiva len t  to 

{ cos 0 0 / cos 0 0 } 
sin (O+O'-7)sin ( 0 - 0 ' - ~ ) > 0  or  cos (0 + 0' - /~) cos (0 - 0' - 7) _< 0 . (4.5) 

cos(O+O'+~)cos(O-O'+7) > 0 J  [ s i n  ( 0 + 0 ' + 7 )  sin ( 0 - 0 ' + ~ ) ~ 0  

The  two  sets of  inequal i t ies  in (4.5) de te rmine  the set wi th in  which  the su ppo r t  
o f  the j o in t  d i s t r ibu t ion  o f  (0, 0') m u s t  lie. 
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Let us first consider the case O < p ' < p ,  i.e. 0_<e'<e<rc/4.  When e=ct', i.e./3 
=0,  we can take 0=0'.  In the general case, /~>0, we can take 0 to be the 
function of O' graphed in the upper right section of Fig. 2. (The graph is 
plotted only for - ~/4 <0' < 3 ~/4. For 3 ~/4 < O' < 7 ~/4, the graph is obtained by 
shifting the plotted graph by (~,~). This applies to the other cases as well.) 
Since the relationship between 0 and 0' in I-re/4, 7~/4) is one-to-one and 
piecewise linear with slope 1, if O' is uniformly distributed on [ - ~ / 4 ,  7~/4), 
then so is 0. Moreover, the pairs (0, 0'), appearing in the graph, satisfy con- 
ditions (4.5). 

The remaining cases are treated similarly, and Figure 2 shows the graph of 
0 = f(0'), which achieves the desired properties. [~ 
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