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Summary. In this paper are considered some conditions on locally compact topological 
groups that have arisen from the statistical analysis of group-invariant experiments and from 
probability theory. A catalogue is compiled of these conditions and of similar conditions that 
arise in the area of invariant means on locally compact topological groups. Known facts about 
the implication diagram of the conditions are described and some new implications are 
established. Counter-examples are discussed. An attempt is then made to throw some new 
light on the statistical relevance of the conditions in test theory, information theory and 
decision theory. 

w 1. Introduction 

The last twen ty  years have witnessed a rapid incursion of  group theory  into 
probabil i ty and mathemat ica l  statistics. A good background account  is provided 
b y  L r ~ M ~  [18], H A ~ A ~  [11] and GgV, NA~D~g [10]. 

This paper  will be concerned with groups t h a t  are associated with invar iant  
experiments as follows. 

As L~EMA~, [18] p. 214, shows, the four suppositions 

(i) da ta  x ~ X has probabi l i ty  distr ibution Pc, 0 ~ 0, 
(ii) there is a set G = {g} of  1 - -  1 t ransformations 9: X -+ X such that ,  if  x 

has distr ibution P0, then gx has distr ibution Pg for some 0 = 0(0), 

(iii) {#(0) 10 ~ o} = o,  
(iv) Pol * Po2, O14: Oz 

imply  tha t  G is a group. :For obvious reasons, the experiment  m a y  he said to  be 
invariant under  each g ~ G. 

The fur ther  supposit ion 

(v) G is a locally compact  topological group 

will be made in this paper.  I t  is difficult to  imagine t h a t  there can be any  problem 
of statistical interest in which (v) does no t  hold. 

Statistical research on such invar iant  experiments m a y  be divided into two 
classes. On the  one hand, we have work in which the principal results apply 
indiscriminately to  all locally compact  topological groups, for example, BRrr,- 
r,I-~GE~ [1], F~ASE~ [6], HOl~A and BUEHLEI~ [13]. On the other  hand, there is 
the class of  results t h a t  apply  to only a subclass of the family of  locally compact  
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topological groups; for example, HUNT and STEIN [18] p. 336, PEISXKOFF [22], 
KVDO [17], KIEFEi~ [16], G~ENXNDE~ [10] p. 104, and STO~E [27]. 

The conditions on G arising in this latter area from the object of investigation 
of this paper. The question of whether similar conditions have been considered 
in other applications of group theory has by  now a strongly affirmative answer. 
As early as 1929, vo~ NEUMAN~ [20] showed tha t  not all locally compact topologi- 
cal groups possessed a left invariant  mean. Later  group theoretical studies by 
CALDEX~ON [2], DAY [3], DIEUDONN]~ [4, 5], FOLNEI~ [7], GODEMENT [8], GEEENLEAF 
[9], HULANICKI [14], KESTEN [15], NA~IIOKA [19], I~EITE~ [23, 24, 25] and STEGE- 
MAN [26] have considerably clarified the connexions. A good account of much of 
this is to be found in HEWITT and Eoss  [12]. However, as far as we know, it is 
still an open question whether or not all of the apparently different conditions 
are equivalent. 

The purposes of this paper  are to review the whole area, to establish new 
links, to show by  a counter-example tha t  one of the two potentially weakest 
conditions we present is not vacuous (the other is known to be non-vacuous by  
indirect argument) and then briefly to review and extend the statistical implica- 
tions of some of the conditions in an a t tempt  to achieve an appreciation of their 
importance. 

Sections 2 and 3 are entirely non-statistical. Here we have not hesitated to 
construct small variants of some conditions when, by  so doing, their relationships 
become more comprehensible. Section 4 is statistical and contains some specu- 
lative but, i t  is hoped, suggestive material. 

w 2. The Conditions and their Connexions 

Some necessary definitions are: 

Definition (2.1). G is g-compact if i t  has a countable covering by  compact 
subsets. 

Definit ion (2.2).  A [B] = ( ~  A b -1 = {g [ g B E A }. 
beB 

Definition (2.3). v(.) is a right-invariant Haa r  measure on the Borel field gen- 
erated by the open sets of G. 

Sets will be understood to be measurable when so required. Some of the con- 
ditions to be considered have been stated in a slightly more restrictive form than 
necessary in order tha t  they do not involve unmeasurable sets. These restrictions 
could be lifted, but  we feel tha t  the resulting prolongation of the paper would 
not be justified. 

The conditions and their variants are: 

(A) ([17], p. 45): For each compact  U, there exists sequence (Cn}, Cn compact, 
such tha t  v (Cn)/v (Cn C) -* 1. 

(A1): There exists {Cn}, Cn compact, such tha t  ~(Cn)/V(CnC)--> 1 for all 
compact C. 

(A2): There exists {Gn}, Gn closed, v(Gn) < c~, such tha t  v(Gn)/v(GnC) --> 1 
for all compact  U. 
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(Aa): For each compact C, there exists {Gn}, Gn closed, v(Gn) < co, such 
that  v(Gn)/v(GnC) --> 1. 

(A4): There exists {Gn}, v(Gn) < 0% such that,  for each compact C, there is 
{Fn}, v(-Fn) < co, F n o On C, such that  V(an)/V(T'n) --> 1. 

(C) ([2]): There exists {Nt[t > 0}, Nt a compact-open symmetric neigh- 
bourhood of the identity e, such that  NtNs c Nt+s and v(Nut) < ~v (Nt) for some 

independent of t. (Calderon uses left-invariant Haar measure. However, at the 
present level of abstraction, this distinction is immaterial.) 

(FW) ([14]): For each finite •, there exists {Cn}, Cn compact, such that  
( c ,  [{~} v F])/~ (on) -~ 1. 

(FW1): For each finite F, there exists {Gn}, v(Gn) < co, such that  

,(G~ [(~} u F])/ ,  (G,) -+ 1. 

(GR) ([10], p. 104): The constant 1 can be approximated uniformly on every 
compact subset by positive definite functions vanishing outside compact sets. 

(H) ([27]): For each compact C, there exists {Gn}, Gn closed, v(Gn) < co, 
such that  v (Gn [U])/v (Gn) -> 1. 

(HI1): There exists {Gn}, Gn closed, v (Gn) < 0% such that  v (Gn [C])/v (Gn) --> 1 
for all compact C. 

(H2): For each pair gl, g2 ~G, there exists {Gn}, V(Gn) < co, such that  

v (an [{e, e l ,  g2}])/~ (Gn) ~ 1. 

(H3): For each compact C, there exists {Gn}, v(Gn) < 0% such that  

v(an[{~, ~}])/v (an) -~ 1 
uniformly for c e C. 

(HS) ([18], p. 336): There is {Pn}, Pn a probability measure on the Borel sets 
in G, such that  ] Pn (Bg) -- Pn (B) [ --> 0 for all g e G and all B. 

(J) ([14] and [19]) : There exists a mean m on L~ (G) such that  m ( / ,  ~) : -  m (i) 
for any 1 e Lc~(G) and any probability density function (with respect to v)/ .  

(LHS) ([18], p. 337): There exists {Gn}, v (Gn)< co, Gn/ZG, such that  
I Pn (Bg) -- Pn (B) I --> 0 for all g e G and B, where Pn (') -~ v (" n Gn)/v (Gn). 

(LHS1): There exists {Gn}, v(Gn) < co, such that  I Pn (Bg) -- Pn (B)[ -* 0 
for all g e G and B, where Pn (') = v (" n Gn)/v (Gn). 

(M) ([25]): There exists a left-invariant mean on Loo(G). 

(P) ([4, 25]): For each compact C, there exists {/n}, In a probability density 
function (with respect to v), such that  ][ /n (gc) - - / n  (g)] dr (g) --> 0 uniformly 
for e e C .  

(P1): There exists {/n}, /n as in (P), such that  ] l /n (gg ' ) - /n (g)]dv(g) - -*0  
for a]l g'e G and the convergence is uniform on any compact C. 

(P2): There exists {/n}, /n as in (P), such that  ]]/n(gg') -- /n(g) Ida'(g) ---> 0 
for all g' e G. 

(P3): For each pair gl, gp. ~ G, there exists {/n}, /n as in (P), such that  

y[/n(gg~) - / n ( f f )  I d~(g) -~0 ,  i = 1, 2. 
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(/7) ([22]) : There exists sequence {$i}, t im Si = G, such tha t ,  for each i, there  
are {Gn(i), Fn(i)},  v(Gn(i)) < 0% v(/~n(/)) < 0% such t h a t  In(i) cGn(i)[St] and 
v(Fn(i))/V(Gn(i)) -> 1 as n --> co. 

(//~) : There  exists {Gn}, v(Gn) < 0% such t h a t  v(Gn[{e, g}]lv(Gn) -> 1 for all 
geG. 

(/-/@: There exists {01}, 0i  open 0t  / G  such tha t ,  for each i, there exists 
{ Gn (i)}, Gn (i) closed, v ( Gn (i)) < c~, such t h a t  v (Gn (i) [01])Iv (Gn (i)) -> 1 as n -~ oo. 

(1~) ([8], [28]): The  cons tant  1 can be app rox ima ted  uni formly  on every  com- 
pac t  subset  by  convolutions of  the fo rm x ,  x ~ (g) where x (g) vanishes outside a 
compac t  set  and  x ~ (g) = x (g-l). 

The following impl icat ion d iagram shows how the above conditions are known 
to be connected.  A single arrow means  t h a t  the  implicat ion is p roved  for g-com- 
pactness  of  G, except  for  the  case (C) --> (A4) when connectedness of  G is assumed. 

. (A1). 

( A )  (A21 ( C] 

~A3( l  "~(A4)// (7[2) 
 1,9 \ 

/ • cP, 1 ,I 

Fig. 1. Implication diagram 

Proo/s o/Implication. (A) ~ (A3), (A1) ~ (A), (A1) ~ (A2), (A2) ~ (A3), (A~.) 
(A4), (FW) ~ (FW1), (FW1) ~ (H2), (H1) ~ (H), (H) ~ (H2), (LttS) ~ (LHS1), 

(LHSz) ~ (HS), (~~ ::~ (P), (P1) ==~ (P2), (P2) =~ (P3), (/~2) ==~ ( / / ) ,  (1:~) :=~ (GR) 
are immedia te .  

(As) ~ (H). Given {Gn} for  C in (As), define G*n=GnC. I f  g EGn, then  
g C c G*n whence Gn c G*n [C]. Then  

~(Gn)  / ~ ( G : [ C ] )  
~(G~C) ~ ~ _<1. 

Take  {G~*} to be the  {Gn} for (H). 
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(H) ~ (H3). Trivial because ~,(Gn[C]) ~ ~,(Gn[{e, c}]) ~ v(Gn). 

(H3) ~ (P). Given {Gn} for C in (Hs), define/n ~ %a,,/v(Gn). 

(H2) ~ (Pa)- As for (Ha) ~ (P). 

(//8) ~ (H1). Choose {~i}, ~ -+ 0. For each i, choose n~ such that  

v(Gn,(i ) [O~])/v(G~,(i)) >= 1 - -  ei. 

For (H1), defining Gi ---- Gn~ (i) suffices since each C is contained in 0j for ?" large 
enough. 

(HI) ~ (P1). Given C from (P1), take C in (H1) t o  be {e} ~J C. Define /n 
= za.Iv (an). 

(//) =~ (/71). Choose {ei}, e~ -+ 0. For each i, choose ni such that  

v(Fn,(i))/v(Gn,(i)) >= 1 - -  e~. 

For (H1) , defining Gi ----Gn,(i) suffices since, for any g eG, Fn,(i ) cGt[{e,  g}] for 
i large enough. 

(LHS) ~ (//1). I f  G is compact, (//1) holds trivially. For G non-compact, sup- 
pose {Gn} given by (LHS). Since Gn .7  G, ~ (Gn) -+ oo. Without loss of generality, 
suppose v(Gn)/v(Gn+l) ~ �89 n -~ 1, 2 , . . . .  Choose g for (//1). Let 

An = Gn --  Gng -1 , Wn = ~ J A ~ ,  B = G --  Woo. 
i=1 

Then ( B g ) ( s G n ~  Gn- -Woog .  But A i g c G - - G t .  So 
n--1 ) 

Woog(sG~, =([.J___ A~g c~Gn = Wn-lg(sOn, 

whence (Bg) (5 Gn ---- Gn --  Wn- lg .  So v[(Bg) (5 Gn] >= v(Gn) - -  v(Wn-1).  But 

Wn-1 c Gn-1 (5 Woo ~ Gn-1 -- B (5 Gn-1 so that  

~[(Bg) (5 Gn] ~ v(Gn) - -  [v(Gn-1) - -  ~ , (Bn  On-l)] or 

(2.1) vn (Bg) > 1 v (Gn-1) [1 -- Vn-l(B)] > �89 + �89 Vn-l(B) 

But, by (LHS), [vn (Bg) - -  vn (B)[ --> 0. That is, given e > 0, there exists n (e) 
such that, for n > n(e), vn(Bg)  < ~n(B) + e. Whence, by (2.1), vn(B)  + e > �89 
-~ �89 rn-1 (B) for n > n (s), repeated use of which inequality yields 

~n(6)+m(B) > (1 -- 2e) (2 -1 + ..- + 2 -m) + 2-mvn(e)(B). 

So l iminf  vn(B) ~ 1 -- 2~. But e is arbitrary, therefore v n ( B ) - +  1. But BV~Gn 
= Gn --  Woo c Gn --  A n  : Gn (5 (Gn g-l) .  Whence v (Gn [{e, g}])/v (Gn) --> 1. 

(//1) ~ (P2). Define /n : %q,,/~(Gn). 

(//1) ~ (LHS1). Using In = gaJv(Gn),  it is readily seen that  the {Gn} in 
(//1) suffice for (LHS1). 

(//1) ~ (FW1). The {Gn} in (/71) suffice for all F of (FW1) because 

o~ [(~} u F ]  = O .  - U (o~ - o~  1-1) 
f~F 

and v ( G n -  G n ] - l ) / v ( G n ) - + 0  by (//1). 
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(P~) ~ (Hs). Define ~n(~)=  f/n(g)d~(g). 

(A3) -~ (A). G a-compact implies G ---- lim K~, K~ compact. Given (Gn} for 
C in (A3), define C~n : Ki  (~ Gn. Then Ckn is compact and v (Ckn)---> v (Gn). Choose 
(~n}, sn-->0 and take i(n) such that  Iv(Cl(n)n)--v(Gn)l  <~nv(Gn) .  Then 
Cn : Ct(n)n will suffice for (A). 

(A2) -> (A1). As for (As) -~ (A). 

(A~) --> (A2). G ~-eompaet implies G ---- lim Ok, O~ open, with 0i = Uk com- 
pact and C~ c 0k+1. By (A3), there exists (Gn(i)} such that  v(Gn(i))/v(Gn(i)Ck) 
-~ 1 as n --~ co. Choose (ei}, ek -~ 0 and take n (i) such that  

~(Gn(O (i))/~'(Gn(k)(i) Uk) > 1 -- ~ .  

Then Gn ~ Gn(o (i) will suffice for (A2) because any compact C is included in 
0i, and therefore in C~, for i large enough and GiC c GiCt, whence v(Gi)/v(GtC) 

1 - - ~ .  

(A) --> (AI). As for (A3) --> (A2). 

(H) -~ (HI). As for (A3) -~ (A2). 

(I t1)-~ (H~). The {0~} in (A3)--~ (A2) suffice, because, by (I-I1), there exists 
{Gn}, Gn closed, such that  v(Gn[Ci])/V(Gn) --> 1 as n --> co. 

(P) --> (P1). Define Ok and Ck as in (A3) -~ (A~). 

By (P), 3 {/ni} such that  

]l/n~ (gc) -- ]n~ (g) l d~, (g) -+ O uniformly 

for c ~ Ck. Choose {st}, st --> 0 and take n (i) such that  

f l /n(k)i(gc)--/n(k)i(g)[dv(g) < ~  for c e C t .  

Then/i----/n(O~ suffices for (P~). 

(C) -+ (A4). By [2], (C) implies there exists {tn}, tn --> 0% such that,  for every 
s >= O, v(lVt,)/v(Ns+t, ) --> 1 as n -+ co. Since N~ is a neighbourhood of e there 
exists an open neighbourhood 0 of e, 0 c ~r~. By the assumption that  G is con- 
nected and p. 62 of [12], G ---- lim Ot So, given compact C, there exists p such 
that  C c OPc N ~ c N ~ ,  the latter step by (C). DefiningGn = Nt,  a n d / ' n  = N~+t~ 
suffices for (A4) since G n C c l g t N p c l P  n and v ( N J / v ( N ~ + t ,  ) -->1 as n-~o~.  

For (J) ~ (FW), see p. 99 of [14]. For (M) ~ (P), see [25]. 

For (P)<=> (R), see [24]. For (J)<:~ (P), see [14]. 

For (M) ~ (J), see [19]. 

E~RSO~ and G ~ L ~ A ~  [29] have recently shown that  (HE) ~ (A) for any 
locally compact topological group. 

w 3. Counterexamples 

We firstly state for (P3), the counterpart of the theorem proved by l~EITEI~ [23] 
for (P). 
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Theorem (3.1). I / G  has (P3) then every discrete subgroup o/G has (P3) also. 
The proof follows l~eiter's proof in an obvious manner. 

The free discrete group with two generators, F, was used as a counterexample 
to the vacuity of their conditions by vo~ NEUN[ANN [20], DAY [3] and DI~UDON~ 
[5]. 

Likewise we have: 

Theorem (3.2). F does not obey (Pa). 

Pro@ We firs~ show that  F has (Pa) implies F has (P). Suppose gl, g2 are 
the free generators of F. Then there exist probability density functions {[n} such 
that  ~ [/n (ggi) - - / n  (g) l --> 0 as n -> c~, i = 1, 2. 

ge/~ 
An arbitrary compact set C in F is a finite set. Suppose g' e C and that,  in 

reduced form, g ' - -x~  . . . . .  ~-- ~-- -- x2 . . .x~,  x~ gl or g~, s~ ~: 1. Then 

I/-(gg') - / ~ ( g ) l  
geF 

k Xs--1 )] = ~ ~l[l~(gxi~...x:O- l~(gx~... ~o-1 

_-<y 
~ = 1  geF  

- - > 0  a S  n ----~ ~ . 

Whence ( /n)  suffices for (P). So F has (P3) implies • has (P). But  DIEUDONN]~ [5] 
showed that  F does not obey (P). 

From Theorems (3.1) and (3.2) it follows that  any G containing F as a sub- 
group does not obey (Pa). Such groups include SLn (R) and GLn (R), n ~ 2. This 
result clearly relates to (a) KvDo's suggestion [17] that  GLn (R), n ~ 2, did not 
have (A) (b) STV, IN's statistically based demonstration (p. 338 of [18]) that  
GLn (R), n ~ 2, could not have HS (c) the statistically based demonstrations of 
KI~FW~ [16] and STwI~ [21], w 5, of the non-vacuity of (//1) and (A). 

The proofs of most hitherto published eounterexamples to vacuity have been 
indirect, that  is, have rested on some extensive theory, either group theoretical 
or statistical. I t  is therefore of some interest to exhibit the following simple, 
direct proof that  F does not possess (Ha). Suppose that,  with gl, g~ the free gene- 
rators of F,  there existed {Gn} with v(Gn) ~ ~ such that  

(3.1) v(dn 5~ Gng~l)/~,(Gn) -~ 1, i = 1, 2. 

Since F is discrete, v is counting measure so that  Gn is finite. Suppose Gn has 
n(1, 1) elements ending in gl, n(1, -- 1) ending in g~l, n(2, 1) ending in g2 and 
n(2, --1)  ending in g~l with /V ~- n(1, 1) -~ n(1, - -1)  ~- n(2, 1) ~- n(2, --1).  
Then Gngl  1 has n(1, -- 1) ~- n(2, 1) -~ n(2, -- 1) elements ending in g~-l, while 
Gng21 has n(1, 1) ~- n(1, --1)  ~ n(2, --1)  elements ending in g~l. So, by (3.1), 

[n(1, --  1) -- {n(1, -- 1) Jr n(2, 1) -~ n(2, -- 1)}]/N -+0 and 

[n(2, --1)  -- {n(1, 1) ~- n ( 1 , - - 1 )  -~ n(2, -- 1)}]/N -+ 0 

implying the absurdity N / N  ~ O. 
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The conjecture in [27] tha t  the group UT (2) of non-singular upper triangular 
2 • 2 matrices does not have (H) is refutable by the demonstration (too extended 
to reproduce here) that  the sequence {Gn} with 

/ c ln- < lal < n '  Ibl < expn ' Icl > l' Icl > Ibl 

will suffice for (tI1) and afor t ior i  for (H). 

w 4. Statistical Implications and Conncxions 

All of the conditions in w 2 are satisfied when G is compact. So, in what follows, 
it will be understood that  G is non-compact. 

An account of the statistical relevance of the conditions (HS) and (LHS) is 
given in Chapter 8 of [18]. The probability distributions {Pn} in these conditions 
constitute an asymptotically right invariant sequence that  induces a similar se- 
quence of what may be considered prior distributions on O. The existence of such 
a sequence has the consequence that,  for certain testing problems defined for the 
invariant experiment, there is a minimax almost invariant test. 

PEISAKOFF [22] showed that  (111) and (T/) are involved in proofs of the s- 
minimaxity of the class of invariant decision functions, as well as in his corollary 
(2.7), which gives conditions for the minimaxity of the (invariant) quasi Bayes 
decision function generated by right Haar  measure as quasi prior distribution. 
The latter property is also proved by KUDO [17] under the assumption of (A). 
K I ~ F ~  adopts (//1) in [16] for similar purposes. STON~ [27] invoked condition (H) 
as a sufficient condition for a certain convergence justification of the use of right 
Haar  measure as quasi prior distribution. GR~NA~DnR [10], pp. 121 and 126, 
involves (GR) in connexion with applications of certain probabilistie limit theo- 
rems. 

We will now state three further statistical connexions: 

(a) First statistical interpretation o/(P3) and its negation. Consider a sequence of 
experiments {#n}, all referring to the same data space G, a locally compact topo- 
logical group. For all #n,  there is the same statistical problem, inference about 
a parameter 0 with three possible values represented by hypotheses: 

H0 : 0 ----- e, the identity element of G, 
HI:  0 = g l ,  gl~G, 
H2: O-----ge, g2eG. 

For each #n, the problem is of location parameter type with a probability density 
function. That  is, we suppose that,  under Ho, H1, H2, g has probability density 
functions ]n (g),/n (ggl),/n (gg2), respectively, with respect to right I taar  measure. 
When G has (P3), we know that  there exist (/n} such that  

(4.1) j'[/~ (gg~) - / ~  (g) [ d~(g) -+0 

i = 1, 2. The statistical implication of (4.1) is that  the experiments {#n} are 
asymptotically unin/ormative as n--~ c~. For instance, suppose we were to test 
Hi against H0 with critical (rejecting H0) region Cin and errors ~n ,  fiin of the 
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first and second kinds respectively. Then 

c~n -~ fi~n = ~ /n(g)d~(g) + (1 - -  ~ [n(ggdd~(g)) 

= 1 - f [1~ ( g g d  - In (g)] d~ (g) 
Gin 

->1 

by (4.1). But  ~ ~- fl = 1 is the characteristic of a completely uninformative test. 
On the other hand, if G does not have (P3), there do not exist {/n} such that  

{d'n} are asymptotically uninformative, tPor, if  (4.1) is not satisfied, there exists 
> 0 such tha t  for i ---- i* and for the subsequenee {#n*} 

~1/n* (ggt*) --/n* (g) l d~ (g) > ~. 

For #n*, the test  of Hi* against H0 using Cn*~* = {gI/n*(ggi*) >/n*(g)} has 

~i*n* + ill*n* -= 1 - -  ] [/n*(ggi*) - - / n * ( g ) ] d v ( g ) .  
Cn*~ $ 

But 

< 2 S I/n, (ggi,) - / , ,  (g)] d~ (g). 

Therefore ~i* n* ~- fli*~* < 1 - -  �89 2, showing tha t  the sequence {#n*} is not asymp- 
totically uninformative. 

(b) Second statistical interpretation o] (P3) and its negation. Suppose (Ps) holds. 
I f  x(g) is a bounded random variable then for gl,  g2 and associated {In} 

I .F/n (g) x (g gi -1) d~, (g) --  .~/n (g) x (g) d~ (g) l 
(4.2) = I]  [/n (ggd - - /n  (g)] x (g) dv (g)[ 

< ~ l i n (ggd  --/n(g)Idv(g) �9 sup x(g) 
(7 

---~0 

as n -*  oo. I f  we now interpret {In} as a sequence of prior probabili ty density 
functions on G then (4.2) states tha t  the difference between the prior expectations 
of x (g) and its translate through gi tends to zero for i = 1, 2. 

Now the latter must  be regarded as a natural  requirement for {In} to be 
regardable as an asymptotically uninformative sequence of priors. That  is we 
would not expect the expectation of any (bounded) random variable to be much 
affected by  the translations gi, i -~ 1, 2. On the other hand it is clear tha t  if (P3) 
does not hold then there exist gl, g2 such there is not a sequence of such asymp- 
totically uninformative priors with respect to all bounded random variables. 

(e) A wide sense Bayes link. Adopting the conventional formulation of (i) an 
observation x in some general space, whose distribution with density ](x[O) de- 
pends on a general parameter  0 ~ 0 (ii) a general decision space D = {d} and 
a real-valued loss function W(d, O) (iii) the representation of non-randomized 
decision function d (x) by  ~. 

Definition (4.1). With respect to some metric M (dl, de) we have "convergence 
in probabili ty to decision function (~" if there is a sequence of proper prior measures 
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{~n} on 0 wi th  corresponding s t r ic t  Bayes  decision funct ions  {~n} such t h a t  

(4.3) p l im M [d (x), dn (x)] ---- 0 
n-~c~ 

where, in  the  eva lua t ion  of  pl im,  x is given,  a t  each n, i t s  marg ina l  d i s t r ibu t ion  

f /(x[ 
Theorem (4.1). I] M (dl, d2) = sup0 (W (dl, O) -- W (d2, 0)1 is bounded then 

convergence in probability to 5 with respect to M implies 5 is wide sense Bayes. 

Pro@ Le t  R (7r, 8) denote  the  Bayes  r isk of  d wi th  respect  to  pr ior  3r. Then 

R(Trn, 5) -- R(Trn, 5n) <= E M[d(x), dn(x)]. 

So, i f  M is bounded ,  

p l im M [d (x), dn (x)] ---- 0 ~ E M[d (x), dn (x)] ->  0 
n- - -~  c o  

or ~ is wide-sense Bayes  wi th  respec t  to {~n}- 
The re levance  of  Defini t ion (4.1) and  Theorem (4.1) is t h a t  KVDO [17] showed 

tha t ,  under  cer ta in  condi t ions  which inc luded  (A), the  ( invar iant)  r igh t  H a a r  
decision funct ion,  for the  i n v a r i a n t  expe r imen t  in which G is i somorphic  to  para-  
me te r  space O, is wide-sense Bayes.  However  we m a y  t h i n k  of  convergence in 
p r o b a b i l i t y  to  decision funct ions  as a genera l iza t ion  of  the  defini t ion of con- 
vergence in p r o b a b i l i t y  of  pos ter ior  d i s t r ibu t ions  a d o p t e d  b y  STOS~ [27] for which 
condi t ion  (H) was invoked.  W e  thus  ob ta in  some ins ight  in to  the  need for con- 
d i t ions  (A) and  (H) in a p p a r e n t l y  different  areas  of  s ta t is t ics .  

Acknowledgement. The paper is a radical improvement of an earlier version by the first 
author thanks mainly to some helpful references from a referee. 
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