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Summary. Gaussian fields are considered as Oibbsian fields. Thermody- 
namic functions are calculated for them and the variational principle is 
proved. As an application we get an approximation of log likelihood and 
an information theoretic interpretation of the asymptotic behaviour of the 
maximum likelihood estimator for Gaussian Markov fields. 

O. Introduction 

For the statistical analysis of spatial data observed on a regular lattice two 
approaches have been used. One of them generalizes techniques of time series 
analysis and is based on a rather artificial unilateral innovation type repre- 
sentation (Whittle [19], Tjostheim [18]) or on periodic continuation of the 
data (Besag-Moran [5], Besag [4]). The other approach (Besag [3]) uses mo- 
dels of statistical mechanics, so called Gibbsian fields, where the conditional 
density given the field outside a finite set is considered. In this paper we want 
to push the second approach further since we believe that there are surpris- 
ingly many connections between statistical mechanics and statistical analysis: 
for instance both need an approximation of log likelihood, and F61hner [-9] 
discovered that the Gibbs variational principle can also be formulated in infor- 
mation theoretic terms which allow directly a statistical interpretation. 

More precisley our paper contains the following results: In Sect. 1 we recall 
the results of Rosanov [16] and Dobrushin [7] on Gibbs representation and 
phase transition of Gaussian fields. In Sect. 2 we prove the convergence of the 
thermodynamic functions and the variational principle. There exist already re- 
sults for more general real valued fields (Pirlot [14], Kiinsch [12]) but they do 
not cover all Oaussian cases and moreover in the Oaussian case the thermody- 
namic functions can be calculated explicitely and the proofs are easier. In 
Sect. 3 these results are applied to estimation problems: First we get a new and 
exact proof for Whittle's approximation of log likelihood. Later we specialise 
to the Markovian case where the maximum likelihood equations say that the 
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covariances of the fitted model should coincide with the sample covariances in 
a neighborhood of lag zero. As a kind of converse it follows from the va- 
riational principle that Gaussian Markov fields are the natural choice if we 
take only the covariances near zero into account because they have maximal 
entropy. The variational principle implies also that the maximum likelihood 
estimator asymptotically minimizes the information gain of the true model 
with respect to the fitted model. The relation of this with Akaike's information 
criterion AIC is sketched. Finally we show in t h e  last section that the co- 
variances of an arbitrary field coincide with the covariances of a Gaussian 
Markov field for lags near zero if and only if the dimension of the lattice is 
smaller than three. This is closely connected with the absence of phase tran- 
sition in dimension one and two. 

Acknowledgement. I wish to express my gratitude to H. FiSllmer and F. Hampel for their constant 
encouragement and advice while I was writing my Ph.D. thesis were these results are taken from. 
Thanks are also due to B. Ripley for useful comments, to X. Guyon who drew my attention to the 
importance of the difference between biased and unbiased sample covariances and to the referee 
who helped me to improve Theorem (2.11). 

1. Gaussian Random Fields as Gibbsian Fields 

By a random field we mean a stochastic process indexed by the d-dimensional 
lattice 2~ d, i.e. a family of random variables (X~)i~d or equivalently a probability 
measure v on the configuration space (IR) zd. A random field will be called 
stationary if all finite dimensional distributions are invariant under translations 
of the index set 2g d. 

Let v be a stationary Gaussian field with mean value 0 and spectral density 
f (x) ,  x ~ [ - n ,  rc] d, satisfying 

[akl < oO where ak=(2rc)-d Sf(x)  -1 e x p ( - i k x ) d x  
(1.1) k ~  

(in particular S f ( x ) -  1 dx < c~). 

Since f ( x )  = f (  - x), we have a k = a_k. 
Now we put C=ao 1 and ~ - - - - a k / a  o. Then it is straightforward to see that 

R k = E (XIX i +k) ---- (27r)-d ~f(x) e ikx dx satisfies 

(1.2) R k -  ~ c~jRk+j=C30k 
j4:0 

which is equivalent to 

(l.3.a) E(X~IX~, j :~i)= ~ ~jX~+~ and 
j , o  

(1.3.b) E ( X ~ -  ~ ~jX~+)2=c.  
j , o  

(The sum ~c~iX~+ j converges a.s. and in L1). 
J 
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Since the conditional distribution of a Gaussian family is again Gaussian, it 
follows from (1.3) that the conditional distribution of X~ given Xj=xj,  j:t=i, has 
the density 

(1.4) rc~(Y I x) = Z i ( x  ) - 1  exp ( - �89  y2 + 2 ~ a k yx i +k)) 
k:# O 

where the normalizing constant Z~(x) is equal to 

(2~)l/2exp ( l  ~o(k~,oakX~+k)2)ao~/2. 

We can calculate the conditional expectation and distribution not only for 
single points but also for arbitrary finite sets: 

(1.5) Theorem. Let v be as above. Then we have for any finite set V~_gd: 
E(X~IXj, jCV)=~ hvXj (ieV) and E [ ( X ~ - ~  hvXj) (X k - ~  hkV Xj)]=gi v 

jCV jCV jCV 

where gV is the matrix inverse of (ai_j)i, je v and h v= - ~ v glk a j - k .  
kEV 

The conditional distribution of X~, i~ V, given X j= xj,jr V, has the density 

~V(ylx)=Zv(x)-l exp(-�89 ~ ai_jyiyj+2 ~ al-jyixj)) 
i, jeV ieV, jCV where 

Zv(x) = (2~) Ivl/2 exp (�89 ~ g~( ~ aj_k Xk)( ~ ai-a Xk)) det (a i_;)- ~/z. 
i, j ev  kCV key 

Proof. Either one uses the fact that the z f  are determined by the ~J and cal- 
culates then the conditional expectation and covariance from the zc V (see Dob- 
rushin [7] for this approach), or one calculates first the conditional covariance 
and the conditional expectation from Eq. (1.3), then the formula for ~v follows 
immediately (this approach is used in Spitzer [17] and Ktinsch [11]). [] 

In statistical mechanics one studies usually the set of all random fields for 
which ~la~_j] ]Xjl converges a.s. and for which ~V(yJx)dVy is a version of the 

J 
conditional distribution given Xj,jr V. We denote this set by ~r It has been 
described completely by Dobrushin [7]: Every field in N(~) is a mixture of 
Gaussian fields with covariance Cov(XiXi+ k) =(2r0-dSf(x)eik~dx and a mean 
value E(Xi)=m~ satisfying ~ ajm~_j==-O. This equation has in general many 

j e ~  d 

non constant solutions which means that there are non stationary fields with 
translation invariant conditional distributions. If ~ ak~0, i.e. f (0 )<oo ,  then 

keZ d 

the only constant solution of the above equation is mi-O, nevertheless it is 
possible by a mixture of non stationary fields to have several stationary fields 
in N(~): for instance Rosanov [16] has shown that a stationary Gaussian field 
with mean 0 is in N(7:) iff the spectral measure is (2rc)-d(~akei~X) -1 dx+dFs(x) 

k 
where dF~(x) is an arbitrary measure concentrated on {x, ~ a k e ~ =0}. Howev- 

k 
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er it can be shown that there is only one stationary field in if(re) with finite 
second moment iff ~ake  ikx has no zero's, i.e. if f (x) is bounded. If ~q(rc) con- 

k 
tains more than one (stationary) field, we say that (stationary) phase transition 
occurs. In the statistical part we will mainly deal with the case where all but 
finitely many a k =0. Because then the conditional density zc v depends only on 
finitely many Xj,j(s V, the fields in ~f(rc) are called Markovian. 

We close this section with a result on the convergence of gV which we will 
need later. 

(1:6) Theorem. gj~, V finite, converges for fixed j and k to Rj_k:(2n) -d 
�9 ~exp( i ( j -k )x) f (x )dx  in the sense that for any e>0  IgVk--R~_k[<g for all 
V~ Vo(e,j , k). 

Proof, Since IR is complete, it is sufficient to prove convergence for all increas- 
ing sequences V,'FTZe. By the martingale convergence theorem E(Xj] X i,i6V.) 
converges in L 2 to E(X~INo~) where Noo=~a(Xi ,  i6V,). That N~ is trivial 

modv follows from Theorem 1 of Rosanov [~6] or also from Theorem 2.1 of 
Preston [15]. Therefore the assertion follows because g~ is the conditional 
covariance given Xi, i$V. [] 

2. Thermodynamics of Gaussian Fields 

We fix a spectral density f(x) satisfying (1.1). Unless stated otherwise v denotes 
the Gaussian field with mean 0 and spectral density f(x). In analogy to statisti- 
cal physics the function 

(2.1) E 
i, jeV 

is called the energy of the configuration x in the domain E In order to get a 
function independent of I/; we will divide U v by the number of points 11'I and 
take the limit as V increases to ~d. Other thermodynamic functions will be 
defined in a similar way and relations between them established. For simplicity 
we consider only the sequence of boxes V,= I-n, n] d, but the results are also 
true for more general sequences like the ones considered by Nguyen-Zessin 
[13]. 

(2.2) Theorem. Let # be stationary with Ev(X/2)<oo. 7hen (2n+l)-aUv,(X) 
converges #-a.s. and in Ll(d#) to �89 akE,(XoXklJ  ) where J denotes the a-field 

k 

of invariant events. I f  especially # = v, then the limit equals �89 

Proof. By the d-dimensional ergodic theorem (see e.g. Dunford-Schwartz [8], 
VIII, 6.9) ( 2 n + l )  -a }-" X i ~ ai_aX J converges a.s. and in L 1 to 

i~Vn jeZ  a 

~akE(XoXkl  J). In order to show that 2(2n+ 1) -d Uv~(X ) has the same limit, 
k 

we observe that for k < n 
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(2n+l) -a l  ~ Xi ~, ai_jXj[ 
ieV,~ jCV,~ 

< ( 2 n + l )  -d ~ ]Xi[ ~ lai_j[[Xjl 
iCVn j ~ Z  d 

i C V n - ~  

+ ( 2 n + l )  -a ~ IX~l ~ [a~_jllSjl. 
i~V,, - k  li - J l  >k  

The first expression converges for every fixed k to zero since by the ergodic 
theorem 

lim(2n+l) -e ~ ~=E(Yol~)=lim(2n+ l) -d ~ 
n ieVn tl i~Vn - k  

for any stationary random field (Y~) with E[ Yd < oe. Applying the ergodic theo- 
rem once more we see that for fixed k the second expression converges to 
E( ~ [@lXoX~l[J ). But this last expression is arbitrarily small since 

IJJ > k 
I@[XoX~[ converges to zero for k going to infinity and is bounded 

IJl>k 
by the integrable function ~ lajI [Xo Xj[. 

J 

The last assertion of the theorem follows from the fact that J is trivial 
modulo v and from Eq. (1.2). [] 

(2.3) Remark. The arguments used here are very similar to the ones used by 
Nguyen-Zessin [13], and the theorem follows also from their results. 

(2.4) Definition. For a stationary random field # with Eu(X~)<oo we define 
the energy e(#) as lim (2n + 1)-a Eu(Uv~(x))=�89 akEu(X o Xk). 

n k 

We consider now the conditional density rcv of v given the values of the 
field outside V(see Theorem (1.5)). First we prove 

(2.5) Theorem. The l im(2n+l)-alogZv.(O) exists and equals �89 

+ (2~)-a ~ log (f(x)) dx) (0 means the boundary condition identically zero for all 
jCV). 

Proof. We consider the following family of spectral densities f(x,O)=(a o 
+O~akeikX) -1 (OGO< I). Because of 

k*0  

(2.6) f (x, 0) <= max (a o 1,f (x)) 

f (x ,  0) is really a spectral density, and we denote the corresponding Gaussian 
field by v 0. gV and Zv(x ) are now also functions of 0. 

From the rules for the derivation of a determinant and the definition of gV 
and Zv(O ) it follows 

( 2 . 7 )  d l o g Z v ( O ,  0)= - �89 ~ v = g il ai-2 -- �89 0-1 (I V[ - a o Z giV) �9 
i :# j  i 



412 H. Kiinsch 

The convergence of gv (Theorem (1.6)) and translation invariance imply there- 
d d  

fore that (2n+ 1)- ~-01ogZv,(0, 0) converges to 

-�89 5 0-1(1 - aof (X, 0)) dx = -�89 -d ~ ~ ak e~k,f (x, O) dx. 
kmO 

By Schwartz inequality ]gV(0)]~ v v 1/2 (gii(O)gj~(O)) <E~o(X~), so it follows from 
(2.6) and (2.7) that 

log Zv(O, O) <�89 E~o(X ~) ~ lakl[VI < c o n s t .  4v . 
k4=O 

Integrating with respect to 0 and using dominated convergence we see that 
(2n + 1)-a logZv~(O, 1) converges to 

1 

a e~k~CtX O)dxdO). � 8 9  ~ k J ,  , 
0 k ~ 0  

Therefore with Fubinis theorem 

lira (2n + 1)-a log Zv.(O ) = �89 (2~z) + (2 ~)-d ~ log (f(x)) dx). [] 
n 

(2.8) Definition. We denote lira (2n+ 1) -a logZv,(0 ) by p. In statistical physics 
tl 

it is called the pressure. 

If/~ is a random field and if the distribution of X~, ieV, has a density we 
denote it by #v(X). 

(2.9) Theorem. I f  f(x) is in addition to (1.1) also bounded, then (2n+ l )  -a 
�9 (logvv,(x)-logrcV"(xlO)) converges #-a.s. and in Ll(dp) to zero for any stationary 
field # with Eu(X~) < oo. 

Proof By the definition of the conditional density Vv(X)=~rcV(xly)v(dy). 
Therefore we have 

(2.10) 
vv(x)/ V(xlO) 

= ~ e x p ( -  Z a i - j x l y j - � 8 9  Z gV(Z ai-kYk)'(Z aj_pyp))v(dy). 
ieV i, j eV  keV p(~V 
jev 

So by Jensen's inequality 

l~ vv(x)-logrcV(xlO) > -�89 Z gi v Z ai-kaj-pRk-p" 
i, j s g  k, peV 

Now Theorem (1.5) shows that 

E g, aj_pRk_.=Ev(E 
jeV, p6V peV 
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and therefore log Vv(X )- log ~zV(x f 0) > - const. ~, lai-k[" With the same argu- 
IEV, kr  

ments as in the proof of Theorem (2.2) we see that this lower bound is of the 
order o(nd). 

For an upper bound we notice that gV is positive definite, so from (2.10) 

log Vv(X )- log ~zV(x [0) <log ~exp ( -  ~ ai_ J x i y) v(dy). 
i~V, j•V 

For a Gaussian random variable Z we find by direct computation E(exp(Z)) 
= exp (E(Z) + 1Var (Z)), therefore 

logvv(x)-logz~V(x]O)<�89 ~ XiXk • ai-jak-pRj-p 
i, k~V j,  peV  

=�89 Z (Z  x ia i - ) (Zx la i -p )Rj -p  
j ,  p(W i~V i~V 

<�89 Z ( Z  xi ai_j) 2. 
x jCV i~V 

This upper bound is also of the order o(n d) since with Y/= ~ [ai_klIXkl we 
have: keZa 

2 ( 2  Xial-.i) 2< 2 IXillal-jlrj 
j e V  IEV ieV, j(:V 

< E IX~l E [ai-jl YJ + E [Xi[ E la~_j[ Yj, 
i s V m r  j~Z a ieV~ k [ i - j l > k  

and we can repeat the arguments of the proof of Theorem (2.2). [] 

Without the condition of a bounded spectral density, it is much more dif- 
ficult to prove the above theorem�9 This has to do with the fact that then the 
so-called superstability condition is violated, see Kiinsch [12], Example 
(1.12)i). We will have to impose a stronger condition on the decay of the a k 
than just summability. 

(2.11) Theorem. Suppose that the spectral density f(x)  is such that 
]akl <const. I kl -~ for 7> 3d/2, and let v be any stationary Gaussian field in (~(r O. 
Then for any stationary f i e l d . #  with Eu(X{)<oo (2n+l)-e(logvv,(x) 
- l o g  zcV"(xlO)) converges to zero /~-a.s. and in Ll(dkt ). 

Proof The lower bound is proved as in the previous theorem, but for the 
upper bound we need a different argument: It is obvious that all eigenvalues of 
(ai_j)i,j~ v are <~]ak], and therefore all eigenvalues of (g~) are bounded below. 

k 

Therefore it follows from (2.10) that for every k <n  

Vv.(X)/~zV"(xJO)<~exp( - ~ xi ~ ai-iY) 
ieVn - k jC'Vn 

�9 exp( 2 (Ixi]l 2 ai-~YjI-C( 2 ai-jyj)2))v(dy). 
izVm CV~ - k  j z V n  jCVn 
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Estimating the second factor of the integrand by its maximum and then apply- 
ing the same argument as in the proof of (2.9) we find 

1log Vv,(X) - l o g  zcV"(x I 0)[ < const. ~ x { 
i+Vn,  r  - k 

x, 2 Ix l Z la,-/) 
i e V n  - k j C V n  i e V n  - k j $ V n  

We choose now k = k ( n ) = n :  with d ( 2 y - 2 d ) - l < c t < l .  Then the first and the 
second term above are of the order o(n a) by similar arguments as in the proof 
of (2.2). The third term is bounded by 

( ~ Jail)z( 2 ]xi]) 2<c~ k(n)Z(a-~)(Z Ixil) 2 
IJl > k(n)  i e V n  i ~ V n  

< const, n d. n2~(a-~)+a((2n + 1) -a ~ IXil) 2 
i e V n  

which is of the order o(na). [] 

Before we can state now the main results of this section, we need two more 
definitions: 

(2.12) Definition. Let ~t be a stationary field with E~(x{)< oe and such that the 
density #v(X) exists. Then we define the entropy s(#) of # to be the l im(2n+ 1) -~ 
�9 E,( - log#v,(X)) .  A general result of Ruelle (see e.g. Preston [15], Theo- 
rem 8.1) says that this limit always exists (it can be equal to - ~) .  

(2.13) Definition. Let # and v be stationary fields for which the densities #v(X) 
and Vv(X ) exist. Then we define the information gain h(/~, v) of # with respect to 
v to be the lim(2n + 1)-aEu(log (#v,(X)/Vv,(X))) if the integral and the limit exist. 
Otherwise we put h(~, v)= + ~ .  

(2.14) Theorem. Let f (x )  be a spectral density which is either bounded and sat- 
isfies (1.1) or lakl <const.  [kl -~ for 7> 3d/2, let v be a stationary Gaussian field in 
N(rc) and let tt be any stationary field such that E~(X~)<o% the density #v(X) 
exists and s(#)> - oo. Then 

i) e(v) - s (v) = - p = inf(e(t0 - s(#)), 
# 

ii) s(v) is equal to �89 + log (2~) + (2~z)-a ~ log (f(x)) dx), 
iii) (2n + 1)-a log Vv(X) converges v-a.s, and in L 1(dr) to �89 ~ akE~(X o X k l J  ) + p, 

k 

iv) h(#, v)=e(l~)--S(l~)+p. I f  I~ is Gaussian with mean 0 and spectral density 
g(x) satisfying the same conditions as f(x),  then h(l~, v)=~(27c)-a ~(g(x)/f ( x ) - i  
- log (g(x)/f(x))) dx. 

Proof. The inequality e ( / 0 -  s(#)->_-p follows from J ensens inequality, see Pit- 
lot [14]. All other assertions follow from the previous results, observing that 

log Vv(X ) = - log Zv(O ) - Uv(x) + (log Vv(X)- log nV(x I 0)). [] 

(2.15) Remarks. i) is one direction of Gibbs variational principle. For  the con- 
verse (i.e. every /~ for which e ( # ) - s ( / 0 = - p  is in ~(n)) see Preston [15], 
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Sect. 7, and Ktinsch [12]. iii) is a d-dimensional version of the theorem of 
McMillan and Breiman. i) and iv) imply that in particular h(#, v )=0  if also # is 
in ~(re). i) and ii) can also be proved if only condition (1.1) holds: Theorems 
(2.2) and (2.5) were already proved under this condition, and then one can 
proceed generalizing Pirlots arguments in [14] slightly. However we do not 
know if iii) and iv) for which Theorem (2.9) or (2.11) are used remain true 
under the weaker assumption (1.1). It would be very interesting to find a spec- 
tral density f (x )  for which the statement of the Theorems (2.9) and (2.11) does 
not hold, but we have no idea how to construct such a counterexample. 

3. Estimation Problems 

Let (X~)i~atd be a stationary Gaussian field with mean 0 and spectral density 
f(x,O) depending on unknown parameters 060_clR Jv and suppose we have ob- 
served the field in the box l ~ , = [ - n , n ]  d. We treat here the problem how to 
estimate 0 from that sample. For  this we want to use some approximate maxi- 
mum likelihood estimator. If f (x, 0) is bounded and satisfies (1.1) or if f (x, 0) is 
such that J ak[ < const, t kJ-~ with 7 > 3d/2 for all 0, we have from Theorems (2.5), 
(2.9) and (2.11) 

(3.1) - 2 (2 n + 1) -d log Vv, (x, 0) = log (2 re) + (2 re) -d ( log ( f  (x, 0)) dx 

+ ~ a k (0) C k + o (1) = log (2 re) + (2 re) - e S (log ( f  (x, 0)) + I (x)/f  (x, 0)) dx + o (1), 
k 

where 

(3.2) C k = ( 2 n + l )  -e ~ XiXi+ k with V,,(k)={ieV,, such that i+kcV,},  and 
i~Vn(k) 

(3.3) I ( x ) = ~  Ck eikx 
k 

are the sample covariances and the sample spectral density. This approxima- 
tion was first given by Whittle [19], but it seems us difficult to make his justifi- 
cation exact, see also Guyon [10], Sect. 5. Our arguments here are exact, but 
completely different. 

To the same degree of accuracy we may also use instead of C k the unbiased 
sample covariances 

d 

C t =  ( l - l (2n+l-[ki l ) )  -1 E XiXi+k (k=(kl  . . . .  ,ka))" (3.4) 
\ 1  i~Vn(k) 

The differences will later become important. 
In the following we specialise to the Markovian case where all a k are un- 

known. Because we must have G = a k ,  we can write 

(3.5) f (x ,  0)=(  ~ O k cos (kx)) -*, 
keM 
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where M is some finite subset, M~0 and M___{i<0} (-<_denotes the lexicog- 
raphic order on 7Zd). The admitted parameter set is then O---{0~IR IMI, 

0 k cos (kx)> O, ~f(x, O)dx < oe }. We denote the interior of O by O. 
k~M 

Taking derivatives of (3.1) gives the following equations 

(3.6) (2zc)-d~cos(kx)f(x, O)dx = C k, keM, respectively 

(3.7) (2~)-a~cos(kx)f(x,O")dx= C*, k~M. 

These equations appear for the first time in Besag [3], he used Whittle's result. 
They say that the covariances of the fitted model should be equal to the sam- 
ple covariances for lags kEM. 

The asymptotic behaviour of 0 - also in cases when the true distribution is 
not a Gaussian Markov field - are obtained easily. Let �9 denote the mapping 
O~IR IMI given by q~k(O)=(2~)-e ~ cos(kx) f (x, O)dx, kEM. Then we have 

(3.8) Theorem. Let i~ be stationary such that E~(X{)<oe and J is trivial 
modg.  I f  there is a 0~ with ~k(O~ then this 0 ~ is unique and 
O defined by (3.6) or (3.7) converges/~-a.s, to 0 ~ 

Proof. ~ is differentiable in O with Jacobian 

(3.9) d~k = -- (2re) -d ~ cos (kx) cos (jx)f(x, 0) 2 dx. 
dOj 

Therefore 
~, dq}k 

j, k~M ck dOT c5 ----- -(2re)-d s ~ ck cos (kx)) 2 f(x,  0) 2 dx, 

and because the zeros of a trigonometric po lynomia lS0  have Lebesgue mea- 
sure zero, the Jacobian is strictly negative definite. The uniqueness of 0 ~ fol- 
lows then by standard arguments and the convergence of 0 holds because C k 
and C~ converge to Cov~(X 0Xk) by the ergodic theorem. [] 

We postpone the question when there is such a 0 ~ to the next section. With 
the variational principle of Theorem (2.14) we can interprete the above result. 
Fix a 0~ and put Rk= ~k(00). We then consider the following sets 

~ 1  = {# stationary, Eu(X i Xi+k)=R k for keM, s(#)> -Go}, 
~ 2 = { v  stationary, Gaussian, E~(Xi)=0 , with spectral density ( ~  Ok coskx) -1, 

kEM 

0~O}, and let VoE~ 1 c~M 2. 

(3.10) Theorem. i) S(Vo)=Sup {s(~), ~ J g l } .  
ii) For any g ~ l  h(tz, v0)=inf{h(/~, v), v~Jg2}. 

iii) For any v ~  2 h(vo, v)=inf{h(/~, v), #eJgl}.  
(s and h are the entropy and the information gain as in (2.12) and (2.13)). 

Proof. For 0EO we denote by e0(" ) the corresponding energy. First we observe 
that e0(/~ ) is the same for all #eJg~. Therefore i) follows from (2.14) i). iii) 
follows from (2.14) iv) and from the first assertion of this theorem. Furthermore 
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using again (2.14) i) and iv) we have: 

h(~, v) = eo(#) - s(l~) + Po = eo(Vo) - S(Vo) + Po + eo (Vo) - s(/~) - eo(Vo) 

+ S(Vo) = h(v o, v) + %(#)  - s(#) +Po = h(vo, v) + h(kt, Vo). 

So ii) is also proved because h is always nonnegative. [] 

(3.11) Remark .  The same results in the case of independent observations of a 
k-dimensional Gaussian sample were given by Dempster [-6]. 

The entropy is a measure for the simplicity of a distribution whereas the 
information gain measures the goodness of fit. The intuitive meaning of Theo- 
rem (3.10) is therefore as follows: 

i) If we take only the covariances of lags k ~ M  into consideration, we 
should choose the Gaussian Markov field Vo. 

ii) Maximum-Likelihood gives asymptotically the best fit to the true model #. 
iii) If we use wrong information on the covariances, the Gaussian Markov 

field v o gives the best fit provided the true model is also a Gaussian Markov 
field. 

In practice the set M is not known, and so one will fit the parameters for 
different M's and then choose the final M by a criterion which depends also on 
the sample X i ,  i ~ V  n. We remark that this results also in smoothing the sample 
covariances and estimating the spectral density. Akaike [-1] proposed a general 
rule for this type of problems, namely to minimize the so-called Akaike infor- 
mation criterion (AIC). In our situation it says to select that set M for which 

(3.12) ~ 0~. C~- (2~)  " i l o g ( ~  t ) ~ c o s ( k x ) ) d x + 2 i M l ( 2 n + l )  -d 
k~M k~M 

is minimal. We briefly sketch its justification because the basic idea is to 
choose the information gain h(/~, ~ )  as loss function for fitting the model vM 
to the true model ~. The risk function is then E(h(# ,  vM)) (expectation with 
respect to the distribution of the estimated parameters). We are going to show 
that the above rule means to choose that set M which minimizes an unbiased 
estimate of this risk function. 

In order to make computational progress, we assume that the true model # 
is stationary and satisfies 

(3.13) E,(X/2)<o% and for all M considered there is a 0M'~ ~ with R k 
= Covu(X ~ Xk ) = qbk(O M, o), k 6 M .  

(3.14) ( 2 n + l ) d / 2 ( C * - - R k ) ,  keT l  d, is asymptotically normal with mean 0 and a 
certain covariance Iik. 

From now on we always use the 0 M defined by (3.7). From (3.14) and the 8- 
technique we see immediately that (2n + 1)d/2(OM--o M' 0), k c M ,  is asymptotically 

normal with mean 0 and covariance matrix ~ 0 - )  r \~0 ] . So applying the 

b-technique again and using that Rk=dPk(O M' 0) we find 
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h(#, ~)= �89  Z OkMRk--S(g)--�89 ~Iog( Z Off cos(kx))dx 
k e M  k~M 

o O~k O~ 0 M =h(#,v~ )~O~j( J - -  J '~ 

So the risk function is asymptotically equal to 

(/_0~]-~r) (2n+ 1)-". h(g,v~188 trace \ \  ~0] 

Finally in order to estimate h(#, v ~ unbiasedly, we observe 

Z 0~ c~ -(2~)-d S log ( Z 0~ cos (kx)) dx = Z 0~, o c~ 
kEM k e M  k~M 

-(2.)-"Slog( Z 0~ '~ cos(k~))dx+ Z (0~-o~'~ 
REM k~M 

04~k ~ M 0 -�89176 -0~ ,  )+o((2n+ 1)-a). 

Therefore because 

C~-R~= Z ~-(Oj -Of'~ 1)-~/:t, 
j s M  

Z O~ c*-(2~) -" ~ log ( Z O~ cos (k~))dx 
keM k~M 

+ �89 trace ( (t?~ ] -  1F 1 (2n + 1) -a 
\\~o] ! 

will be an asymptotically unbiased estimate of ~ 0~a,o Rk_ (2r~)-a 
k~M 

~log( ~ 0~ '~ cos(kx))dx, s(#) is independent of M and need not be estimated. 
kEM 

So taking all these results together we see that we have to choose that M for 
which 

Z OffC[ -(2n)-a~log( Z 0~ cos(kx))dx 
keM k~M 

( [ _ 0 r  F) (2n+l)-a  +trace 
\ \  gO l 

is minimal. Off course F is still unknown, but Theorem (3.13) below shows that 
Fkj=2(2rO-a~cos(kx)cos(jx)g(x)2dx if the true model # is Gaussian with 
spectral density g(x). Therefore (3.12) is justified if the true model is Gaussian 
and the spectral density can be well approximated by a density of the form 
( ~ Ok cos(kx)) -1. 
k e M  

(3.13) Theorem. Let # be stationary Gaussian with mean 0 and spectral density 
g(x). I f  ~ I~ cos(k x) g(x) 1/2 dxl < o0, then (2n + 1)e/2(C~--Rk), keZ d, is asymp- 

keTg d 
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toticalIy normal with mean 0 and covariance matrix 2(2rc)-a~cos(kx) 
cos(j x) g(x) 2 dx. I f  in particular g(x)- 1 = ~ Ok cos(k x) > 0 the above condition is 
satisfied, k~M 

Proof g(x)-l/2 elkx, k E Z a ,  is a complete orthonormal system in 

L2((2~z) -1 g(x)dx). This implies that we can represent X i as ~ gkUi+k with (211 
k~2L a 

i.i.d..A/(0, 1) and gk=(27Z) -1 ~cos(kx)g(x)i/2dx. The proof can then be carried 
over from the case d =  1 (Anderson [2], 8.4.2) without any difficulties. Finally 
let g ( x ) - l =  ~ OkCOS(kx ) and put c=infg(x) -1, C=supg(x) -i .  Using the 

keM 
power series for z -1/2 at (C+c)/2 it is easily seen that in this case the gk decay 
even exponentially. []  

(3.14) Remark. For Theorem (3.13) and the justification of the AIC it is im- 
portant to use C* instead of C k because E(Ck)=Rk4-O(n-i), so this bias can 
be much bigger than the random fluctuations and the correction terms in the 
AIC. See also Guyon [10]. 

4. Existence of Solutions of the Maximum Likelihood Equations 

As we have seen in Sect. 1 there exist more than one stationary measure in 
(r with E(X/2)<oo i f f f (x )  -1 has zeros. In the Markovian case, i.e. when 
f (x )  -1 is a trigonometric polynomial, f (x)  -1 can have zero's iff the dimension 
of the lattice is bigger than two. This is easily seen as follows: I f f (xo)  -1 =0, 
then x 0 is a minimum of f - 1  and therefore by the Taylor formula 
f(x)- l=<const .  IlX-Xoll 2 near x o. But I[X-Xol I-2 is integrable only in dimen- 

1 d 
sions >3.  The example f ( x ) - l = l - - ~ k  ~ COSX k shows that zero's can really 
occur for d__> 3. = 1 

This phenomenon is also the reason that the equation ~k(O)=Rk 
=(2re) -a ~COS (kx)g(x)dx (keM) does not have a solution for an arbitrary spec- 

tral density g(x) if d>3 .  Namely take M =  i=(i 1, ..., id), i<O, ~ [ik]--<l and 
k=l  

Rk=PR o for O+keM and [p] <1. By symmetry reasons we must have Ok=--O 1, 

<_1 Moreover ~bk(O)/~o(O ) is a con- O+keM, and 0cO iff 0o>0  and [01/0o1= d. 

tinuous function of 01/0 o by (2.6), so the range of possible nearest neighbor 
correlation is a closed subset of ( -  1, + 1). 

We are now going to show that solutions of ~k(0)=Rk always exist for 
d < 2 because then f ( x ) -  1 cannot have zero's. 

(4.1) Theorem. I f  d < 2, then for any finite M and any spectral density g(x)~ 0 
cDk(O ) = R k = (2~z)-d ~ COS (kx) g(x) dx (keM) has exactly one solution. 

Proof Uniqueness was already proved in Theorem (3.8). Let W be the set of 
possible covariances R k ,  keM. We are going to show here that t?~0(O)c~W=0 
which implies the existence of a solution because Wis connected and ~(O) is 
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open. Assume that there is a (Rk)k~Me04~(O) C~ W.. Then there is a sequence (0 n) 
__O such that lim~k(O'~)=Rk and pk=limO~O~o exists. If we put P(x) 
= ~, pkCOS(kX), then we have for any e > 0  

k~M 

Z PkRk i f (x) (Z cos(kx)) -1 
(P(x)g(x)dx _ k ~  = l i m  k~M 

5g(x) dx R o ~. ( E 0~/OnO COS (kx ) ) - i  dx 
keM 

_= ~ + (lira inf , (  ~ 0~/0g cos (kx)) -1 dx)- 1, 
kcM 

because P(x)< ~. 0~]0"o cos(kx)+e for n big enough. Because (Rk)~q~(O) and 
keM 

Ro:4:O, P(x) must have at least one zero. Therefore with Fatou's lemma and 
because e was arbitrary we have ~P(x)g(x)dx=O. But this leads to a con- 
tradiction because P(x) is zero only on a set of Lebesgue measure zero. [ ]  

(4.2) Remark. The biased covariances C k, keTL d, are strictly positive definite iff 
X i~_ O, so (3.6) has always a solution for d <2 .  This need not to be true for the 
unbiased covariances. 

Finally we remark that all the results in this paper can be generalized also 
to Gaussian random fields with values in ]R k without any major difficulties. 
Details are given in the authors Ph.D. thesis. 
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