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Summary. The problem considered is sequential estimation of the mean 0 
of a one-parameter exponential family of distributions with squared error 
loss for estimation error and a cost c > 0  for each of an i.i.d, sequence of 
potential observations X 1, X 2 . . . . .  A Bayesian approach is adopted, and 
natural conjugate prior distributions are assumed. For this problem, the 
asymptotically pointwise optimal (A.P.O.) procedure continues sampling 
until the posterior variance of 0 is less than c(ro+n ), where n is the sample 
size and r o is the fictitous sample size implicit in the conjugate prior 
distribution. It is known that the A.P.O. procedure is Bayes risk efficient, 
under mild integrability conditions. In fact, the Bayes risk of both the 

optimal and A.P.O. procedures are asymptotic to 2Vo]/C, as c--,0, where V o 
is the prior expectation of the standard deviation of X 1, given 0. Here the 
A.P.O. rule is shown to be asymptotically non-deficient, under stronger 
regularity conditions: that is, the difference between the Bayes risk of the 
A.P.O. rule and the Bayes risk of the optimal procedure is of smaller order 
of magnitude than c, the cost of a single observation, as c ~ 0 .  The result is 
illustrated in the exponential and Bernoulli cases, and extended to the case 
of a normal distribution with both the mean and variance unknown. 

I. Conjugate Prior Distributions for Exponential Families 

Let ~ be an interval and let F~, co~2, denote a non degenerate exponential 
family of probability distributions on the Borel sets of ( - o  e, oe): that is, 
suppose that 

dF~(x)=exp{c~x-t)(co)} d2(x) + o e < x < ~ ,  coef2. 

Here f2 denotes the natural parameter space of the family; and f2 is assumed 
to be open, say O=(o0, (5), where - o e  N_m<&< oe. The distributions Fo, coef2, 
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are mutually absolutely continuous. Their common closed convex support is 
denoted by X; and the interior of X is denoted by X ~ It is well known that if 
X is a random variable with distribution Fo, where coef2, then the mean and 
variance of X are E~,(X)=~'(co) and D~(X)=~"(co). The mean is of special 
interest here and is denoted by 

0=g/(co), 

throughout. It is easily seen that 0 = ~ '  is a strictly increasing function from ~2 
onto X ~ so the distributions Fo,, coe~, could be parameterized by 0 as well as 
co. See Lehmann (1959, Sect. 2.7) for the elementary properties of exponential 
families, and Barndorff-Nielson (1978) for a more detailed discussion. 

Diaconis and Ylvisaker (1979) have given an interesting characterization of 
conjugate prior distributions for exponential families. If r o > 0  and #oEX ~ then 

0 < c(r o, #o) = 5 exp {r o #o co - r o ~(co)} do) < m ; 
f2 

SO, 

{o(CO) = (1/C(ro, #o)) exp {r o #o co - r o  qJ(co)}, coe~2, 

defines a density w.r.t. Lebesgue measure on the Borel sets of f2. The corre- 
sponding distribution is denoted by rt o, so that drco(co)={o(co )dco, co~2. It is 
then the case that 

~(o)= ~ ~'d~o=#o. (1) 

When applied to the posterior distribution of co, given an observation X ~ F~, 
Eq.(1) asserts that the posterior expectation E(OIX) is linear in X; and this 
property is characteristic of prior distributions of the form rc o, under some 
additional conditions on X. 

The following simple extension of (1) is central to the analysis of asymptoti- 
cally pointwise optimal rules: if 

E [O"(co)] = ~ O" d~o < o~, 
f2 

then 
E [(0 - #0)21 = r o i E [ • "  ((o)l. (2) 

Equation (2) follows from Lemma 1, below, applied to g(co)=(0-#o),  coef2. 

Lemma 1. I f  g is a continuously differentiable function on f2 for which 

Lg'l d~o <oo, (3) 
g? 

then 
5 g~;dco= - 5 g'{o do). 
f~ f2 

I f  lim sup g(co) < 0 < lim infg(co), then [g'l may be replaced by g'+ = max {0, g'} in 

condition (3). 

Proof It suffices to show that (g~o)(co)~0 as either co--*8 or m-+&. Diaconis 
and Ylvisaker (1979) show that ~o(OO)~0 as co--*o_) or co~&. This fact is used. 
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Let &0 be the prior mode - that is ~9'(O3o)=120; and observe that G0(co) is 
increasing in co<& o and decreasing in co >&o. If &o <coo <co~ <&, then 

Ig(coPI ~(co~)< Ig(coo)l+ 5 Ig'(co)l dco go(co,) 
(O 0 

< Ig(coo)l go(co0+ 5 Ig'(co)l go(co)aco. (4) 
COo 

So, 
(o 

lim sup Ig(co)l go(co) < 5 Ig'(co)l ~o(co) des, 
c o ~  ~ ~o o 

which tends to zero as coo--+&. The behavior of g{o at the lower end-point 
may be analyzed similarly. 

If g(co)>0 for co in some neighborhood of c5 and only g+ is assumed to be 
integrable w.r.t, rc o, then (4) holds with Ig'l replaced by g+, provided that coo is 
sufficiently close to c5. The remainder of the proof proceeds as above. 

I1. Sequential Estimation 

In this section and the next, no denotes a conjugate prior distribution with 
ro>0 and 120~X~ and co and X 1, X 2 . . . .  are random variables, defined on 
some probability space ( ~  d ,  P), for which co~n o and X 1, X 2, ... are con- 
ditionally i.i.d, with common distribution Fo~, given co. Let d o = {qS, d }  be the 
trivial sigma-algebra and let s~, =a{X~ . . . . .  X,,} be the sigma-algebra generat- 
ed by X~ . . . . .  X, for n_> 1. Then the conditional, or posterior, distribution of co 
given s~,, is 

dn,(co) = (1/c(r,, 12,)) exp {r, 12, co - r,, ~(co)} dco, co EY2, (5) 
where 

r , = r o + n  and 12,=(ro12o+S,,)/r . 

with S , , = X 1  + ... + X,, for n>  1. 
Recall that a stopping time is a random variable t which takes the values 

0, 1,2 . . . .  and oo and has the properties P { t < o o } = l  and { t = n } e d ,  for all 
n_> 0. The sigma-algebra d t of events which occur prior to a stopping time t is 
the class of all A ~ 4  for which A { t = n } e d ,  for all n>0.  Then, it is easily seen 
that the conditional distribution of co given ~ is simply n t on {t < oo}. 

Now suppose that E[O"(co)]<oo, so that 0 has a finite variance, and 
consider the problem of sequentially estimating 0 with squared error loss for 
estimation error and a cost c > 0  for each observation X >  X 2, .... The Baye- 
sian sequential decision problem is then to find a stopping time t and an 5~r t- 
measurable function 0 t = Ot(X , . . . . .  Xt)  for which 

Bayes risk (t, 0t) = E {(4 - 0) 2 + c t} 

is minimized. It is well known that for any stopping time t, the Bayes risk is 
minimized by letting ~=12,=E(0[d , ) .  See, for example, Ferguson (1967, pp. 
314-15). Moreover, it follows from (2) that, for any stopping time t, 
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g{(o-[,l t)  2} =E{g[(o-J , l t )2 l~ t3}  =g{r t  1 gt}, 
where 

G=EEO"(co)L~o3=SO"a~., n>O. 

It is relevant that U., n>0,  is a uniformly integrable martingale for which 
U. ~ ~" (co) w.p.1 as n ~ oo. Next let 

L.(c)=r. ' U.+cr., n>=O, c>0.  
Then 

Bayes risk(t, #~)=E{Lt(c)} -Cro, c>0,  (6) 

for any stopping time t; so, minimizing the Bayes risk is equivalent to mini- 
mizing E{Lt(c)} by choice of t. 

It follows from Theorems 4.4 and 4.5 of Chow, Robbins and Siegmund 
(1970) that an optimal stopping time, one which minimizes E{Ldc)}, exists for 
each c>0.  In principle, the optimal stopping time may be computed by 
backward induction and a limiting operation; but the exact determination of 
the optimal stopping time appears to be a formidable task, in practice. Bickel 
and Yahav (1967, 1968, 1969a) have developed an interesting class of asymp- 
totic solutions t o  the minimization problem, as c--*0. They describe methods 
for finding stopping times t= t  c which are asymptotically pointwise optimal 
(A.P.O.) in the sense that 

Lt(c)~inf L,(c)~ 2 ~  
n 

w.p.1 as c ~ 0 .  Replacing n by r, in Bickel and Yahav's (1967) A.P.O. rule 
suggests the stopping times 

t=t~=inf{n>O: Un < cr,2}, c>0.  

In fact, a careful reading of their derivation yields the following: if s= G are 
stopping times, then, as c ~0 ,  

L,(c)~infL~(c) iff s ~ t  c, (7) 
n 

except for a set of probability zero. 
In the next section, the A.P.O. rule t= t  c of (6) is shown to be asymptoti- 

cally optimal in the following strong sense: let 

po(c)=infE[Ls(c)], c>0,  (8) 
s 

where the infimum extends over all stopping times s; then E{L~(c)}=po(c ) 
+o(c), as c--,0, under a mild integrability condition. That is, the A.P.O. rule t 
is asymptotically non-deficient in the sense that the additional cost which 
results from using the sub-optimal procedure t is of smaller order of magnitude 
than the cost of a single observation. Bickel and Yahav (1968) have shown that 
E {Lt(c)}/po(C ) ~ 1 in a context which is more general than the present one; and 
Alvo (1977) has shown that the deficiency of a closely related procedure is of 
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order c, under conditions which are related to the present ones but are not 
strictly comparable. The representation (6) for the Bayes risk is implicit in his 
examples. Shapiro and Wardrop (1980a) have used a representation which is 
similar to (6) in their study of the myopic procedure. They consider only the 
term of order lf~ in the asymptotic expansion, however. Finally, Vardi (1979) 
has recently given an interesting discussion of Bayes procedures for diffuse 
priors. 

3. Asymptotic Optimality 

The proof of asymptotic optimality depends on the simple identity, 

L,(c)=r21 U,+cr =2 (c]/~,) +r2 -~ [ l~U,-r , ! /c]  z (9) 

for n>  0 and c > 0. It is shown below that the last term on the right side of (9) 
contributes only o(c) to the expected loss for both the optimal and A.P.O. 
rules. To understand the first, let 

V , , = E [ I / - O ~ l d J  and W,,=U,,-V,, z, n>O. 

Then V,, n > 0, is a uniformly integrable martingale; so, 

ELY,] = v0 = I 
s~ 

for every stopping time s, by the optional stopping theorem. (See, for example, 
Theorem 2.3 of Chow, Robbins, and Siegmund (1970).) Observe that W, is the 
posterior variance of ~ given d ,  and that 0 < W , ~ r 1 6 2  
w.p.1 as n-~ oo. Now 

W. n_>0, 
+ v ,  - 

SO 

EE Jss =V0+E[ Ws ] 
t / g s +  

(10) 

for any stopping time s. Clearly, an expansion for E [ W J ( ] / ~  + V~)] is needed. 
In the next lemma, the following result is used: let c3, denote the posterior 

mode, so that &, solves the equation r (ca,) = #, ; as n--,oo, the posterior 
distribution of l / ~ ~ "  (co-ca,) converges to the standard normal distri- 
bution w.p.1. See Bickel and Yahav (1969b) for this result in a more general 
context; or see Johnson (1970) for a more detailed result for exponential 
families. 

Lemma 2. Let 7(0)=]SO"(co), where O= r and suppose that 

7'(0) 2 4'" d~o < m. 
~2 
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Then  

r,W,<E[7'(O)2t)"(co)lsd,,], w.p.1, n > l ,  
and 

r, W , ~  ~'(O) 2 t)"(co) w.p.1, n--* oo. 

Proof. For fixed X 1 . . . . .  X,,, define a function g on f2 by g(es,)=0 and g(co) 
=[?(O)-?(IG)]2/(O-I~.) for co=t=es,. Then 

r. G < r. S I v ( 0 ) -  v (~ . ) ]  2 a,~. = - S g ~'. aco, 

where 4, denotes the posterior density, ~,(co)=(1/c(r., #.))exp {r.G 
co~2. Now 

- r. t)(co)}, 

and 

g(co)= 2/(0) [~(o)-~/(~.)] [~(o)- ?(~.)]~ 
k 0-~,,  l - t  ~ J 

g,(co) = ;  g(co),  t)t/(co) ~,p,.(O)2 t)tt(co), co:~=esn" 

Thus, g'(co) is bounded above by a function which is integrable w.r.t, rc o. Since 
g(oJ)<0 for co<e5, and g(co)>0 for co >eS,, Lemma 1 yields 

-~ g~;dco=S g'~.dco 
f2 ~o 

<__S ?'(O)2t)"d'G=E[g'(O)2t)"(co)lsdJ, n>l .  

This establishes the first assertion of the lemma. 
To establish the second assertion, first observe that E[?'(O)t)"(co)ld,] 

~7'(0)2t)"(co) w.p.1 as n ~ o o  by the martingale convergence theorem; so, 
lim sup r,W,,,<7'(0) 2 t)"(co) w.p.1 as n--. oo. The reverse inequality follows from 
the fact that the posterior distribution of co is asymptotically normal with 
mean es, and variance 1/r, t)"(es,) and Fatou's Lemma. 

Lemma 3. Suppose that 

7'(0) 4~ t)"  drc o < oo > ~ I t ) "  + ( i / t ) " ) ]  d~ o ( i i )  

for ~o,,e ~> i .  I f  ~=~ are any stopping ti,,e~ for which V ~ . s ~ - - - , ~  w.p.t 
as c ~ O, then 

lim inf C c ~ o  ~-E [ ~ _ ~  Vs ] >- 1- ~ y'(0)2 d r c ~  (12) 

and if sc=t~ is the A.P.O. rule, then the limit exists and there is equality in 
(12). 
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Proof If s=s~ are stopping times for which l / - c - s ~ - - + ~  w.p.1, then 

(1 
~1/~ + v~ 2~,"(o,) 2 ~'(~ 

w.p.1 as c--+0; so (12) follows from Fatou's Lemma. Moreover, if s=t is the 

A.P.O. rule, then ]fc.  r , > l f ~ ,  so that 

1 )(_ r,W~ ~<r~<EET'(O)2g,"(co)l~ql,] 
~ . r ,  \ ] / - ~ + V , / =  U~ - EE~p"(co)ld~] 

(13) 

Thus, it suffices to show that the right side of (13) is uniformly integrable. 
Uniform integrability is demonstrated by showing that the expected cd h 

power remains bounded. In the proof let 

Y=O"(oj)/E[O"(co)] and Z=7'(0)2; 

and let Pe  be the measure defined by dP ~= YdP. Then the quantity of interest 
may be written E(YZ[~)/E(Y[s~t)=Ee(ZI~); and 

E~(Z I d,) ~dP =~ E~(Z I ~)~E~(a/YI ~9 dP ~ 
] ~ U ( Z  -2~) E @ (1/y2)~ = ] ~ ( Y - Z  2 ~) e (1/Y)~ , 

which is finite and independent of c > 0. Uniform integrability follows. 

The asymptotic behavior of r t- 1 [r t 1/-c _ 1 ~ , ] 2  is considered next. 

Lemma 4. Let 

1 Y.=r. - 1  , n > 0 .  
+ 

xf 

then 

E[sup Y~] < oo, (14) 
n > l  

E[rt-l(rr]~-]~U~t)2]-=o(c), as c-~O. 

Proof Clearly, t >  1 for sufficiently small c >0;  and for such c, one has 

and 

r -  * [r, ] / -c-  ]/-~-t ] 2 < 2 rt- 1 c + 2r t- 1 [ U1/-U~t_ ~ - l / -~t ]  2 

~- 1 ~ v g ~ 7 , _  ~ - ~ 0 7 , 3 2  =r t  -~ v,. r,__< c Y,, 

by definition of the A.P.O. rule t. Thus, since t - ,oo  w.p.1 as c ~ 0 ,  it suffices to 
show that Y,--+0 w.p.1 as n--*oe. The results of Johnson (1970) imply that U, 

=0"(&n)+0(1/n) w.p.1; and I/l"(&n)--Ill"(&n_l)=72(Xn)--72(Xn_l)=O(1/]~) 
w.p.1, since 7 is continuously differentiable. The lemma follows. 
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Theorem 1. Let t denote the A.P.O. rule (6). I f  (11) and (14) hold, then 

po(C)=2Vo ~ c  +c ~ 7'(0)2d72o+O(C) (15) 
s 

and 
E[Lt(c)]=po(C)+O(C ), as c ~ 0 .  

Proof It follows directly from (9) and Lemmas  3 and 4 that 

E [L t (c)3 = 2 1 ~  E ( l /~t)  + E Err- l(r t ] / c  - 1/~t)23 

= 2 ] / c  {Vo + � 8 9  ~ 7'(0) 2 dno +o( ] /c )}  +o(c), 
f~ 

so that  E[Lt(c)] is given by the right side of (15). 
Since po(c)<E[L,(c)] for all c > 0 ,  it now suffices to show that  po(C) is at 

most  as large as the right side of (15). Let  z = z  c denote  the optimal  s topping 
t ime - that  is, po(c)=E[L,(c)], c > 0 .  Then  it follows from (7) that  

]/czc--+ ~]/~(co ) w.p.1 as c-- ,0;  for otherwise one would have l iminf  
- ~  > ,, e L ~ ( c ) = 2 ~  with strict inequali ty on  a set of positive probabili ty,  in 

which case Fatou 's  L e m m a  would require that  lim inf c +E[L~(tp)]>2V o, 
contradict ing po (c) < 2 V 0 ] /7  + O (c). Thus, L e m m a  3 is applicable to s = z; and, 
when combined  with (9), L e m m a  3 asserts that  

E[L~(c)] > 2 ~ c  E [ I ~ t 3 >  2 I/-~ {V ~ + �89 ]/c I 7'(0) 2 drco +0(]/~)} 
r~ 

to complete the proof  of the theorem. 
The  limitations imposed by the theorem's  condit ions are il lustrated by two 

examples. 

Example 1. Suppose that  F~ is the exponential  distr ibution with unknown  
failure rate Icol, where - o o < c o < 0 :  that  is, suppose that  F~ has density fo~(x) 
=]col exp(cox) for x > 0  and - o o < c o < 0 ,  w.r.t. Lebesgue measure. Then  F~, 
- o o < c o < 0 ,  form an exponential  family with 0(co)=log(1/]co]); and the mean 
and variance of F~o are 0 = 0'(co) = 1/1 col and O"(co) = 1/co2 = 0 2 for - oo < co < 0. 

In particular,  7 ( 0 ) = ~ = 0 ,  0 < 0 < o 0 .  The conjugate prior  distributions 
are gamma distributions for [col, 

~o(co)=F(ao)-lb~o~ -b~ , - oo < c o < 0 ,  

with shape parameter  a o = r o + 1 > 1 and scale parameter  b o = r ott o > 0. 
Clearly, condi t ion (11) is satisfied iff bo th  0 2 and 1/0 2 are integrable w.r.t. 

72o; and this is the case iff ao>2 .  Condi t ion (14) is also satisfied if ao>2 .  
Indeed, letting S , = X  1 + ... +X,,, one finds easily that  

U,, = E( O a [ ~4~) = (b o + S.)2/(ao + n - 1) (a o + n - 2) 

and 

U ~ _ l / U . < ( a o + n - 1 ) / ( a o + n - 3 ) = l + 2 / ( a o + n - 3 ) ,  n > l .  
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Thus, Theorem 1 is applicable under the sole assumption that a 0 >2, which is 
necessary for 0 to have a finite variance. The terms in the asymptotic expan- 
sion for po(C) may be easily computed as 

V o -  b~ and ~ ' ( 0 )  2d~ o=1.  
a o - 1  n 

Analogues of this problem in continuous time have received recent atten- 
tion. Shapiro and Wardrop (1980b) consider the problem when S,, n > l ,  are 
the arrival times of a Poisson Process which is observed continuously. They 
show that the infinitesimal look ahead rule is optimal in this case. Rasmussen 
(1980) considers the problem in which the partial sums S n, n > l ,  are replaced 
by a continuously observed gamma process with mean 0 per unit time. She 
develops an optimal procedure which is closely related to the A.P.O. rule (6). 

Example 2. If X = 0  and 1 with probabilities 1 - 0  and 0, where 0 < 0 < 1  is 
unknown, then the distributions of X form an exponential family with co 
=log 0 - l o g ( 1 - 0 )  and ~(co)=log(1/(1-0)).  The mean and variance of X are 0 

and 0" (co)=0(1-0) ;  so 7 (0 )=1 / [0 (1 -0 ) ] ,  0 < 0 < 1 .  The conjugate prior distri- 
butions are beta distributions for 0, 

F(a~176 0a~ b~ 0 < 0 < 1 ,  
~*(0) = V(ao ) V(bo) 

where ro=ao+b o and #o=ao/(ao+bo). In this case, the conditions of Theo- 
rem 1 are satisfied if % > 1  <bo; and the coefficients in the asymptotic expan- 
sion are 

V o = r (a  o + �89 F(bo + �89 r(bo)(ao + bo) 
and 

bo a0 -I 
7'(0) 2 drc o : � 8 8  -~ 2]. 

n [a o -  1 b o -  1 

It is disappointing that Theorem 1 is not applicable to the case of a 
uniform prior distribution, a o = l = b  o. In fact, the coefficient of c in the 
asymptotic expansion for po(C) diverges to oo as a o ~ l  or b 0 ~ l  from above. 
Alvo and Cabilio (1979) have shown that the A.P.O. rule has deficiency of 
order c when the prior distribution is uniform, but they do not determine the 
coefficient of c. 

Theorem 1 may be specialized to the Poisson and geometric cases too. 

4. The Normal  Case 

In this section X 1 ,  X 2 . . . .  denote random variables which are i.i.d, and nor- 
mally distributed, given the common mean 0 and variance a2; and (0, 0 -2) is 
assumed to have a conjugate prior, normal-gamma distribution. That is, the 
conditional distribution of 0, given 0-2, is normal with mean m o and variance 
rO 1 0-2 where - oo < m o < oo and r o > 0; and the marginal distribution of 0-- 2 is 
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gamma with shape parameter �89 and scale parameter ~-b2 o, where a o > 0 < b  o. 
The posterior distribution of (0, 0-2), given X~ . . . . .  X n, is then again a normal- 
gamma distribution with updated parameters 

and 
a,,=ao+n, r ,= ro+n ,  m,=(romo+S,)/r~, 

b. = b o + ~ (X~- 37.) 2 + r~ ()7,,- mo) a 
i = 1  rn 

where X,=S,]n with S,,=X 1 + ... +Xn, n>  1. The problem considered is again 
sequential estimation of the mean 0 with a cost c >0  for each observation, but 
with loss ]O-OL 2q for estimation error, where 0 < q < � 8 9  o. 

As above, a decision procedure is a pair (t, 0t), where t is a stopping time 
w.r.t. ~r . . . . .  X,}, n > l ,  and 0, is a real valued suC~-measurable function; 
and the Bayes risk of (t, Or) is the expected value of IO-Ot]2q+ct. For any 
stopping time t, the expected loss due to estimation error is minimized by 
letting O,=mt=E(O[dt) , and the conditional expected loss may be written in 
the form 

E[lO-mtl2q[dt]=rt q Kq U t 
where 

and 

Let 

Kq = 2 q F(�89 + q)/F(�89 
Un=E[0-2ql~c]=Cq(an)(a~lbn) q, n>=O, 

Cq(a)=(�89189189 a>2q. 

Ln(c)~rnqKqUn+cr n n~O, c>O. 

Then the Bayes risk of a sequential procedure (t, mr), where t is a stopping 
time, is E[Lt(c)]-cro; so, the problem of finding a decision procedure which 
minimizes the Bayes risk is equivalent to finding a stopping time which 
minimizes E[Lt(c)]. Let 

po(c)=inf E[Ls(C)], c>0,  
s 

where the infimum extends over all stopping times s; and let 

t=tc=inf{n>O: U,,<c(1/qKq)rq,+l}, c>0,  

denote the A.P.O. rule. See Bickel and Yahav (1968). 

Theorem 2. Suppose 0 < q < � 8 9  o. I f  t denotes the A.P.O. rule, then 

po(e)=  -7-I VoCal' + e +o(O 

and 

where 
E[L~(c)]=po(C)+O(C ), as c ~O, 

V o = E [ a  2p] = Cp(ao) (ao ~ bo)V 
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with 

p = q/(1 + q). 

P r o o f  For fixed n, a Taylor series expansion of L,,(c) about 

- 1  1 

r(c, U~) = cq+ l (qKq U.)q+ i 

yields 

L.  (c) = Ln, 1 (c) + C., 2 (c), 
with 

gnl(C)=c~lql(qq_lt 1 , \ ~ - !  (qKq U~)q+ 1 

a n d  
( 1 ~  q+2 2 

Ln,2(c)=�89 q Un \~1  [ r n - r ( c ,  Un)] , 

whe re  r* deno t e s  an  i n t e r m e d i a t e  p o i n t  b e t w e e n  r~ a n d  r(c, U~). T h e  p r o o f  o f  

T h e o r e m  2 n o w  p r o c e e d s  a l o n g  the  s a m e  l ines as tha t  o f  T h e o r e m  1. T h e  

deta i ls  a re  omi t t ed .  
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