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Summary. A construction is given of a class of two-type point processes 
with Poisson marginals but possibly negative correlation between points of 
different types. Examples of the construction are given. The correlation 
structure of the processes is determined, and criteria obtained for the pro- 
cesses to be stationary, ergodic and mixing. 

1. Introduction 

In this paper we study a method for constructing point processes in which 
each of the points has one of two labels attached to it. Such a process is called 
a bivariate or two-type point process; because of the ambiguity inherent in the 
term 'bivariate' we shall always refer to two-type processes. 

The carrier space for our bivariate point processes will be IR d, d > 1, but the 
construction is not dependent on this choice and works equally well on any 
suitable topological space. The class of two-type point processes introduced 
has the property that the marginal process of points of either type is a Pois- 
son process, while there is interaction between points of different types. In 
particular we shall concentrate on processes where there is inhibition between 
the different types of points, though the formal construction also allows posi- 
tive correlation between points. 

There are three main reasons for considering such processes. The first is to 
provide a class of models for observed two-type processes with marginal Pois- 
son structure but interaction between different types. The second is to provide 
a class of alternatives for tests of interaction in two-type processes. Finally, the 
investigation may be regarded as a thought experiment which demonstrates 
that the Poisson process is a plausible model for a single-type point process on 
]R e even if there is a second, possibly unobserved, Poisson process negatively 
correlated with the first. 
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Section 2 below contains an informal discussion of the class of processes 
introduced, together with some examples. This is followed by a formal de- 
finition, after which the correlation properties of the processes are discussed. 
Finally, results on stationarity, ergodicity and mixing properties of the pro- 
cesses are obtained. 

There are many examples of two-type point processes in the literature, but 
very few of them exhibit both marginal randomness and negative spatial cor- 
relation between points of different types. One exception is quoted by Cox and 
Lewis (1972); this is based on a renewal process and so is restricted to the line. 
Griffiths, Milne and Wood (1979) provide two more examples, in each of 
which only a finite number of points is possible, so that the marginals cannot 
be homogeneous Poisson processes. In an attempt to induce as much negative 
correlation as possible into our process, we shall make use of minimally cor- 
related Poisson random variables as investigated by Griffiths, Milne and Wood 
(1979). Some remarks about the analysis of two-type point processes are made 
by Hanisch and Stoyan (1979). 

2. Informal Description and Examples 

In this section we shall describe informally a general method of defining a two- 
type process whose marginals are homogeneous Poisson processes negatively 
correlated with one another. Some examples of our construction will also be 
given. The definition will be extended and made precise in Sect. 3 below. 

For a,b>O and 7elR, a random vector (M,N) will be said to have a 
Poi(a,b; 7) distribution if and only if Cov(M,N)=7 and the marginal distri- 
butions of M and N are respectively Poisson (a) and Poisson (b). For given a 
and b, such bivariate integer distributions exist for a range of values of 7 and 
are not in general unique for any particular 7. Let 7rain(a, b) be the smallest 7 
for which Poi(a,b;7) distributions exist. Write Poi,(a,b) for the 
Poi(a, b; 7min(a, b)) distribution, which is unique; see Griffiths, Milne and Wood 
(1979). Simulating Poi,(a, b) random vectors is easy; if X is uniform (0, 1) and 
F~ -1 is the inverse of the Poisson (c) distribution function, then (Fa-a(x), 
Fb- 1 (1 -- X)) has the Poi,  (a, b) distribution. 

The construction of the two-type process proceeds as follows. Suppose the 
required marginal intensities are ~ and/3. Possibly using some random mecha- 
nism, construct a countable set of integrable functions f~ such that ~f~(x)= 1 
for all x in IR a and ~ f~ < c~ for all i. For each i, generate a pair ,~M ~i , N-'~, I from 
a Poi,(c~f~,/3~f~) distribution, and generate M~ points of type 1 and N~ ~ 
points of type 2 independently from the probability density function propor- 
tional to f~. The required process is the union over i of all the collections of 
points thus generated. It will be shown in Sects. 3 and 4 that this construction 
does indeed satisfy the required conditions. 

We now give some examples. Example 3 illustrates how the f~ can be cho- 
sen randomly; in Examples 1 and 3 the f~ are uniform on certain regions while 
this is not the case in Example 2. 
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Example i. (The chessboard process in IR~.) For each cell of the integer lattice 
generate a pair (M,N) from the Poi,(~,fl) distribution, and place M type 1 
points and N type 2 points uniformly within that cell. 

Example 2. Letting ~b be the standard normal density function, define a finite 
constant k by 

(x) 

i 1 k =2  ~ qS(-~_). 
/ = 1  

Now let 

r/(t)= 1-k-l~vl{~(t +i)+~(t-i)} -�89189 

[ k -  ~ 4 (t) otherwise 

so that ~ is everywhere positive and f r / ( t+ i )= l  for all t. Let f~(x)=~l(x+i) 
- o o  

for each integer i, - o o  < i <  oo, and proceed as in the definition of the con- 
struction. 

Example 3. (The random Dirichlet cell process in the plane.) Generate a Pois- 
son process ~ in the plane, and construct the Dirichlet tessellation of 4; see 
Rogers (1964) for definitions. This gives a random partition of the plane into 
cells. For each cell C, generate (M,N) from the Poi.(:~A, fiA) distribution, 
where A is the area of C. Place M type 1 points and N type 2 points uniformly 
in C. 

The idea of Example 3 can clearly be extended to any random partition of 

the plane, for example to the Delaunay triangulation (see Rogers, 1964) of a 
Poisson process, or to a lattice of random position, orientation and/or size. 
The only restriction is that all the cells must be of finite area. 

The results of Sect. 5 below will show that the random Dirichlet cell pro- 
cess is stationary under rigid motions, ergodic and mixing. In addition it is 
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Fig. 1. The process of Example 3, and its underlying Dirichlet tessellation, observed on the unit 
square, with intensity of ~ equal to 20 and intensities of single type processes equal to 50 
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easily simulated using the algorithm of Green and Sibson (1978) to construct 
the tessellation. There are three parameters to be chosen, the intensity of the 
underlying process ~ as well as the intensities of the two single type processes; 
part of a sample reatisation is given in Fig. 1. To avoid edge effects, the tessel- 
lation was simulated on a square which was large enough to ensure that the 
reatisation would not be changed by simulating more of the tessellation, tn 
contrast with many other models for spatial point processes, realisations can 
be obtained quickly; the example given took about 2-~. seconds to obtain on a 
Honeywell Series 60 Level 68/DPS machine. By comparison, the same com- 
puter took over 16 seconds to produce a single reatisation of a single-type hard 
core point process on the unit square, using the program of Ripley (1979) with 
n =  100 and r =0.05. Lotwick (1981.) has succeeded in fitting a random Dirichlet 
celt process to some data on the positions of veins and arteries in the cerebral 
cortex. 

3. The Formal Construction 

In order to make precise the description of our process, and to facilitate the 
investigation of its properties, we now give a definition using the formalism of 
Kallenberg (1976). For  notational simplicity, we restrict attention to two-type 
processes on IRd ( d > l )  where the intensity measures for points of either type 
are identical; all the results are easily extended to the more general case of 
unequal intensities. Note that the marginats will not be restricted to homo- 
geneous processes. 

In the notation of Sect. 2 above, the idea of the formalism is to regard the 
/ 

random set {f~} as a point process on the set of finite measures on tR e, in other 
words as an integer valued random measure on a set of measures. In the de- 
finitions below, the f~ are the densities of the measures A~, and choice of the 
random directing measure A corresponds to the random choice of sequence f~. 

Throughout, let B be an arbitrary bounded Borel subset of IR~ and let S o  
be the collection of finite measures on IRd excluding the zero measure. Given 
a W suitable set C, let -At(C) be the set of tocaIly finite integer valued measu_res 
on C, so that random elements of X(C)  correspond to point processes on C. 
For convenience write .~ in ~4/'(dl0) as (~i) and write ~ ;~i(B) instead of the 
formally correct but tess transparent ~ ~(B)2(dr). 

Let F~ be a fixed measure on 1R d which wilt be the intensity measure of each 
of the single-type processes. A directing point process A =(A~) will be a random 
element of ~:(o~0) such that, for all B, 

A~(B)--#(B). (3.1) 

We assume given a set {bg(.; c~), ~>O} of probability generating functions of 
marginally Poisson(c~) bivariate random vectors, tt  is the correlation structure 
of these vectors which leads to the correlation between the processes; to obtain 
positively correlated processes choose ~ so that the components of these vec- 
tors are positively correlated. Conditional on A, for each i let (Mi ~'~,/~'~) be a 
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random vector distributed, independently for each i, according to 0(.; Ai(lRa)). 
Then distribute M~ points of type 1 and N~ ~ points of type 2 independently 
with probability law Ai/A~(1Rd). Let N = ( M , N )  be the random element of 
JV'(IR ~ x {1, 2} defined by 

N(B • {1})= ~ Mi(B), 
i 

N(B • {2})= ~ N~(B). 
i 

We shall call N a bivariate Poisson process directed by A. If the 0(.; ~) are all 
probability generating functions of Poi, random vectors then we shall call N a 
bivariate Poisson, process. In any case, the single-type processes are Poisson 
processes with the required intensity because they are Cox processes directed 
by ~ A~=#. Of course, this construction is a special case of the cluster process 
construction of Matthes, Kersten and Mecke (1978). In our case the cluster 
field, Z, is on J o  and H is the distribution of A. The condition (3.1) ensures 
that H(2~M'x)=O, in their terminology. 

The case where the single-type intensities are different requires the directing 
point process to be a random element of X(d//o • and the probability 
generating functions ~ to be defined for pairs (al, g2) in IR+• IR+; if the in- 
tensities are merely multiples of one another it suffices to restrict attention to 
pairs (v, u) in ~ o  • ~ o  and (~,  cz2) in 1R + x IR + which are corresponding mul- 
tiples of one another. 

4. Correlations 

In this section a formula is obtained for the covariance of M(B) and N(B') in 
the bivariate Poisson process introduced in the last section. The minimality 
properties of the covariance are also discussed. We shall need some notation. 
Define a subset A,  of 1R + x IR + by 

A , = { ( u , v ) :  e - ~ + e - ~ >  1}. 

From Griffiths, Milne and Wood (1979) it follows that A,  is precisely the set 
of (u, v) with this property: if ( M , N ) ~ P o i , ( u ,  v) then M N = O  with probability 
one. Also, it is immediate that (u, u) is in A,  if and only if u=<lOge2. 

Lemma 1. Suppose that, for i in some subset of  N,  (M i, Ni) are independent 
Poi, (#i, vi) random vectors with ~ #i = # < Go and ~ v i = v < co. Then 

COV(~__~ Mi, ~ Xi)~" ])mln(#, V) (4.1) 

with equality if  and only i f  either # v = 0 or, for some i, #i = # and v i = v. I f  (Xi), 
(Yi) are independent respectively Bernoulli (t)) and Bernoulli (q) sequences (p, q in 
[0, 1]) and (M, N) is some Poi(#, v; 7o) random vector, then 

Cov ~-- Xi, Y~ =P q 70 
\ 1  1 

> 7mi, (P #, q v). (4.2) 
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Suppose that (M, N) is Poi,(#, v). In that case, equality occurs in (4.2) if and only 
if (if, v)~A, or p q = 0  or 1. 

Proof Inequality (4.1) follows immediately from the fact that (~  M~, ~ N3 has a 
Poi(#, v; ~ 7min(/~, Vi) ) distribution. The criteria for equality are precisely those 
which ensure that the support of (~  Mi, ~ N) is that of a minimally correlated 
bivariate Poisson distribution; see Griffiths, Milne and Wood (1979). The proof 
of the second part of the lemma is similar to that of the first. 

We can now state and prove the main result of this section. 

Theorem 1. I f  (M, N) is a bivariate Poisson process directed by A, then for all 
sets B and B' 

where 
Coy {M(B), N(B')} = E ( ~  Pi Qi F~) (4.3) 

o r  

A,(B) = Ai(B') = Ai(~d) = u(B) 

(ii) #(BwB')<loge2 and, with probability 1, there exists i such that 

Ai(lRd)<loge(2) and Aj(BuB')=-O, for j+i .  

Proof The proof of (4.3) follows easily from the definitions. For the second 
part, condition on A, and note that, for all k, Mk(B ) and Nk(B' ) are then ran- 
dom sums of Bernoulli random variables; apply the conditions of (4.2) to con- 
clude that, for all k, 

Pk Qk Ilk > Ymin { Ak (B ), Ak (B')} (4.5) 

with equality if and only if either Ak(lRd)<loge 2 or Ak(B)Ak(B')=O or Ak(B ) 
=Ak(B')=Ak(IRd), in which case Ak(B/X B')=0. 

By the first part of Lemma 1, 

7min{Ak(B), Ak(B')} ~ 7rain {#(B), kt(B')} (4.6) 
k 

with equality if and only if, for some i, Ai(B)=kt(B ) and Ai(B')=#(B'), so that Pj 
=Qj=Aj(BwB')=O for j=t=i. Now (4.4) will be true if and only if there is al- 
most sure equality in (4.5) and (4.6) for all k; a careful but elementary argu- 
ment completes the proof of the theorem. 

r~ = Cov(M~, X,~ I A) 

P~= A,(B)/A,(IR a) 

Q.,= A,(B')/A,(~d). 

Suppose that (M, N) is bivariate Poisson, directed by A and that #(B)#(B')>O. 
Then 

E(~ ~//Qi F/)--- 7sin {#(B),/.,t(B')} (4.4) 
if and only if either 

(i) #(B /~ B')= 0 and, with probability 1, there exists i such that 



A Class of Two-Type Point Processes 305 

A first conclusion from Theorem 1 is that M(B) and N(B') are strictly ne- 
gatively correlated in a bivariate Poisson, process whenever ~ A~(B)A~(B')>O 
with positive probability. In Examples 2 and 3 of Sect. 2, this is the case for 
any non-trivial sets B and B', while in Example 1 the correlation will be zero if 
no lattice cell intersects both B and B'. 

The~theorem gives a complete characterisation of those sets B and B' for 
which minimal correlation will be achieved. In terms of the examples given, it 
is clear that minimal correlation will never be achieved in the random Dirich- 
let cell process, because for non-trivial sets B there is always finite probability 
that B will intersect two or more cells of the tessellation, thus violating the 
conditions. The same remark holds for any of the processes given with ran- 
domly chosen directing measure A. For  the chessboard process with fixed unit 
lattice, minimal correlation will be achieved if B and B' both essentially coin- 
cide with the same lattice cell, and alternatively if the intensity of the marginal 
processes are at most log e 2 and B and B' are both essentially contained in the 
same lattice cell. 

Theorem 1 may be extended to the case where the marginal intensities are 
different; as the exact statement and proof of the last part are more com- 
plicated the extensions are left to the reader. 

5. Stationarity and Ergodicity Properties 

Definitions of stationarity, ergodicity and mixing for two-type point processes 
may be found in Matthes, Kerstan and Mecke (1978), Chap. 6. Informally, mix- 
ing means that the process on one part of IR d is nearly independent of a dis- 
tant part of the process, while the weaker property of ergodicity ensures that 
estimators of parameters obtained by taking averages over areas will enjoy 
strong consistency as the areas increase in size. We shall also require sta- 
tionarity, ergodicity and mixing for the directing processes, which take values 
in .Ar(~o). Define the translation operator, Ty: Jr Jgo, y~]R d, by 

+ y). 

We shall use the same symbol, Ty, for the translation operator on any space. 
Thus we define Ty: JV(~'0)~.A/'(Jgo) by 

i i 

The definitions of stationarity and ergodicity for a point process on ~ 0  are 
now exactly analogous to those for a point process on IR d x {1, 2}. 

The following result enables properties of our two-type point process to be 
deduced from properties of the directing point process. The mixing part of the 
Theorem is analogous to Theorem 6 of Westcott (1971), but the present proof 
seems simpler for our case. Moreover an adaptation of Westcott's argument 
would not be possible without auxiliary results. 
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Theorem 2. Suppose N = ( N ,  M) is a bivariate Poisson process directed by A. I f  
A is stationary then N is stationary. I f  in addition A is ergodic or mixing, then N 
is also ergodic or mixing, respectively. 

We first remark that the proof of the stationarity assertion of Theorem 2 
extends to stationarity, with suitable definitions, under any transformation 
group. Thus, for example, the distribution of N is invariant under an ortho- 
gonal change of coordinates if the distribution of A is similarly invariant. Next, 
we note that the converse statements to those in Theorem 2 are false, since, if 
N is constructed with ~ always corresponding to independent Poisson random 
variables then M and N are independent and the structure of A is irrelevant to 
the structure of N. Finally, we remark that only notational difficulties are en- 
countered in extending Theorem2 to the case where the marginal intensities 
are different. 

To provide examples of the application of Theorem 2, consider first the 
process obtained as in Example 1 of Sect. 2, but with the position of the lattice 
chosen uniformly at random for each realisation. The resulting distribution of 
A is clearly stationary and also ergodic, since every realisation is a translation 
of the integer lattice. Therefore the resulting point process N is stationary and 
ergodic. However this example is not mixing, which is a serious practical de- 
ficiency. To see this, note that the position of the lattice may be recovered 
from a realisation of N by looking at empirical correlations of numbers of 
points of the two types. Further the position of the lattice is invariant under 
integer shifts. 

The process A in the Dirichlet tessellation example is translation isomor- 
phic, in the sense of Billingsley (1965) page 53, to the point process ~ which 
generates it. Hence, stationarity, ergodicity and mixing for A are equivalent to 
the same concepts for 3. In particular, if { is a homogeneous Poisson process, 
then N is stationary and mixing. Of course, the same isomorphism holds for 
Delaunay triangulations. 

Proof of 7heorem 2. We first note that the distribution of N is determined by 
that of A. A proof of this intuitively obvious fact follows from this formula for 
the Laplace transform (Kallenberg (1976)), LN, of N: 

LN(f) =La(HZ), 

where L A is the Laplace transform of the point process A and for # in J / ,  
putting e = #(1Rd), 

H:(#) = - l o g  0(5 e-: '  d#/c~, 5 e-:2 d#/c~; ~.). 

It is clear that, for all y, TyN is a bivariate Poisson process directed by TyA. 
Hence, if TyA and A are identically distributed, so are TyN and N, completing 
the proof of the stationarity part. 

Now suppose that A is stationary and ergodic, and let Y be an invariant 
subset of JV'(IRe• {1,2}). Let h be the indicator of Y. Now E{h(N)IA=2} is 
easily shown to be an invariant function of 2. Hence, the ergodicity of A ira- 
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plies that E(h(N)IA) is a.s. constant. It follows that 

Var (h (N)) = E {Var (h (N) I A)}. (5A) 

Let c>0.  For  any Borel set A of IRd, let Y(A) be the a-field generated by 
{N(B): B~_A}. Now [ N e Y ]  is in the a-field generated by ~)Y(A), where A 
ranges over rectangles. Hence, for a large enough rectangle A, it is possible to 
find a subset Z of ~(iRd • {1, 2}) for which [ N e Z ]  is in ~(A)  and such that 
P(NeZAY) is arbitrarily small. Further, for any y in IR e, the last probability 
equals P(NeTyZAY), since N is stationary and Y is invariant. Thus we can 
choose A and Z so that for 2 outside a subset E 1 of -~ (~0)  with 

P(A~E1)<r 

and for Ty a fixed translation, we have 

P(NeZ AY[A=2)<e, 
and (5.2) 

P(NeTyZ AYIA=2)<e. 

The translation Ty is chosen together with a number j and a subset E 2 of 
Y ( J o )  so that the following hold" TyA ~A =0,  

and, for 2 outside E2, both 

P(A eE2) < 

oo 

~ R(A)<e, 
j + l  

and (5.3) 
Y 

?2 
1 

A measure 2 is now fixed in (E 1 u E2) c. Let N' be a bivariate Poisson pro- 
cess directed by 2. Having fixed x in (A u TyA) c, we construct a process N* 
from N' by moving to x all the points (of both types) in TyA drawn from 
21, . . . ,2i and all the points in A drawn from 2i+D2j+2, . . . .  From (5.3) it fol- 
lows that for any subset S of JV(IR d x { 1, 2}) 

I P(N' eS) - P(N* eS)l < P(N' :t= N*) 

<2(1 - e  -2~) 

since the number of points of each type that are moved has a Poisson distribu- 
tion with mean at most 2e. But, by construction, N* on A is independent of 
N* on Ty A. Thus, 

[P(N'eZ (~ TrZ ) - P ( N ' ~ / ) P ( N ' e T y Z ) I  <6(1 - 2e-2~). 

Using (5.2) it is now straightforward to see that 

Var (h (N')) < 4 e + 6 (1 - e -  2 ~). 
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Since )~ was arbitrary in (E 1 wE2) c, we m a y  use  (5.1) to  bound Var(h(N)) by the 
right side of (5.4) plus 2a, and ergodicity of N follows. 

For the last part of the theorem suppose A is stationary and mixing. By the 
argument of Billingsley (1965) Theorem 1.2, it suffices to show that for each 
rectangle A and each pair of sets Z1 and Z 2 with [NeZ~]  and [ -N~Z2]  in 
~(A)  we have 

P(NeZlc~TyZ2)--.P(N~ZOP(N~Z2) as I[yll --* ~). (5.5) 

By an argument similar to (but simpler than) that used before, we may estab- 
lish that, if Ilyll is sufficiently large, 

EIP(NeZlc~TyZ2IA)-P(NeZ~[A)P(NeTyZzlA)I<6(1-e-Z~)+e. (5.6) 

It follows from the mixing property of A that, for bounded measurable func- 
tions u and v defined on JV(J{o), 

E{u(A) v(TyA)} ~E{u(A)} E{v(A)} as I]Y][--. oo. 

Hence, using F a for the distribution of A, 

S P(NeZ~JA=)O P(NeTyZ2JA ---)~)FA (d2) 

= S P(NeZIIA = 2) P(N~Z21A = T_, 2) FA(d2) 
-+P(NeZ~) P(NeZ2).  (5.7) 

Combining (5.6) with (5.7) and the arbitrariness of 5, we obtain (5.5), as re- 
quired. 
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