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Summary. The asymptotic behavior of certain magnetic systems on the 
circle ] r - l R  (rood 1) is studied by techniques of functional integration. An 
arbitrary d-body interaction is allowed, dE{2, 3, ...}. We call these systems 
circle models. First, the specific free energy for such a system is evaluated 
as the supremum of a functional on L2(~). We refer to this functional as 
the free energy functional. Second, a global and a local law of large num- 
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bers for the spin random variables of the system are deduced for a subclass 
of interactions. These laws of large numbers depend crucially upon the 
functions in L201" ) at which the free energy functional achieves its maxi- 
mum. We prove that for any suitably normalized, positive, two-body in- 
teraction (ferromagnetic), the circle model behaves in the thermodynamic 
limit precisely like a Curie-Weiss model. On the other hand, we have exam- 
ples of non-positive, two-body interactions (antiferromagnetic) for which the 
local law of large numbers implies the following behavior. In the thermody- 
namic limit, for sufficiently low temperatures, the local averages of the spin 
random variables are described by a random wave on It. 

Our methods of proof depend on the fact that in the thermodynamic 
limit, quantities of interest in the magnetic system can be expressed in 
terms of certain stochastic processes taking values in L2(~ ). The asymptotic 
behavior of the magnetic system follows from large deviation results for 
these stochastic processes and from a precise description of the set of func- 
tions in L2(]r ) at which the free energy functional achieves its maximum. 

I. Introduction 

For each he{i ,2 , . . .}  we define a magnetic system on the sites {e/n; 
= 1,2, ..., n} of the circle l l ' - ]R  (mod 1). We refer to the system as the circle 
model. The circle model allows an arbitrary d-body interaction, de{2,3 . . . .  }. 
However, in order to simplify this introduction, we now consider only the case 
d = 2. The general case is discussed in Sect. II. 

Let {X~); e =  1,2, . . . ,n} denote the random variables which measure the 
magnetic spins at the sites {e/n}. The joint distribution of the {X~ )} is defined 
to be the probability measure 

\ n ' n ] I] dp(x,) 
L A g /  ~1 ,~2=  1 ~---1 dP..r 1 .... , X,,)-- Zn,fl 

(1.1) 

where Z,,p is the normalization constant 

/~ n n 

Z,,p- ~exp [~ l ,~=tJ  (~,  ~ )  x~lx~2] ~=ldp(x~). (1.2) 

In (1.1)-(1.2), f l>0  is proportional to the inverse absolute temperature; J is a 
continuous mapping from ~ x "ff~lR and is called the interaction function; p is 
a Borel probability measure on IR with bounded support, but not a one-point 
mass. The class of such measures is denoted by ~b .  We call p the single spin 
measure. The most important example of p e ~  b is the Bernoulli measure p 
-(6~+6_1)/2,  which defines the case of spins taking values {+_1}. The hy- 
pothesis of bounded support allows one to avoid a number of technicalities 
which arise for unbounded p. With extra work, one should be able to extend 
our results to unbounded p, but we do not carry this out. For various reasons, 
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one may require additional properties of J;  e.g., J is translation invariant 
(J(s, t)-J(s-t) for all s, t e~ ,  some J:  3F--,IR) or J is symmetric (J(s, t)=J(t, s) 
for all s, re31"). One can also generalize the circle model by considering anal- 
ogous systems on an m-dimensional torus, me{2, 3, ...}. A number of our re- 
sults (e.g., Theorems 1.3 and 2.1) go over to this case. 

The usual set-up in Gibbsian lattice statistical mechanics is to study a sys- 
tem on a subset A of a lattice, say Z r, re{l ,  2 . . . .  }, in the thermodynamic limit 
AI"Z ~. The circle model does not fit this prescription, x However, given that one 
wants to define magnetic systems on the circle 11", the measures (1.1)-(1.2) are 
natural objects of study. The factor 1/n multiplying the sums in (1.1)-(1.2), 
which does not arise in the usual Gibbsian set-up, is necessitated by the com- 
pactness of the circle. Without this factor, the asymptotics of the circle model 
could not be studied. For example, the specific free energy would not even 
exist. Previous work on the circle model was done in [14, 15-1 under the re- 
strictive hypothesis that 3 be the covariance function of a Gaussian probability 
measure on ~(31"). This work is discussed in greater detail at the end of this 
Introduction and in Appendix C. 

Our first main result is the evaluation of the specific free energy 0(fl) for 
the circle model. Defined by the formula 

-flO(fl)- lim l logZ, ,~ ,  (1.3) 
n---~ oo n 

-/~ O(/~) is shown in Theorem 1.3 to be given by the supremum of some func- 
tional Gp, on the real Hilbert space ~ - L 2 ( ] r  ). We call Gp the free energy 
functional. The second main result of this paper is the derivation, for certain 
interaction functions, of a global and a local law of large numbers for the spin 
random variables {X~(")}. These laws of large numbers depend crucially upon 
the functions in ~ at which the free energy functional G~ achieves its maxi- 
mum. We describe these laws of large numbers first. 

There are various classes of interesting interaction functions J. The choice 
J =  1 defines the Curie-Weiss model, which is the case in which all the spins 
interact equally. For J - 1 ,  (1.1) takes the simple form 

exp [ n ~  ~lx, /n)  2] ~=~(I dp(x~) 
P,C~V(dxl,..., dx,)- cw , (1.4) 

' Z , , , p  

where z,C~ v is the corresponding normalization constant. The probabilistic be- 
havior of the Curie-Weiss model has been studied extensively in [10, 12] and 
[13]. Facts about the Curie-Weiss model needed in the present paper are 
worked out in Appendix B. If the interaction function J is positive on 31" x 11", then 
we speak of a ferromagnetic circle model. If we have J =< 0 on 31" x ~,  then we 
speak of an antiferromagnetic circle model. One of the main points of this 
paper is to contrast, by means of the laws of large numbers for the spin ran- 

The circle model is related to a class of models treated by the Lebowitz-Penrose theorem. See 
the Note before the References. 
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dom variables, the relatively simple asymptotic behavior of the ferromagnetic 
circle model with the much more complicated behavior of the antiferromagnet- 
ic model. 

We do not consider the problems of defining random fields on the whole 
circle 11" and of studying their ergodic components, known as phases. One ap- 
proach to random fields would be to study weak limits of the measures {P~,~} 
in (1.1), but we omit this. (In the Curie-Weiss case, the weak limits are dis- 
cussed in [12; Theorem 8].) Even so, as a heuristic aid in interpreting the laws 
of large numbers, we shall use the picturesque term "phases". 

Given an interval A in 117, we define the total spin in A, W,(A), by the 
formula 

1 
W.(A) xl" ' (1.5) 

where IAI denotes the Lebesgue measure of A. If A =11" we write IV, instead of 
w,(qr). The global law of large numbers describes the limiting distribution of 
the average total spin, W,/n, as n-~ oo. The local law of large numbers describes 
the limiting joint distribution of the vector of average local spins, 
(W,(A 1)In .... , W,(Ar)/n), where {Aj ; j = 1 . . . . .  r} are r intervals in "It(re {1, 2,...}). 
Although the global law follows from the local law for r =  1, A 1 - l r ,  we find it 
useful pedagogically to discuss both. For now, we restrict ourselves to the case 
p-(61 + 6  1)/2. More general p will be treated in Sect. II. 

Theorem 1.1 discusses the ferromagnetic case 2 J > 0  on qr x11" where J sat- 
isfies the extra condition 

~J(s,t)dt=~J(s,t)ds=l for each s,t~lr. (1.6) 

Here and for the rest of the paper, all integrations with respect to dt and ds 
are understood to be over the circle 117 unless otherwise noted. The laws of 
large numbers show that for some critical fl, tic>0, the ferromagnetic circle 
model has a unique phase for O<fl<flc. As fi increases through tic, the __+- 
symmetry of the measures in (13) is broken, and two distinct phases emerge. 
The interesting feature is that the limit in the laws of large numbers is com- 
pletely insensitive to any other details of J. In fact, for any such J, these laws 
of large numbers are identical to the Curie-Weiss case. We have tic = 1, which is 
the Curie-Weiss critical value, and we find that the magnetization per site in 
each of the two phases is +_mCW(fi), where mcw(fl) is the value of the Curie- 
Weiss spontaneous magnetization 3. In the next theorem, the formula (1.7) de- 
fining mCW(fl) is equivalent to the formula in [28; p. 101], and the notation 
E, ,~{-} denotes expectation with respect to the measure P,,p in (1.1). We write 
0 and 1 for the constant functions 0 and 1 on 117. 

Theorem 1.1. We assume 2 that J: ~ff x lF--+~ is continuous, J > 0 ,  J satisfies (1.6), 
and p -  (6i + 6_ 1)/2. We define the Curie- Weiss spontaneous magnetization, 
mCW(fl), to be the unique positive solution m of the equation 

2 Actually Theorem 1.1 will be proved for a larger class of J (J >_ 0 which satisfy an irreducibility 
condition); similarly for Theorems 1.4 and 2.2. 
3 The reason for this nomenclature is explained at the end of Appendix B. 



Symmetry Breaking and Random Waves for Magnetic Systems on a Circle 301 

tim = tanh- 1 m, (1.7) 
where tanh-1 denotes the inverse function of tanh. 

For fi>fl~- l, mCW(fl) is well-defined, mCW(fl)>O, and mCW(fi) is monotoni- 
cally increasing in fl with mCW(fl)"(1 as flToo. For any continuous function 
h: IR--*IR, we have 

{ (W~'~'~ ~h(O) for O<fi<fl~, 
lira E.,p h \~-]j=[�89 for fl>fic (1.8) 

More generally, for any r~{1,2,.. .),  any r intervals {Aj ; j=l , . . . , r  ) in ~, and 
any continuous function h: IR-~IR 

lira E.,~ h 1), ..., ~) 
n ~ o o  

~h(O) 
= ~�89 [h(mCW(fi))+ h ( -  mCW(fl)) l 

for O<fl<flc, 
(1.9) 

for fl > fl~ 

where 0 = (0, ..., 0) and mCW(fl)= (mCW(fl),..., mCW(fl))dW. 

Remarks. 1. Assume that instead of equalling 1, the integrals in (1.6) equal c @ 1 
for all s, tell'. (For example, if J is symmetric about 0 and translation invariant, 
then either (1.6) or this assumption holds.) Then Jo(s,t)-c-1J(s,t) satisfies 

(1.6). Replacing J by Jo is the same as replacing p by dpo(x)-dp(x/]/c ). 
2. The limits on the first and second lines of (1.8) and of (1.9) are con- 

tinuous since mCW(fl)$O as fl$flc. 

3. Since as f l~oo mCW(fl)'Fl=]XJ") ] for each j~{1 .. . .  ,n}, the limit (1.8) 
shows that + 1 and - 1 are the two possible realizations of the ferromagnetic 
ground state. 

According to Theorem 1.1, in the plus phase for f l > l ,  the number mCW(fl) 
gives the limiting value, as n~oo,  of both Wn/n and of W,(A)/n for any interval 
A in 7.  In other words, the local structure of the plus phase mimics its global 
structure. (A similar discussion holds for the minus phase.) This is no longer 
true in the antiferromagnetic case, as we shall now see. 

We now require J to be translation invariant. Then for any k~{1,2 . . . . .  
n - l }  the random variables t~+k,fY(n) " e = l , . . . ,  n} are also distributed by P,.~ in 

(1.1). We refer to this as the gn-rotational symmetry of P,,p (under the ro -  
\ 

tations -~-~+-K / since ~Yt"~ ~ represent the magnetic moments at the sites I . zxaq -  k J  
n n n /  

For the circle model the intuitive picture we have of antiferromagnetism is 
for all fl>O zero magnetization per site as n~oo  (global average), but for fl 
sufficiently large (fl>fl.,  some fl~(O, oo)) the spins clustering into alternating 
islands of plus spins and minus spins as n--+oo. The number of islands and 
their size, but not their phase shift, should be determined by the interaction 
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function. In other words, as n~oo,  the spins should be described locally by a 
wave with fixed shape but random phase shift. Although in contrast to the 
ferromagnetic case we are as yet unable to treat the antiferromagnetic case in 
any generality, we verify this intuitive picture for examples of specific J's. 

The interaction functions considered in the next theorem are parametrized 
by three numbers b>0 ,  v=t:0, and pc{ l ,2  ....  }. While the interaction is anti- 
ferromagnetic only for b>lv[, there is no point in restricting b and v to values 
satisfying this inequality since the theorem is true for all b>0 ,  v+0.  For con- 
venience we shall continue to refer to the next theorem as describing the anti- 
ferromagnetic circle model. 

Theorem 1.2. We set p-(61+g~ l)/2 and take for 3 the interaction function 
J(s, t) = J(s - t), where for some b > O, v * O, and p e { 1, 2 ... .  } 

J(t)=Jb,,,p(t ) -  - b + v c o s ( 2 n p t ) ,  t~'lr. (1.10) 

For any continuous function h: IR~IR, 

limE,,~Ih(Wziv-~)~=h(O) foral l  fl>0. (1.11) 
n--* o o  L ~n/J 

More generally, for any re { 1 ,  2 , . . .  }, any r intervals {A j  ; j = 1 . . . . .  r}  in ~,  and any 
continuous function h: IR~ ~ N ,  

= )~h(0) for 0</~<fi~-2/Iv[,  (1.12) 
[~h(f(s;  A~) ... .  , f (s;  Ar))ds for fi>fi~, 

where for fl>fi~ f (s;  A)-IA1-1 ~ f(s+,~)d,t and f=f~,~,p is a non-constant con- 
A 

tinuous function on IF which is independent of  b, is an odd-function of cos(2rcpt), 
and has the same periodic behavior as ]. Specifically, 

f ( t + ~ ) = - f ( t ) ,  re]F; ~f( t )dt=O; f h a s 2 p n o d e s .  (1.13) 

See (2.12) for an explicit formula for f 

Remarks. 1. The limits (1.11) and (1.12) are consistent since by (1.13)f(s; IF)= 0 
for each s ~ .  The limits on the first and second lines of (1.12) are continuous 
since for each t~]r f~,~,p(t)~O as fi~fla. 

2. We also prove that if v > 0, then 

+ !  if cos(2~pt)>0,  

lim J~,~,p(t)= if cos(2zrpt)=0, (1.14) 

- if cos(27zpt)<0. 

If v<0,  then the +1  and - 1  in (1.14) are exchanged. 
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Since ]XI")[ = 1 for each j e{ l  . . . .  , n}, (1.13) and (1.14) imply that all possible 
realizations of the antiferromagnetic ground state are given by { lira f~,v,p(" + s), 
s e l l ' } .  ~ 

The local law of large numbers (1.12) shows that as n-- ,~,  for fl>2/Iv] local 
averages of the spins are described by local averages of the random wave 
f ( .  +s(c0)), where the random phase shift s(co) is uniformly distributed in Jr. 
Heuristically, as n ~  one may think of the spins as clustering into 2p alter- 
nating islands of plus spins and minus spins, where the plus and minus islands 
correspond respectively to the alternating intervals on which f >  0 and f <  0. 
The second line of (1.12) represents a breaking of the ;g,-rotational symmetry 
of the measures {P~,~} in (1.1). 

We next turn to the specific free energy ~(fl), defined by (1.3). For general J 
and p as in (1.1)-(1.2), Theorem 1.3 below shows that 

- f i  @(fi)= sup G~(f), (1.15) 

where J~f~-Lz(]F ) and G~ is some functional on g4f. Afterwards, we discuss how 
Theorems 1.1 and 1.2 follow from the asymptotics of certain probability mea- 
sures on ~,~. The asymptotics of these measures depend upon the functions in 

at which G~ achieves its maximum. 
For f e ~ ,  we define the operator J :  ~ - - + ~  and the functional F on ~ by 

the formulae 

( i f )  (s) - ~ J(s, t) f (t) d t, (1.16) 

F ( f ) -  i ( y  f f ) ,  (1.17) 

where ( - ,  - )  denotes the inner product on ~ .  We also define the functional 
I on ~ by the formula 

I ( f ) -  ~ ip(f(t)) dr, (1.18) 

where for u real 

io(u ) -  sup {tu - log ~ exp(t x) p(dx)}. (1.19) 

In (1.19) and for the rest of this paper, all integrations with respect to dp are 
understood to be over IR. The function i o is convex. Formula (1.19) expresses ip 
as the Legendre transformation of the convex function 

7p(t) -- log S exp(t x) p(d x); (1.20) 

"* : ( 7 " ) *  = 7p- we write ip = 7*. One can prove that ~p 
For example, if P=(61 +6-1)/2, then 

( l+u 1 - u  

l - 2- log(1 + u) + ~ l o g ( 1  - u) for ]u[< 1, 

ip(u) = ( + oo for [ul > 1. (1.21) 
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Theorem 1,3. We assume that J: "IF x 7Y~IR is continuous and that P~J//b. Then 
tp(fi), defined by (1.3), is given by 

- fi 6(fl) = sup [fl F( f )  - I ( f ) ]  < oo. (1.22) 
f e ~  

We now see what Theorem 1.3 says in the Curie-Weiss case. For J - l ,  
(1.22) becomes 

- f i  O(fi)= sup [ ~ ( 1 , f ) 2 - l ( f ) ] ,  (1.23) 
f s W  

In Theorem B.2 (Appendix B) we show that in the variational formula (1.23) 
we may replace f e H  by f = u l ,  uE~. Hence we find 

(1.24) 

In Theorem B.1, we verify that (1.24) is the formula for the Curie-Weiss specific 
free energy 

qzcw(fl)_ fl-1 lim n -1 cw - l o g Z , , e ,  (1.25) 
n ~ o o  

where z,C~ is the normalization constant in (1.4). Using the equation 4 

sup [f(x)-g(x)3 = sup [g* ( y ) - f *  (y)-l, (1.26) 
xe~, g(x) < co y e l l ,  f * ( y )  < + e~ 

valid for closed convex functions f and g on N, we obtain from (1.24) 

- fi 6(fl) = sup [Tp(t) - t 2/(2 fi)]. (1.27) 
te~ 

For p-(61 +6_1)/2, this formula is well-known [28; p. 100]. 
There is an important relationship between the Curie-Weiss spontaneous 

magnetization mCW(fl) in Theorem 1.1 and the Curie-Weiss specific free energy 
Ocw(fi) in (1.24) (with p-(6~ +fi j)/2). We define 

~ w _  {melR: tim2~2- ip(m) = sup [flu2t2- ip(u)]} 

We show in Appendix B that 

( 1 . 2 8 )  

f{o} 
= c w ( f i ) ,  _ m c w ( f i ) }  

for O<fi<fi~-- 1, 
(1.29) 

for fl>flc" 

We will come back to (1.29) in Theorem 1.4 below. 
We prove Theorem 1.3 by finding a doubly indexed stochastic process 

~p,,(t), n~{1,2 . . . .  }, pe{1,2,...}, tell', which takes values in ~ and which has 
the property that 

4 See Appendix C for the proof of a more general result. 
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1 
-fl~b(fl)= lim lim 21ogE{exp[nflF(~p,.)]} 

= lim lim 1 
p ~ o o  n ~ o o  n 

In (1.30), E ( - }  denotes expectation 
distribution of ~p,~" for subsets sr of 

Qp.,,(~') - Prob {~p,,~s~r 

log j" exp [nflF(f)] dQp,.(f). 
9ff 

with respect to (p,,, 

(1.30) 

and Op,, denotes the 

In order to prove that the right-hand side of (1.30) equals the right-hand side 
of (1.22), we need an extension of the version of Laplace's method for function 
space integrals given in [29; w namely, a version that applies to doubly 
indexed integrals, such as the integrals involving {Qp,,} in (1.30). Such an ex- 
tension is proved in Appendix A of the present paper. According to this exten- 
sion, we will essentially be done once we prove the following large deviation 
result. For all weakly closed subsets Y in ~ and all weakly open subsets N in 

lim sup lim sup n l- log Qp,,(Y) < - I(Y),  (1.32) 
p ~ O G  n ~ O O  

lim inf lim inf _1 log Qp, ,,(N) > - I(N), (1.33) 
p ~ O o  n ~ o o  Y/ 

where for a subset d in ~ ,  I ( d )  is the infimum of I over d .  The reason for 
our use of the weak topology will be clear in the proof. (See the comment after 
the proof of Lemma 3.1.) 

The process ~p,, appearing in (1.30) is defined in terms of a sequence of 
independent, identically distributed (i.i.d.) random variables { Y y ; j = l  . . . .  ,n}, 
each distributed by p. In the Curie-Weiss case, ~p,, is easy to find: ~p,,(t) 

= ~ Yj~")/n for all p~{1,2 . . . .  } and all tEqF; also the second equality in (1.30) 
j=1 

holds without any limits (see (1.4)). However, for general J one cannot get 
away this cheaply. Intuitively, (1.32) and (1.33) hold for general J because the 
function governing large deviations of sums of the {Yy} is the function ip in 
(1.19); see Lemma 3.8. In summary, the point of the calculations in the pre- 
vious paragraph is that in the limit n-> o% the circle model can be expressed in 
terms of a stochastic process (p,, which by (1.32)-(1.33) has I as its entropy 
functional. The formula (1.22) for ~(fl) is an instance of the Gibbs variational 
formula [25; w [26; w 

The local laws of large numbers in Theorems 1.1 and 1.2 are a consequence 
of Theorem 1.3 and some additional facts. We find probability measures {R, ; n 
=1,2, ...} on ~ ,  closely related to the measures {Qp,,} above, with the follow- 
ing property. For any re {1, 2 .. . .  }, any r intervals {Aj;j = 1 . . . . .  r} in ~,  and any 
continuous function h: IR"~IR, 

(1.31) 
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(1.34) 

In (1.34) gj-lAj[ -1 l~j, je{1 .... ir} (l~j is the indicator function of Aj). The 
{~,,p} are probability measures on ocg defined by the formula 5 

S exp [nflF,(f)] dR , ( f )  
~ '  (1.35) 

�9 ,, a (d)  - ~ exp [n fl F,(f)] dR , ( f )  

for subsets d of i f .  In (1.35), the {F,} are a certain sequence of functionals 
which approximate F. We need Theorem 1.3 to prove the crucial fact that if it 
exists, the weak limit of the {~,,p} is concentrated on the set 

~ - {f~ J f :  (fiF - I ) ( f )  = sup (flF - I)}. (1.36) 
~e 

We show that the limit exists and describe it under the hypotheses first of 
Theorem 1.1, then of Theorem 1.2. 

Theorem 1.4. We assume the hypotheses and notation of Theorem 1.1 
(ferromagnetic circle model). For all f i>0  we have ~(fl)=~cw(fi) where the lat- 
ter denotes the Curie-Weiss specific free energy given in (1.24) with p - (61  
+6_1)/2. Specifically, we have that ~ and ~ w ~ _ [ {  in (1.29) are essen- 
tially equal; i.e. 

-J'{0} for O< fl < flc "- l, (1.37) 
~ = ( { m C W ( f i ) l , - m C W ( f l ) l }  for fi>fic. 

Also for any weakly continuous functional ~p on ~ f  

_ _fq)(O) for O<fl_~fl c 
lm~is ~e ~ q~(f) d~),,a(f) [�89 1) + q)(-  mCW(fi) 1)] for fi > tic, (1.38) 

Remarks. 1. The limit (1.9) in Theorem 1.1 follows from (1.34) and (1.38) with 

q~(f)-  h((g I , f ) ,  ..., (g~,f)),  g j - Id j1-1  1Aj. (1.39) 

2. The  proof of statement (1.37) about @a depends in part upon Theorem 
5.1(iii) which characterizes feN~ only up to a set of measure zero. Since we 
work in ~ ,  this information suffices to prove the limit theorems. These same 
comments apply to statement (1.40) about @~ in Theorem 1.5. 

Theorem 1.5. We assume the hypotheses and notation of  Theorem 1.2 (antifer- 
romagnetic circle model). We have 

5 We could have worked with measures defined as in (1.35) but  with R, replaced by Qp,,. Howev- 
er, these measures would have been more cumbersome than those in (1.35). See the remark after 
the s tatement  of Theorem 4.1 for more details. 
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~ e = ~ { 0  } for 0 <f i</7 , -2/ Ivl ,  

( { f ( .  +s),sElF} for fi>fi,, 
(1.40) 

and for any weakly continuous functional cp on J{~ 

l i m  ~ (p(f) dga.,e(f)= {;~O~f 
. ~  ~ (. + s)) 

for 0 < / 7 < / 7  a, 
(1.41) 

ds for ~>&. 

Remark. The limit (1.12) in Theorem 1.2 follows from (1.34) and (1.41) with co 
defined in (1.39). 

The circle model was first studied in [14, 153, but under the restrictive 
hypothesis that J be the covariance function of a Gaussian probability measure 
on cg(qr). Because a translation invariant covariance function cannot be every- 
where nonpositive, the interesting antiferromagnetic behavior of the circle model 
was not treated in these earlier papers. Also, these earlier papers could not 
handle the case of an arbitrary d-body interaction. Formula (1.22) for the circle 
model specific free energy reduces to the formula for this quantity derived in 
[15; Theorem 1.21, when the hypotheses on J assumed in the latter paper hold. 
See Appendix C below for details. 

In Sect. II, the results in Sect. I are stated for more general single-spin 
measures p. In addition, Theorem 1.3 is generalized to d-body interactions. In 
Sect. III, we prove Theorem 1.3 and its generalization (Theorem 2.1) to more 
general p and to d-body interactions. In Sect. IV we prove the laws of large 
numbers in Theorems 1.1, 1.2, 1.4, 1.5 and their generalizations in Sect. II, 
assuming the validity of the statements about Nr in (1.37) and (1.40) and the 
generalizations of these statements in Sect. II. In order to prove these state- 
ments about ~p, we need the crucial fact that if f ~ ,  the f i s  equivalent to a 
solution of a certain nonlinear integral equation. The latter fact together with 
additional useful information is proved in Sect. V. In Sect. VI, under the hy- 
potheses of Theorems 1.1, 1.2, 1.4, 1.5 and their generalization in Sect. II, we 
find all relevant solutions of the nonlinear integral equation of Sect. V. This 
leads to a proof of the statements about N~ in (1.37) and (1.40) and of their 
Sect. II generalizations. In Appendix A, we prove a version of Laplace's meth- 
od for doubly indexed function space integrals which is needed for the proof of 
Theorems 1.3 and 2.1. The proof of the theorem in Appendix A is based upon 
unpublished notes of S.R.S. Varadhan. Appendix B contains all of the facts 
about Curie-Weiss models needed in the main body of the paper. In Appendix 
C, we prove a theorem about Legendre transformations which generalizes 
(1.26), and then we use it to derive alternate formulae for the Curie-Weiss and 
the circle model specific free energies. 

Acknowledgements, Part of the research on this paper was carried out during a visit by R.S. Ellis to 
the Institut f'fir Angewandte Mathematik, Universit~it Heidelberg (July, 1981). Support by a grant 
from the Sonderforschungsbereich 123 (Stochastische mathematische Modelle) is gratefully ac- 
knowledged. We thank S.R.S. Varadhan for a useful suggestion concerning the proof of Theorem 
CA (Appendix C) and for permission to use his unpublished notes which form the basis of the 
proof of Theorem A.1 (Appendix A). 
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II. General Statements of Theorems 

We generalize the results in Sect. I to more general single-spin measures p. In 
addition, we generalize Theorem 1.3 to d-body interactions. An extension of 
Theorems 1.1 and 1.4 which treats the relationship between d-body ferromag- 
netic circle models and the d-body Curie-Weiss model will be presented in 
another paper. 

Given de{2,3,...}, a d-body interaction is defined by d functions {J ; ; j  

= l ' " " d } '  where f~ each j J;" TYt-MR is c~176 (7s X ~ )  " F~ 

the function Jt defines the pure j-body part of the general d-body interaction; 
J~ defines the external magnetic field. As a generalization of (1.1), we define the 
joint distribution of the spin random variables {X~"); c~= 1 . . . . .  n} to be 

exp[fl  ~ j! n t-1 " '" 
L j = l  e = l  P, ~(dxl , . . . , d x , ) -  ~1 ...... j= 1 , 

' Z . , ~  

(2.1) 

where f l>0  and Z,,p is the corresponding normalization constant. As in (1.1), 
we assume that peJZ b. We say that (2.1) defines a ferromagnetic model if each 
J; > 0  on 117 s. For various reasons, we may require certain symmetry properties 
of the {Jj}; e.g., for j odd Jj=O or  for all j Jt(s1,...,st), (s 1 . . . .  ,Sj)~F. t, is 
invariant under all permutations of sl , . . .  , sj. 

Our first result is a formula for the specific free energy O(fi) corresponding 
to the measures {P,,~}. For each je{1, ...,d}, we define the multilinear operator 
F (;) on W - L E ( f f  ) by the formula 

and set 

F~;)(f)- ~. IrJ ~ JJ(sl '""  s;) f ( sO. . ,  f (s t )dsl . . ,  ds; (2.2) 

d 

F ( f ) -  ~ F(;)(f). (2.3) 
j = l  

The following theorem generalizes Theorem 1.3. 

Theorem 2.1. Given de{ l ,2  . . . .  }, d continuous functions { J j ; j= l , . . . , d }  with 
J;: ~ ; ~ ,  and PeJgb, we define by (1.3) the specific free energy tp(fl) corre- 
sponding to the measures {P,,z} in (2.1). Then 

- f l  ~(fi)= sup [ f l F ( f ) -  I ( f ) ]  < oo. (2.4) 
feat" 

The functionals F and I are defined in (2.3) and in (1.18), respectively. 

In Theorems 1.1, 1.2, 1.4, and 1.5, we assumed that p - ( 6 1 + 6 _ 0 / 2 .  The 
natural generalization is to measures p which satisfy the one-site GHS inequal- 
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ity. We define fr to be the set of even Borel probability measures p on ]R, p 
4= 60, for which 

and 

~exp(kx2)dp(x)<oo for all k > 0  (2.5) 
IR 

d3yp(t) <_0 for all t>O, (2.6) 
dt 3 - 

t where 7o is defined in (1.20). Inequality (2.6) implies that 7p is concave on 
(0, oo). It is not hard to prove that in fact V'o is strictly concave on (0, oo) 6. We 
define fib to be the subset of measures in ff which have bounded support. The 
following measures v are known to belong to fgb: 

( k -  1 ) / 2  

p -  ~ 6j,/k for any ke{1,2,. . .} and a > 0 ;  (2.7) 
j =  -- (k--  1 ) / 2  

p absolutely continuous with respect to Lebesgue measure and for some 
L~(0, co) 

( - l i l H ( y ) d y )  for Ix[ < L, 
d P ( x ) / { o n S t e x p ,  o (2.8) 
dx for }x}> L, 

where H(0)=0  and H is convex on [0,L) [9; Theorem 1.2(d)]. For L =  0% (2.8) 
yields measures in (~. Not every even bounded measure p belongs to ~b; e.g., 
[27; p. 153], [9; Theorem 1.2(b)] 

2{~ffb for a~[0, 2/3], 
p -  a6~ (!ff b for ae(2/3,1). 

We next generalize Theorems 1.1 and 1.4 to arbitrary Pefgb" The content of 
Theorem 1.1 and 1.4 was that with p - ( 6 1  +6_1)/2, the asymptotic behavior of 
the circle model for d =  2 and a suitably normalized ferromagnetic interaction 
function is identical to the asymptotic behavior of the Curie-Weiss model. 

Theorem 2.2. We assume the hypotheses and notations of Theorems 1.1 and 1.4 
(ferromagnetic circle model) except that p-(61 + 6 0/2 is replaced by another 
P~ffb" Then all of the conclusions of Theorems I.I and 1.4 remain valid after the 
following changes. The critical fl, tic = 1, is replaced by 

~c(p)-  1/~ x 2 dp(x). 

6 If 7~"=0 on some subinterval of (0, or), then by real analyticity, 7~'(u)=0 for all u>0.  This 
implies that yp(u)=cu 2 for some real C and thus that p is Gaussian. But a Gaussian measure 
cannot satisfy (2.5). 
7 In a general even ferromagnet with single-spin measure (2.7) or (2.8), the multisite GHS 
inequality is valid [18, 19], [9; Theorem 1.2(d)]. This implies that the average magnetization is a 
concave function of internal field. See [9] and [11] for this and other implications of the GHS 
inequality. 
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The Curie-Weiss spontaneous magnetization, mCW(fl), is replaced by mCW(p; ~), 
which is defined to be the unique positive root m of the equation 

fl m = i'o(m ). (2.9) 

For /3>/3c(p), mCW(p; ~) is well-defined, mCW(p; /3)>0, and mCW(p; ~) is mo- 
notonically increasing in ~ with 

mCW(p;~)TL'--sup{x: x in support of p} as ~ o o .  (2.10) 

Remarks. 1. Assume that J not only satisfies the hypotheses of Theorem 1.1 but 
also is translation invariant and positive definite. Then one can prove that for 
any even p ~ / d  b (not necessarily in lab) the circle model specific free energy 
reduces to Ocw(~) in (1.24). However, in general it is only for PSfgb that one 
has a simple description of N~ (cf., Theorem 1.4) and thus obtains explicit limit 
theorems. 

�9 r ! . . !  2. Equation (3.65) below implies that t o is the inverse function of 7p, i.e. t o 
=(y,p)-1. Hence, (2.10) is equivalent to the equation Cp(/3m)=m. 

The next theorem, Theorem 2.3, generalizes Theorems 1.2 and 1.5 to 
arbitrary P~fqb. The latter theorems investigated the asymptotic behavior of 
the antiferromagnetic circle model for p - (61  +6~_1)/2, d = 2  (with J1 =-0), and 
J2(s , t ) -J(s- t ) ,  s,t~qr, where for some b>0,  v4:0, and p~{1,2 .... } 

J( t )= - b + v  cos(27zpt), t~]l?. (2.11) 

Theorem 2.3. We assume the hypotheses and notation of Theorems 1.2 and 1.5 
(antiferromagnetic circle model) except that p-'_(61+c5 1)/2 is replaced by an- 
other PeNb. Then all of the conclusions of Theorems 1.2 and 1.5 remain valid 
after the following changes. The number ~a--2/IVJ is replaced by ~a(P) 
-2/(Iv[~xZdp(x)). The function f=f~,v,p is replaced by a function f=f~,v,p,o" 
The latter is defined by the formula 

f(t)-- 7;(/~ v# cos(2~p t)), (2.12) 

where # =/~(/~, v,p, p) is defined as the unique positive root lz of the equation 

tt =~ r vtt cos(2rcp t)). cos(2rcpt) dt. (2.13) 

For/~ >/~,(p), # is well-defined. 

Remark. We define L=L(p) by (2.10). Then in the limit (1.14), the values - 1 ,  
+1 are replaced by - L ,  +L,  respectively. In this case, L=maxlXJ")l for 

je{1,. . . ,n}. 

III. Proof of Theorem 2.1 

In order to ease the notation, we set /3--1 and write ~O and Z,  instead of tp(1) 
and Z,, 1. We write ~ for L2(]F ) and denote the norm of ~f  by II-  II- The 
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proof of Theorem 2.1 follows the same steps that were sketched in the third 
paragraph after the statement of Theorem 1.3, which is Theorem 2.1 in the case 
d = 2. There are three main steps. 

(1) Define the stochastic process ~p,, taking values in X .  

(2) Assuming that the limits exists, prove that 

- O -  lim -1 l o g Z , =  lim lim l l o g  ~ exp[nF(f)] dQp,,(f), 
n ~ x z  /'/ p ~ o o  n ~ o o  F/ ocg, 

where Qp,, denotes the distribution of ~p,,. 

(3) Prove that 

(3.1) 

lira lira 1log ~ exp[nF(f)] dQp,,(f)= sup [F( f ) - I ( f )]  < o~. 
p ~ c x ~  n ~ c , o  n oeto f 6 , . ~  

We first give motivation, then carry out the three steps. 

(3.2) 

III.1 Motivation 

We first motivate our definition of ~,,p since ~,,p is not the simplest process for 
which the limit (3.1) is valid. However, as we shall see, it is in a sense the 
simplest process for which both limits (3.1) and (3.2) hold for general {Jj}. (See 
the comment in the paragraph after (1.33) concerning a simple choice of ~,,p 
for the Curie-Weiss model.) 

We first seek to write Z,  for each n~{1,2 . . . .  } in terms of a stochastic 
process taking values in x/f. In other words, we try to prove an equality like 
(3.1) but without limits on the right-hand side. Given f e ~ ,  we define 

(rc(")f)(t)-n ~ f(s)ds if t~ , , k~{1 ... .  ,n}. (3.3) 
( k -  1)In 

The operation f~z(") f  is the conditional expectation o f f  with respect to the a- 
algebra generated by the intervals {((k-1)In, k/n], ke{l  . . . . .  n}}. We define the 
functional F, on Yf by the formula 

F,(f) ..+. 
j=l J nJ �9 = ! g l ,  , , . , a ~ j =  1 ~ . . . . .  

For each n, we define {Yk("); k = l , 2 , . . . , n }  to be a sequence of i.i.d, random 
variables each distributed by p and (, to be the stochastic process 

(n(t)- ~ Yk (") 1(( k_ l)/,,k/,l(t). (3.5) 
k = l  

Since p has bounded support, the {Yk} are uniformly bounded a.s. and so (, 
takes values in ~ .  We express Z,  in terms of (, by the formula 

Z,  = E {exp INF,((,)] } = S exp [nF~(/)] dR,(f), (3.6) 
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where E { - }  denotes expectation with respect to ~. and R. denotes the distri- 
bution of ~.. Thus, one may think of each Yk (") as representing the spin at the 
site k/n~'IL Since each Jj is continuous, F. is a good approximation to F, and 
so it is plausible that we should have (provided the limits exist) 

- ~ -  lim -1-1ogZ.= lim l-log ~ exp[nF(f)] dR,(f). 
n ~ e e  H n ~ c o  H ,,~ 

(3.7) 

In order to complete the proof of Theorem 2.1, we would try to prove that 
the limit on the right-hand side of (3.7) exists and equals s u p ( F - I )  on ~ .  
Theorem A.1 (Appendix A) gives sufficient conditions which imply this. A 
main step (cf., (1.32)-(1.33)) is to find a functional I on J/f such that for all 
weakly closed subsets S in ~f  and all weakly open subsets ~ in J f  

lim sup 1 log R , ( X )  < - I ( S ) ,  (3.8) 
n ~ o o  n 

lim inf _1 log R,(N) > - I(N). (3.9) 
n ~ o o  n 

One can prove (3.8) with I given by (1.18); in fact, we use this in Sect. 5 (see 
the proof of Lemma 5.2). However, (3.9) fails in general81 The basic reason is 
that the process (, is not random enough. 

The process {, is replaced by another process ~ , , .  For simplicity we now 
define ~p,, only for n of the form n=2Pq, p, qe{1,2 .... }, where eventually 
q~oe ,  p~oo.  We define up to be the conditional expectation operator on 
with respect to the a-algebra generated by the intervals 

( k - l ,  k ]  
{Ap, k; k = l  . . . . .  2P}, where Ap, g'- ~ -  ~ j .  

Thus for f e J g  

(Upf)(t)=2 p ~ f(s)ds if 
Ap,k 

Clearly, Up = u (2~) in (3.3). We now define 

~,,.. = (% ~.) ( t )  

k = l  

t~Ap, k, ke {1 .... ,2P}. (3.10) 

(3.11) 

) Yj(') 1A,,~(t). 
( k - 1 ) q + l  

The conditional expectation rcp acts like a block spin transformation since it 
groups together blocks of q spins. Again, ~p,, takes values in ~ .  

The proof of (3.1) uses (3.6) together with the fact that the functional F is 
nearly invariant with respect to the block spin transformation uv; i.e., as p--+ m, 

s If p - ( 6 i + 6 _ 1 ) / 2  , then I[~,][ =1. Hence if N - { f e W :  I[/11 <�89 then l iminfn -1 l o g R , ( ( g ) = -  oo 
while in f I=0 .  

fr 
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Fo~Zp-~F uniformly on weakly compact subsets of ~r (see Lemma 3.2). The 
latter depends upon the fact that as p---,oo IIf-~zpf[[--,0 for each f e J f  (see 
Lemma 3.4). This limit is a consequence of the martingale convergence theo- 
rem. 

The main step in the proof of (3.2) is to show the estimates (1.32)-(1.33). 
Intuitively, the latter reduce to the facts that for different k the sums 

kq 
s(n) , 2 yj(n) ( 3 . 1 2 )  q,k-- 

j=(k--1)q+ l 

are i.i.d, and that for nice subsets d in IR 

.~_ , S (') ) 
aim -1log Prob ~ q ' ~ d }  = - ip(d) .  (3.13) 

q~o~) q ( q )  

where ip is the entropy function of p, defined in (1.19) (see Lemma 3.8). Because 
the proofs of (1.32)-(1.33) are rather involved, we motivate these estimates by a 
heuristic calculation that shows for continuous f 

lim _1 log Prob {~p,n ~ f } "  = "  - I(f), 
n--+~ n 

(3.14) 

where the symbol ~ means near. Since f is continuous, we should have for 
large p 

2P 

{~p,,, ~ f }  ~_ ~ {q-1S~,~ ~f(k/2V)}, (3115) 
k=l  

and so by independence and (3.13). 

lim lira op-~log. Prob{~p,.~f} 
p~cc q~c~ Z ,/ 

1 ~ l_ logProb{q_lS~:~, .~ f (k)}  " = "  lira lim ~ k)_,t q 

2p ~_~ ip 
= - lira (f(k/2P)) = - I(f). 

p ~ o e  k = l  

(3.16) 

This gives (3.14) since n=2Pq. 

111.2 Definition of ~v,, for General n 

In this paragraph we denote by [ - ]  the greatest integer function. Given 
ne{1, 2 . . . .  }, pe{1, ..., [log 2 n]}, we define numbers 0 - n  0 <n  1 < . . .  <nzp_ 1 <nzv 
- n  by the formulae 

(kin~2 p] for k~{O, 1 . . . . .  2 p -  1}, 
nk =' ~n for k = 2 p. 

Since 0 < p < [ l o g  s n], In/2 v] > 1. We define 7zp., to be the conditional expec- 
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tation operator on ~ with respect to the o--algebra generated by the intervals 

{/Tk_l /e/,q 
{Ap,,,k; k=  1, 2P}, where Ap, k -  n]  

Thus for f e l l  
/7 

(Tzp,,f)(t)= ~ f(s)ds if t~Ap,,, k, k~{1 .... ,2P}. 
/Tk--/Tk- 1 Ap,n,k 

(3.17) 

We define the process ~p,, by the formula 

~.,.(t)-" (~v.. ~.) (t) 

=k=l  n~--nk- ~ YJ") 1A,,~(t ). (3.18) 
1 j = n k - l + l  ' ' ' 

This definition is close to the definition (3.11) since nk/n~k/2 p as n~oo.  It will 
simplify matters somewhat if we define ~p,, for p >  [log2n ]. We arbitrarily 
set 

~p, , -  Y~") for p >  [log2 n]. (3.19) 

Since the measure p has bounded support and is not a point mass, we have 

- oo < l - i n f { x :  x in support of p} < L - s u p { x :  x in support of p} < oo. (3.20) 

We define 
- { h e ~ :  l < ess infh < ess sup h < L}. (3.21) 

Clearly, (, and ~p,, take values in N. A useful property of N is given in the 
next lemma. 

Lemma 3.1. N is a weakly compact subset of ~ and 

sup IIf]too <max(Ill, ILl). (3.22) 
f e n  

Proof. ~ is a subset of { f e W :  Hfl[ =<max(I/l, ILl)} which is weakly compact [6; 
Thm V.4.7]. Hence it suffices to prove that ~ is weakly dosed. Given {fro} a 
sequence in N such that fm~fe~, ,  we prove that esssupf__<L. For if the set 
d - { t :  f(t)>L} has non-zero Lebesgue measure, then the limit 
(f , , ,  l ~ ) ~ ( f ,  1~) contradicts the fact that (fro, 1~) _-< Lid[  < ( f ,  ld) .  A similar 
proof shows that if f , ,~ fe~, ,  {f,,}_c~, then essinff__>l. The bound (3.22) 
follows from the definition of N. [] 

The weak compactness of ~ greatly simplifies the proofs of (3.1) and (3.2) 
and explains why we assume p to have bounded support. It also explains why 
we use the weak topology in proving the large deviation estimates (1.32)-(1.33) 
for ~p,,. 
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III.3 Proof of(3.1) 

We prove the following 1emma after we show how it yields (3.1). 

Lemma 3.2. We define functionals {F,} by (3.4) and operators {rcp,,} by (3.17). 
Given e > 0  there exists po=P0(8) and for all P>Po there exists no=no(P ) such 
that whenever n > no, 

sup IF,(f)-F(Trp,, f)[ <e. (3.23) 
f e n  

To prove (3.1), we use the fact that the measures {R,}, which are the 
distribution of the processes {(,} in (3.5), are concentrated on the set ~ .  We 
have by (3.6) 

1 
- [log Z.  - log S exp In F ( f ) ]  dQp. 
n 

1 
= - ] l o g  ~ exp In F. (f)]  dR. - log S exp In F ( f ) ]  dQv,. [ 

n 

= ~exp[nF.(f)]dR. ]] 1]. [~exp[nF(rcp,.f)JdRn] " (3.24) 
<ln l~ [ j ' e x ~ ) ] - d - R , , - ]  + n  l ~  ~ [ n ~ F ~ j J - Q ~  J 

By (3.18), we have for all n and p < [ l o g  e n] R, orcp,~ =Qv,," Hence the last term 
in (3.24) is zero for all sufficiently large n. Since each measure R, is con- 
centrated on N, we see by Lemma 3.2 that given e > 0  the first term on the 
right-hand side of (3.24) is less than e for all p>po(e) and all n>no(P). This 
proves (3.1). [] 

In order to prove Lemma 3.2, we need three facts. 

Lemma 3.3. The functional F is weakly continuous and uniformly bounded on ~. 

Proof For any f e ~ ,  we have 

IF(f)[=< k 1 ~=1 ~ [max(l/l, ILI)Y~r, j" IJ~l, 

which proves the uniform boundedness of F on .~. It suffices to prove that 
each operator F (j) defined in (2.2) is weakly continuous. By the Stone-Weier- 
strass Theorem [6; Thm IV.6.16], since each function J~: ]I 'J~IR is con- 
tinuous, given e > 0  there exist N=N(e) and functions {b,k; a = l  . . . .  ,N;  k 
= 1, ...,j} such that 

J / 

sup Jj(s~, I . . . ,sj)-  ~ k~=x b~k(sk)l <e. (3.25) 
( s l ,  . . . ,  s j ) e I r J  a =  1 

The weak continuity of F follows from (3.25), the uniform bound (3.22), and 
the weak continuity of the operators 

J 

f ~  l--[ (b~k, f ) .  [] 
k~ l  
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Lemma 3.4. We define rc (") by (3.3) and 7tp by (3.10). For any hs~,,  as p--+oo we 
have 

7tph--*h a.e., Ilrcph-hl[~0, supKh, rcp f - f ) ] - -+0 .  (3.26) 
f e n  

The last two limits in (3.26) also hold for rc I"). 

Proof Since each interval Ap+a,j is a subset of some Ap, k, the sequence {rcph} 
forms a martingale and r tph~h a.e. on qr [5; Example 1, p. 344]. That Ilrcpf 
- f [ I  ~ 0  follows from the bound sup Iluphl] ___ [lhl[. 

P 
To prove the third limit in (3.26), we have 

sup [(h, u, f - f ) ]  =sup ](rcph-h, f ) [  <= []rcph-h[l.sup Hf 11~. 
f e n  f e n  f e n  

We now use the second limit in (3.26) and the bound in (3.22). For ~(") the last 
two limits in (3.26) follow from [23; Prop. 5.1.2] and (3.22). [] 

Lemnla 3.5. F,--. F uniformly on N. 

Proof We define the functional F~ j) by 1/(nJj!) times the inner summation in 
(3.4). It suffices to prove that for each j F~J)~F ~ uniformly on N. For f e N ,  
since (rc(")f) (t) -- (rc(")f) (a/n) if te((a - 1)In, c~/n], we have 

j! IF~  F~J)(f)] 

(otlal/n aj/n < ~ ... ~ Jj(s 1 . . . . .  s j ) [ f ( s l ) . . . f ( s j )  
al, . . . ,~ j=I  -- 1)In (aj-- 1)In 

-(~(")f) (sl)...  (~(")f)(sj)] ds 1 . . .  d s j  

+ i ... i . . . , s ) - J j  , . . . ,  
o;1 ..... e j=l  (o~1- 1)/n (a.i-- 1)/n 

�9 I(n(")f) ($1) ... (TW)f) (sj)l dsl . . ,  ds~. (3.27) 

For any f e N ,  ]]r~(")fH~< [[fl[~, and so by (3.22) 

sup 11 rc(")f 11 ~ < oo. (3.28) 
na{1, 2,...} 

f e n  

The uniform continuity of Ji on 31 v and (3.28) imply that the second term on 
the right-hand side of (3.27) is arbitrarily small, uniformly for f e N ,  for all 
sufficiently large n. Concerning the first term on the right-hand side of (3.27) 
we approximate Jj as in (3.25). By (3.22) and (3.28), we can prove that for all 
sufficiently large n this term is arbitrarily small, uniformly for f e N ,  by proving 
that for any he~ff, 

sup[(h, f-rc(")f)[-~oo as n~oo .  (3.29) 
f e n  

The latter holds by Lemma 3.4. [] 
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Proof of  Lemma 3.2. By Lemma 3.5, it suffices to prove (3.23) with F, replaced 
by F. Let N w denote the set of weakly continuous functionals on N. By 
Lemma 3.3, we have F ~ N  w. We consider the point-separating algebra N~' of 
functionals/eeNw of the form 

F( f )  = h((gl,  f ) ,  .--, (gr, f ) ) ,  (3.30) 

where r~{1, 2, ...}, h: IRr~IR is continuous, and gl . . . .  ,greCg(g). Since N is 
weakly compact, the Stone-Weierstrass Theorem [6; Thm. IV.6.16] implies that 
N~' is dense in N TM with respect to the topology of uniform convergence. Hence, 
since zip,, maps N to N it suffices to prove (3.23) for functionals P of the form 
(3.30). Finally, since h is uniformly continuous on compact subsets of /R ' ,  it 
suffices to prove that for each ~>0 and geCg(ql?) there exists P0 and for all 
P > P0 there exists n o = no (p) such that whenever n > n o 

sup [(g, ~p,, f )  - (g, f ) [  < e. (3.31) 
f e n  

By (3.26), (g, f )  and (g, zp f )  are arbitrarily close, uniformly for f e N ,  for all 
sufficiently large p. Hence, it is enough to prove (3.31) with ( g , f )  replaced by 
(g, % f ) .  For any f e N ,  

I(g, =p,. f )  - (g, ~. f ) [  = ](rcp.. g - ~p g, f ) [  

< [Inp,,g-npgll" IIfH~. 
Below we prove 

lim (~p,, g) (t) = (lrp g) (t). 
n ~ o o  

By the uniform bound (3.22) and the dominated convergence 
(IJTcp,,gllo~ ~ rlglloo, ]PTcpg[I ~ rlgllo~), we will then be finished. 

The following inequalities are valid for n >22p, ke{1 . . . . .  2q :  

(3.32) 

(3.33) 

theorem 

k > n k > k  k k - l > n k _ l > k - 1  - k - 1  (3.34) 
f f = n = 2 P - n  > 2 p = n = 2 p n 

Hence, if t e ( ( k -  1)/2 p, k/20, then te(n k_ 1/n, nk/n ) for all n sufficiently large, and 
so for such n 

{(rcpg)(t)-(Ttp,,g)(t)L= 2 p ~ g nk--nk-1 ~ g 
Ap,k n Ap,n,k 

<2Pl S g -  f g l+ 2e n S Igl 
Ap,k Ap,n,k n k - - n k - 1  Ap,n,k 

F p f k  n k k - 1  

(3.35) 

The last equality uses (3.34). The bound (3.35) implies (3.33). [] 
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111.4 Proof of (3.2) 

We apply Theorem A.1 in Appendix A. In the latter, we set f 2 - ~ ,  where ~ is 
defined in (3.21), and define ~v to be the a-algebra of subsets of ~ generated by 
all weakly open and weakly closed subsets. We set {a , } -  {n} and P,,,,-Qp,, for 
nE{1,2 .. . .  } and m=p~{1,  2, ...}, where Qp, n denotes the distribution of the 
process ~p,, defined in (3.18)-(3.19). This process takes values in ~.  We must 
check that each Qp,, defines a measure on 7 ~. Given y - ( y ~  . . . . .  y,)~F,", we 
define Ty by the formula (3.18) with each Yff) replaced by yj (j~{1, ..., n}). It is 
easily checked that for any basic weakly open subset fr in ~ ,  T-~fr is open in 
IR". Thus, T - ~ r  is a Borel subset of IR" for any ~ r  and 

n 

Qp, , (d )=  ~ ~[dp(yj). 
T - i d  j=l 

We define the functionals F and I by (2.3) and (1.18) respectively. By 
Lemma 3.2, F is weakly continuous and uniformly bounded on ~ ,  and so 
satisfies condition (A.3). Hence (3.2) follows from Theorem A.1 once we prove 
that for all weakly closed subsets ~ in ~ and all weakly open subsets fr in 

lira sup lira sup _1 log Qp,,(~') < - I (Y) ,  (3.36) 
p ~ o o  n-~oo n 

lim inf lim inf 1- log Qp,,(f#) > - I(f#). (3.37) 
p ~ O o  n ~ o o  n 

Proof of (3.36). We need a 1emma, the proof of which we save for the end of 
Sect. 3.3. 

Lemma 3.6. For f ~ f  and P~J//b we define the functional F(f) by the formula 

r ( f ) -  ~ yp(f(t)) dt, (3.38) 

where 7p is defined in (1.20). Then for any hs2/g 

I(h) = sup {(f, h) - r ( f ) ) .  (3.39) 

The functional I is weakly lower semicontinuous on ~.  

Remark. Formula (3.39) exhibits I as the Legendre transformation of the 
convex functional F (see Appendix C); i.e., I=F*. This formula is reasonable 
since t o" =" 7o* (see (1.19)). One can also prove I*=F.  

We now prove (3.36). We denote by E { - }  expectation with respect to ~p,,. 
For any g ~ ,  we have 

E {exp [n (g, ~p,,)] } > E { 1~, ,Ex~ exp In (g, ~p,,>] } 

> Prob {~, ,peX}- inf(exp [n(g, h>]). (3.40) 
hE,C( 

Thus, 
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Q., ~ (24:)= Prob {~p, .~S} 

< sup(exp [ - n ( g ,  h)]) E {exp In (g, ~p,.)]} 
h~j~f" 

" [  [ .... ' 

=:up(exp[--n(g,h)])k~_ 1 S exp Oz,,,g) .x] dp(x) . 

Hence we have 

(3.41) 

~ l o g Q . , p ( o U ) < s u p ( - ( g , h ) ) +  ~ 7p (7Cp,.g) 
he.~f k = l  R 

2P  

< s u p ( - ( g , h ) ) +  ~ S 7o(g(t)) dt 
heZ/" k = l  A p , n , k  

= sup( - (g, h)) + F(g). 
h e 2 f  

The second inequality in (3.42) uses Jensen's inequality, 
Here is the idea of the rest of the proof. Since g e J :  is arbitrary, we have 

(3.42) 

1 
- log Qp, . (S)  < - sup inf ((g, h) - r(g)). (3.43) 
n g ~ ~.ug heZZ" 

. f ,  being a weakly closed subset of the weakly compact set N, is also weakly 
compact. We use this to reverse the infimum and supremum in (3.43). After 
this reveral, (3.39) implies (3.36). 

The proof to follow would be much simpler if sup /  were finite. However, 

this holds if and only if p has atoms at 1 and at L (see (3.64)). 
We complete the proof of (3.36) under the assumption that I ( ~ ) <  oe. If 

I ( Y ) =  o% then (3.36) follows by a straightforward modification of this proof. 
Given e > 0  and h~2(f such that I(h)< oe, we find by Lemma 3.6 g h e ~  and a 
weak neighborhood 

~4(h) of h ( d ( h ) -  { f s ~ :  I(gh, h ) - ( g h , f ) l < e / 2 } )  

such that 

(gh, f )  - f(gh) > I(h) - e for all f e S ( h )  - J ( h )  c~ Y .  (3.44) 

In (3.44), d (h )  denotes the closure of d(h).  Thus, 

inf (gh, f )  -- F(gh) > I (X(h))  - e. (3.45) 
f E2f (h ) 

On the other hand, if I(h)= ~ ,  then by Lemma 3.6 there exists ghEJcf and a 
weak neighborhood d (h )  of h such that 

( g h , f ) - - F ( g h ) > I ( X ) + l ' - - R  for all f ed (h )c~Y{ ' .  (3.46) 

By the weak lower semicontinuity of I (Lemma 3.6), there exists another weak 
neighborhood sr of h such that I (g )>R for all g~d l (h  ). In particular, 
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inf (gh, f )  - r(gO > I(af)  + 1, 
f ear(h)  

I(f)>__R for all f e X ( h ) - d ( h ) c ~ d ~ ( h ) c ~ X .  (3.47) 

By the weak compactness of o~, we find re{l ,  2, ...} and elements {h~, ..., h~} 
and sets {JC~(h0, ... , ~f(h~)} which cover ~ ,  where if I(hj) < oe then J~r(hj) is as 
in (3.44)-(3.45) and if I(hi)= oe then S(h~) is as in (3.47). For each hj we pick gj 
- - g h j e ~  satisfying (3.45) or (3.47). Clearly 

oe>I(~,~f)= rain I(~f(hj))=min{I(~(hj)):  I(~f(hj))<R}. (3.48) 
re{l, ...,r} 

By (3.42), (3.45), and (3.47), we have 

limsup-llogQp,,(~,~f)< max [ l imsupl logQp, , (~(hj) )]  
n~oo  n je{1, . . . , r}  k n~oo n 

< -  min inf ((gj, f ) - F ( g j ) )  
jE{1 . . . . .  r} f e 3 f ( h j )  

< -  rain 6~, (3.49) 
jE{1, ...,r} 

where 
6.'- ~I(Jd(hj)) - e if I(h~) < R, 

J -  [ I ( X )  + 1 if I(hj) > R. (3.50) 

By (3.48), min 6j=I(~:4r)-e, and so (3.49) yields (3.36) by taking e~0 .  [] 
je{1 . . . . .  r} 

Proof of (3.37). We need two lemmas, Lemma 3.7 and 3.8. We save the proof 
of Lemma 3.7 for the end of this section. Lemma 3.8 is proved in [4; Thm. 5.3] 
(in much greater generality). 

Lemma 3.7. We define ~p,,  to be the image of ~ under rcp,,. Let ~ be any 
weakly open subset in N and pick heY. Then there exists po=Po(h) and for all 
P>Po there exists 6=6(p)  and no=no(p) such that whenever n>n o 

{ f e ~ p , , :  f (n -k ) - - ( r cph ) (k )  <6,  all k = l  . . . .  ,2P}___~. (3.51) 

Lemma 3.8. Let {Y~, j = l , 2 ,  ...} be a sequence of i.i.d, random variables each 
distributed by a probability measure p on R which satisfies S exp(klxJ)dp(x)< 
+ oe for all k>0.  

Set S,= ~ Y~, re{l ,  2, ...}. For any closed subset K in N and any open subset 
G i n n  i=1 

1 f& ) 
lira sup - log Prob ~ - - e K }  < - io(K), (3.52) 

r~oo r ~ r  ) -  

r 
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We now prove (3.37). For any heN, we have by Lemma 3.7 for p>po(h), 
n > max(n o , 2 p) 

= Prob 1 ~ Yjt"~-(~z;h) ~-  <6  --- Prob{dp, k}. (3.54) 
k = l  j=n t + l  

In (3.54), rk--nk--nk_ ~ and the last equality defines the sets ~r By (3.53), the 
fact that lira rk/n= 1/2;, and the choice of h, we have for all p>>_po(h) 

n ~ o o  

l i a i n f l l o g  Q,,v(N) > 1  ~ l i m  i n f l l o g  Prob {s~ek p } 

1 2v 
=2- ~ ~ (-inf{ip(u): lu-(zph)(k/2P)l <6}) 

k = l  

1 2p 
> -2-y ~ ip((Trph)(k/2P)) > - ~ ip(h(t))dt= -I(h). (3.55) 

k = l  k = l  Ap,k 

The last inequality in (3.55) follows from Jensen's inequality. Inequality (3.55) 
implies that 

lim inf lim inf 1 log Q,, p(N) > - I(h). 
p ~ c ~  n ~  J'l 

Taking the supremum over h~N of -I(h) ,  we conclude (3.27). 
We will have completed the proof of (3.2) once we prove Lemmas 3.6 and 

3.7. 

Proof of Lemma 3.6. We write i and ? instead of ip and 70. The key step is the 
following fact. Given a real number h and Ne{1, 2, ...}, we define 

and 

Then we have 

+ o r  for h>L, 
g -  (y')-l(h) for l<h<L,  

- o r  for h<I, 

gN - max(rain(g, N), - N). 

(3.56) 

(3.57) 

O<gNh-7(gN)~i(h ) as N ~ .  (3.58) 

In (3.56), [l, L] is the smallest closed interval containing the support of p. 
In (3.56) (7') -1 denotes the inverse of the function 7'. The quantity (?')-l(h) is 
well defined for hc(l, L). Indeed, for all real t, 

7"(t) = ~ ( x -  ~ x dc~t(x)) 2 d~t(x) > 0, (3.59) 

where dc~ t(x) - exp(t x) dp (x)/S exp(t y) dp (y). Thus, 7'(t) = S x dc~t(x) is a strictly 
monotonically increasing function of t; 7'(t)e(l, L); lira 7'(t)=L, lira 7'(t)= I. 

t~cx} t ~ - - o o  
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Thus, 
theorem 

We show how (3.58) yields (3.39) in the lemma and then prove (3.58). Given 
he~,, we define g(t) and gu(t) by (3.56) and (3.57) with h(t) written for h; since 
I/gNlloo<g, gNe~. For any f e ~ ,  by (1.19) we have 

I(h) = ~ i(h(t)) dt = ~ sup {u h(t)-  7(u)} dt 
u~Yil.  

>= ~ (f(t) h(t)-7(f(t))) dt. (3.60) 

by the arbitrariness of f e J f ,  (3.58), and the monotone convergence 

I(h) > sup(( f, h) - r( f ))  > sup ((gN, h) - F(gN)) 
f ~  N 

= ~ lim (gN(t) h(t)-7(gN(t)))dt = ~ i(h(t)) dt= I(h). 
N ~ cxz 

This is (3.39) in Lemma 3.6. 
We now prove (3.58). We first consider h = L. Then gN= N and 

N L -  7 (N) = - log ~ exp (N(x - L)) dp (x). 

We write A for the support of p. Since 

exp(N(x-L) )  1A(x)$ llL~(x ) as NT ~ ,  

(3.61) 

(3.62) 

0 < i ( L ) =  N,~lim(NL-7(N))={+~ gp({L}) 
if p has an atom a t L ,  

if p has no atom a t L .  
(3.64) 

Thus for h=L  (3.58) is valid. By similar reasoning, if h>L, then i(h)= + m, 
and (3.58) holds. The case h<=l is handled similarly. We now consider he(l, L). 
By calculus and the fact that the range of 7' is (1, L), we have for any he(l, L) 

i(h) = h t (h)-  7(t(h)) < oe, 

For he(l, L), we have by the definition of g~ 

gN>_-0, g~]'(7')- l(h) 

gN < 0, g~ ~ (7')- 1 (h) 

t(h)-(7')-l(h). (3.65) 

if (7')-1(h)_>_0, 
if (7')-1(h)__<0. (3.66) 

The fact that for he(l,L) g~h-7(gN)'~i(h) follows from (3.65), (3.66), and the 
fact that 

d ( t h _ ~ ( 0 )  ~'>0 for t <(7')-~(h), (3.67) 
dt ~ < 0  for t>(? ')- l(h) .  

To prove gN h--7(gN) > 0  for he(I, L), we use (3.66), (3.67), and the fact that at t 
= 0  (t h - 7 ( 0 ) = 0 .  This completes the proof of (3.58). 

we see that as N T c~ N L - 7 ( N )  is strictly increasing. In other words, for u = L 
the supremum in the definition of i(u) is not attained, and 

(3.63) 
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We now prove that I is weakly lower semi-continuous. Let {hi} be a 
sequence in H tending weakly to some h e ~ .  We prove 

lim inf 1(hi) > I(h), (3.68) 
j ~ o c  

We first assume I(h)<oc.  Let e > 0  be given. There exists j oe { l , 2  . . . .  } and by 
(3.39) there exists f ~  such that for all J>Jo 

I (hj) > ( f hi) - F( f )  > ( f h) - F( f )  - e > I (h) - 2e. (3.69) 

Taking e~0 ,  we obtain (3.68). If I(h)= oe, then given Re(0, oo), there exists 
joe{l ,  2, ...} and by (3.39) there exists f e g f  such that for all J>Jo 

I(hj) > (g, hi} - r ( f )  > ( f  h) - F( f )  - 1 > R. (3.70) 

Taking R--, o% we obtain (3.68). []  

Proof of Lemma 3.7. Since fr is weakly open in ~ ,  we can find 6o>0,  
r e{ l , 2  . . . .  }, and r functions { g f i j = l  . . . .  ,r} in 54f such that 

{ f ~ :  [ ( f  gj) - (h, g~)[ <c~ o, j =  1, ..., r} _~ fq. (3.71) 

By Lemma 3.4, there exists Po such that for all P>-Po 

{ f E ~ :  ] ( f  g j )  - (rcp h, gj)[ < ~o/2, j = 1 . . . . .  r} _~ ~. (3.72) 

We are done once we have proved that for each P>Po there exists no=no(P) 
and A=A(p)  such that whenever n>n o 

c { f ~ N :  [ ( f g j ) - ( n v h ,  g y < 5 o / 2  ' j = l  . . . .  ,r}. (3.73) 

In (3.51), set 5-6o/A .  
Fix f e a r , ,  and g=" gj, je{1,  ..., r}. Since f is constant on the intervals 

{Ap,,,~} and ~vh is constant on the intervals {Av,k}, we have 

I f f , , g ) - (nph ,  g)[<= ~ nk g - ( n v h  ) 
k= l ~ Ap, ,k p,k 

< 2 f -(7Cph) ~ Igl 
k = l  Av,n ,k  

+ ~ ( n p h ) ( ~ )  I ~ g -  ~ g[" (3.74) 
k ~ l  Ap,~,t,: Ap, k 

By (3.34), for n>22p and ke{1 .. . .  ,2 v} there exist two intervals rip, n, k ' (1)  , and ~'p,,,kA(Z) 
with IA(j)< kl <k/n ( j=  1, 2) such that 

2P/2 
} )" g -J"  gl=l 5 g]+l j" gl <2 I]g]l. 
Ap,n,k Ap, k a (1) a (2) ~ -  lap,~,k l lp,n,k 
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From (3.74), we conclude 

[(f, g)-(=ph, g)l<k~{isup ..... z~} f ( ~ ) - ( r c p h ) ( k ) I l g l l  
2~ IIhFI �9 2 . 2  ~/2 Elgll 

-~ 1/n .(3.75) 

Clearly we can find no=no(p) and A=A(p) sufficiently large such that if the 
inequalities on the left-hand side of (3.73) are satisfied for all n>  n o, then f 
belongs to the set on the right-hand side of (3.73). [] 

IV. Laws of Large Numbers 

We prove the laws of large numbers in Theorems 1.1, 1.2, 1.4, and 1.5 and their 
generalizations in Sect. II, assuming the validity of the statements about @~ in 
(1.37) and (1.40) and the generalizations of these statements in Sect. II. The 
latter will be proved in Sect. VI by means of ideas to be developed in Sect. V. 

We formulate and prove the laws of large numbers for the general d-body 
case defined in Sect. II. Given peJClb, we consider spin random variables {X(~); 
e =  1, ..., n} with joint distribution given by (2.1). For A an interval in "IF, we 
define 

W,(A)-IA1-1 ~ Xr ). (4.1) 
{ac:~/n~A} 

We define the functional F on ~ by (2.3) and the functional F, on Ye by (3.4). 
For the two-body case considered in Sect. I, F is given by (1.17) and F, by 

i j  
F , ( f )=  1,~=1 ns (~_, ~_)(rc( , )f)(~) .(~(n)f)(~n2),  (4.2) 

where rr is defined in (3.3). We define the stochastic process ~, by (3.5) and 
denote by R, the distribution of ~,. R, defines a measure on the a-algebra 7 j 
generated by all weakly open and weakly closed subsets of N. We recall the 
formula 

Z,, a = ~ exp In fi F,(f)] dR,(f), (4.3) 

first noted in (3.6). Because of (4.3), a probability measure ~b,,~ is defined on 
(N, 7 j) by the formula 

exp In fl F,(f)] dR,(f) 
~" '~(d) - -d  Z,,~ , d e 7  j. (4.4) 

This definition coincides with the definition (1.35) since each measure R, is 
concentrated on ~ .  Finally we define the set 

@~- { feN:  ( f iV-I)( f )=sup(f iF-I)} .  (4.5) 

This coincides with the definition (1.36) since I ( f ) =  + oo for f s Y g \ N .  

Theorem 4.1. (i) For any re{l ,  2, ...}, any r intervals {Aft j =  1 . . . . .  r} in "IF, and 
any continuous function h: Nr--+~x 
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l imE, ,~{h(W"~ -A1), ..., W"(A~))} -~h( (g l , f )  , ..., (g~,f))dq~,,p(f)=O, (4.6) 
n ~ o o  n , 

where g j -  I@ 1 IAj. 

(ii) The set of measures {,P.,p; n=  1, 2, ...} is relatively compact with respect 
to weak convergence and the support of any accumulation point of {~.,p} is 
contained in ~ .  

(iii) Let (p be any weakly continuous functional on ~.  
(a) i f  ~p = {0}, then 

lim ~ (p(f) dcb,,~(f) = q~(0). (4.7) 

(b) Assume that p is even and that in formulae (2.3) for F and (3,4) for F,, 
Jj =-0 for odd j. I f  there exists a constant m :t= 0 such that @~ = {m l, - m  1}, then 

lim ~ (p(f) deb,,~(f)=�89 (4.8) 
n ~ o o  

(c) Assume that d = 2  and that F and F, are defined by (1.17) and (4.2), 
respectively. I f  the interaction function J is translation invariant and there exists 
a function f 6 ~ ,  f~-o, such that ~p = {f(.  +s), s~ff}, then 

l im ~ ~o(f) dq)~,~(f)= ~ ~o(f(. + s)) ds. 
tl ~ OC ~3 

~" (~, 70 by the formula Remark. Let us define measures {~n,p,~} on 

(4.9) 

exp[nfi F.(f)] dQ.,v(f ) 
d 

St,., ~ (d )  - ~ exp In fl F. (f)]  dQ.,p ( f ) '  
N' 

d E  ~, 

where Qp,n is the distribution of the process Cp,. in (3.18). Then the limits (4.6)- 
(4.9) all hold with {@.,~} replaced by {S;,.,a} (with lim lira instead of lira). 

p ~ ( x D  n ~ o ~  n ~ c x ~  

We have chosen to work with {~On,~} because they are less cumbersome than 

In order to prove part (ii), we need a lemma. 

L e m m a  4.2. For any weakly closed subset JU in ~,  

1 
lim sup -- log 5 exp [nflF.(f) dR.(f)] < sup [fiF - 13. 

n ~  n j g  

(4.10) 

Proof. By Lemma 3.5, F , ~ F  uniformly on ~.  Hence it suffices to prove the 
lemma with {Fn} replaced by F. By Remark 1 following the statement of 
Theorem A.1 (with Pm,,-Rn for all m~{1, 2, ...}) and by (A.5) it suffices to 
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prove that for all weakly closed subsets gC in 

lira sup _1 log R ,  ( X )  < - I ( X ) .  
n~cr  Y/ 

(4.11) 

This is proved like (3.36). We have for any geYf (cf. (3.40)-(3.42)) 

_ 1 
1 log R, (X) < sup ( -  (g, h>) + -  log E {exp In (g, (,>] } 
/~ h~Yg H 

h ~  k = 1 n ~'') (re(") g) 

__< s u p ( -  <g, h>) + r (g) ,  
he~zf" 

(4.12) 

where the last step uses Jensen's inequality. Now (4.12) is shown to imply (4.11) 
in exactly the same way that we proved (3.42) implies (3.36). [] 

Proof of Theorem 4.1. We set f i=l ,  writing E,, cI), and ~ instead of E,,~, @.,~ 
and N~. 

(i) We consider only r = l  and Al-(a,b] ,  where a, bE]r, a<b. The case of 
general re{I, 2, ...} and general intervals {A j; j =  1, ..., r} has handled similarly. 
The random variables Wn(d~)/n and (IA] -~ 14, ~,) take values in the compact 
subset A-[1,  L] in IR (see (3.20)). It suffices to prove (4.6) for he~l(A) since 
cgl(A) is dense in C~(A). We pick integers jo=Jo(n ), ko=ko(n)e{0, ..., n - l }  such 
that 

J__o <a<Jo + l ' kO<b=<ko+l 
g/ /1 /1 /1 

Then 

1 n ( k - l ,  k] 
" ) I 11 k=l 

Y'(")" 'J~ + l a\ ( ~ )  
[All n jo+ l <k<ko 

Hence 

(4.13) 

= O(1/n). (4.14/ 
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The last step uses the fact that since p has bounded support sup{E, lXJ')l; n 
=1,2,  . . . ; j = l , . . . , n } < o ~ .  

(ii) Let 50 be any weakly open set in ~ containing 9 .  We prove below that 
there exist C~(0, oe), c5~(0, o9) such that for all n~{1, 2, ...} 

q~,(~',, ~)  <= C e -"~. (4.15) 

Here 5 ~ denotes the weak closure of 5<. Since ~ is also weakly compact, we 
see that the set of measures {~,} is tight, and thus by Prohorov's theorem [2; 
Thm. 6.13 {~,} is relatively compact. Let ~b be any accumulation point of {~n} ; 
say ~b,,~(b for some subsequence {n'}, By (4.15) 

~b(N\ 5P) <lira inf (b,,(~ \ ~ ) =  0, (4.16) 
n" ~ oG 

and so 45 is supported on ~ By the arbitrariness of 5: and the fact that ~ is 
weakly closed (see Theorem 5.1(ii) below), we conclude that �9 is supported on 

5 > = ~ .  (4.17) 
{5 ~_~ .~, 5 p weakly open} 

We now prove (4.15). We have by Lemma 4.2 and Theorem 2.1 

lim sup -1 log ~b, (~  \ 5 >) =<lira sup _1 log ~,  (.~ \ 5:) 
n ~ c c  12 n~o,~ /7 

< sup IF - 1 3  - sup IF - 13. (4.18) 
N'- .  5 :  N' 

We are done once we prove 

sup IF - 13 < sup IF - I3. (4.19) 
N \ Y  N' 

If we had equality in (4.19), then by the weak compactness of ~ \  Y (Lemma 
3.1), there would exist a sequence {fj} and an element f in N- ,  5 p such that 

f j~-f,  (F- I )  ( f j )~sup  I F - I ] .  (4.20) 

The weak upper semicontinuity of F - I  on N (Lemmas 3.3 and 3.6) would 
then imply ( F - I ) ( f ) = s u p [ F - I ]  or f ~ .  But the latter is impossible since 

(iii) The right-hand sides of (4.7), (4,8), and (4.9) define probability measures 
q)A, ~B, and (bc, respectively; i.e., (hA--60, OSB--(cSml +~ ml)/2, and (b c denotes 
the circular average in (4.9). We first consider case (a). Since ~a is the unique 
probability measure supported on ~ - { 0 } ,  by part (ii) any accumulation point 
of {~,} must be ~a" 

Thus, ~ , ~ A ,  which is (4.7). In case (b), by the evenness of p and the fact 
that Jj-=0 for odd j, each ~,  is signature invariant (invariant with respect to 
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the action f - - - , - f  on N). Hence any accumulation point of {~b,} must be 
signature invariant. Since ~B is the unique signature invariant probability 
measure supported on ~ - { m l ,  - m l } ,  we conclude as in the proof of case (a) 
that ~ b , ~  B. This is (4.8). In case (c), by the uniqueness of Haar measure [21; 
Theorem C, w 60], ~b c is the unique translation invariant probability measure 
supported on ~ - { f ( - + s ) ,  seg}.  (Translation invariant means invariant with 
respect to the action f ( . ) ~ f ( . + s ) ,  seriF, on ~.) We will be able to conclude 
that ~ . ~ b c ,  which is (4.9), once we prove that any accumulation point ~b of 
{~,} is translation invariant. We denote by ~w the set of weakly continuous 
functionals on N. Assuming that q~,, ~ 4~ for some subsequence {n'}, we prove 
that �9 is translation invariant by showing that for any q~eN~' and se3r 

qg(f (. + s)) d ~ ( f ) =  ~ q~(f) dq~(f). (4.21) 

The idea of the proof is to show that at the expense of a small error we can 
replace q~ by some ~b, and s by the nearest real number of the form j/n for 
some je{1, ...,n}, ne{n'}. With these replacements (4.21) is easily shown to 
hold. The latter is closely relately to the ZZn-rotational symmetry of the measures 
{Pn, p} noted in the third paragraph after the statement of Theorem 1.1. 

We consider the set ~ of weakly continuous functionals (9 on M of the 
form 

(9(f)=h((g~, f )  . . . .  , (g, f ) ) ,  (4,22) 

where re{I, 2, ...}, h: R'--,1R is continuous, and gl, ..., grECg(g) �9 As we noted 
in the proof of Lemma 3.2, ~2~ is dense in Nw with respect to the topology of 
uniform convergence. Hence it suffices to prove (4.21) with q~-(9 of the form 
(4.22). For any ne{n'} and any je{1, ..., n}, we have 

It (9(f(" +s)) dr - ~ (9(f) dqb I 

<It (9 (f( .  + s)) dcb - ~ (9 (f(.  + S)) d~,l + ~1(9 (f(" + s))-  (9 (f( .  +j/n))] d~b 

+ It (9(f(" +j/n)) dq~n - ~ (9(f) dq),[ + ]~ (9(f) dcI) - ~ (9(f) dq~l 

L 1 (n) + L 2 (J, n) + L 3 (j, n) + L~ (n). (4.23) 

Since q~,,~q~, given e>0  we can pick no>O such that Ll(n)<a, L4(n)<a 
whenever ne{n'}, n>=n o. Given 3>0,  we may pick nr n>_no, je{1, ..., n} 
such that Is- j /hi<6.  We show that there exists 6 > 0  such that L2(j,n)<a. 
Since h in (4.22) is uniformly continuous on compact subsets of IR ~, it suffices 
to prove that for each t />0 and geCg(qf) there exists 6 > 0  such that whenever Is 
- j /nl  < 

supl(g, f(" + s)) - (g, f(" +j/n))} <t/. (4.24) 
fEN 

The left-hand side of (4.24) equals 

s u p l ( g ( " - s ) - g ( . - j / n ) ,  f ) ]  =<sup[g( t -s) -g( t - j /n)[  .sup IIf[I o0. (4.25) 
f e~4~ t e]Y f e..~ 
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Hence by the uniform continuity of g on 11" and the uniform bound (3.22), 
there exists 6 > 0  such that (4.24) holds if Is-j /n[<6. Thus, we have proved 
L2(j,n)<=e for suitable j and n. We claim that for all he{I, 2,...} and all 
je{1, ..., n} L3(j, n)=0. Once this is proved, we will be done. By (4.4), it suffices 
to prove that for all f e n  

dR, ( f  (. -j/n)) = dR, ( f )  (4.26) 
and 

F, ( f  (" -j/n)) = F, (f). (4.27) 

We have (4.26) since R n is the distribution of the process ~n in (3.5) and the 
distributions of ~n('+j/n) and of ~, are equal. Since J is translation invariant, 
there exists J :  ~ - ~  such that J(s, t )=Y(s - t )  for all s, telF. Hence for any 
f e n  

n ~ F.(f(" -j/n)) = ~ J \ - --~-- /(~(") f("  -j/n)) ~ �9 (rc("lf( �9 -j/n)) -~ 

~ l , g 2 = l  \ l• / 

=n2F~(f). 

This proves (4.27). [] 

V. Solving the Variational Problem sup [~ F - I ]  on B 

In order to complete the proofs of Theorems 1.1, 1.2, 1.4, and 1.5 and their 
generalizations in Sect. II we must prove the statements about N~ in (1.37) and 
(1.40) and the generalizations of these statements in Sect. II. The key to doing 
this is proved by Theorem 5.1 below. We prove that the maximum of f i F - I  
on N is always achieved, so that ~ 4 : 0 ;  that any maximizing f l i e s  in the set 

N ~  l < f < L  a.e.}, (5.1) 

which is the interior of N with respect to the weak topology (the numbers 1 
and L are defined in (3.20)); that such an f equals a.e. a solution fo of the 
nonlinear integral equation 

i'o(fo(t)) = fi(F'(fo) ) (t), teIF, (5.2) 

and that fo is continuous on g.  In (5.2), U is an operator mapping W ~ g r  ~ 
which generates the Frechet derivative of F at fo. F' is defined in (5.6) below. 

The proof of (5.2) is subtle. If it were true (say) that I were Gateaux 
differentiable on N, then (5.2) would follow from general theory [1; Theorem 
6.1.1]. But this differentiability is not valid. Given H a Frechet differentiable 
function on Jr ,  we define the operator H': ~f~-Yf by the formula 

D H ( f ) h = ( H ' ( f ) , h ) ,  f heg / f ,  (5.3) 

where DH(f )  denotes the Frechet derivative of H at f 
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Given j~{2, 3, ...} and numbers si , . . . ,s j_l ,  te~, we define quantities S(k j), 
k ~ { 1 . . . .  ,j}, as follows: for k =j ,  s~ ) = (sl, .--, Sk- 1, t) while for k e { 1, . . . , j  - 1} S(k J) 
is obtained from (Sl, . . . , s j_~, t)  by interchanging the k'th coordinate, Sk, and 
the j ' th coordinate, t (e.g., s(z 4) - (s 1 ,t, s3, s2) ). 

Theorem 5.1. We define the functional F by (2.2)-(2.3), where d~{2,3, . . .} and 
each function jj: TYJ-~IR is continuous, j~{1, . . . ,d} .  For sl,...,sd_1, te~,  
j~{2, ... ,d}, we define 

J 

Jl(t) =Jl( t) ,  @(s a . . . .  , s j_ l ,  t )=  ~ Jj(s(kJ)). (5.4) 
k = l  

We define the set @~ by (4.5). We have the following facts. 
(i) F is Frechet differentiable on ~ and 

DF(f)h=<F'(f) ,h),  f, heJf,  
where 

1 
(F'(f))(t)=Jl(t)+ i ~. 

j = 2  

(5.5) 

@(sl,... , sj_l, t) f (sO.. ,  f(sj_ 1) dsl" .  dsj_ 1. 
~ j -  t 

(5.6) 

lim i'(u) = + o% lira i'(u) = - oo. (5.7) 
u'[L u$l  

Proof. For  ue(l,L), (3.65) implies that  i'(u)=(7')-l(u). The lemma follows by 
properties of 7' stated after (3.59). []  

Proof of Theorem 5.1. To ease the notation, we set f l -  1 and write ~ instead of 

(i) This is a direct calculation. 

(ii) The proof that  ~ is non-empty and weakly closed is standard. By 
Theorem 2.1, e - s u p ( F - I ) < o o .  We pick a sequence {fj} in N such that 

( F - I )  (fj)~c~. By the weak compactness of ~ (Lemma 3.1), there exists a weakly 
convergent subsequence {fj,} with weak limit f e N .  Since F - I  is weakly upper 
semicontinuous on N (Lemmas 3.3 and 3.6), 

= lim ((F - I) (f/)) < (F - I) ( f)  < c~. (5.8) 

Thus, f e ~ .  A similar proof  shows that  ~ is weakly closed. 
We now prove that  @~_~o. Given f ~ N ,  we prove that  ]{t: f(t)=L}l=O; 

that  [{t:f(t)=l}l=O is proved similarly. We argue by contradiction. If d 
- { t : f ( t ) = L }  were not  a null set, then by convexity of i and Lemma 5.2, we 
would have as e~,0 

We need a lemma. 

Lemma 5.2. We have 

(ii) ~ p # 0 ,  ~n is weakly closed, and ~ o ,  where ~o is defined in (5.1). 

(iii) I f  f 6 ~ ,  then there exists a solution fo of (5.2) which is continuous and 
which equals f a.e. 
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1_8 (I (f) - I ( f  - 81~)) =~ ~ [i(f) - i ( f -  81~)] dt 

=~ ~ (i(L) - i ( L  - 8)) dt > Jd] i'(L - 8)--~ oo. 

(5.9) 

By part (i) s - l ( F ( f ) - F ( f - 8 1 ~ ) )  stays bounded as 8--+0. Hence we can find a 
small 8o>0 such that f - 8 o l ~ e N  and 

(5.1o) 1 U( f )  - I ( ? -  8o 1~)] > 1- [F(f)  - e ( / -  8o 1~,)]. 
80 80 

The latter is the same as 

F ( f  - 8 o 1•) - I ( f  - e o 1~) > F(f )  - I(f),  (5.1 l) 

but (5.11) contradicts f e ~ .  

(iii) By part (ii), we may find an a.e. strictly positive function h e w  such 
that for all ]s]=<l, l < f + e h < L  a.e. Let A be any measurable subset of ql'. 
Given Ne{1, 2 . . . .  }, we define 

A N - A ~ {t: - N < i'(f(t) - h(t)) < i'(f(t) + h(t)) < N}. (5.12) 

Since i'(u)< oo for ue(l,L), we have AN'[A as N-,oo.  For any se(0, 1], we have 
by part (i) and Taylor's theorem with remainder for n = 0  [1; Theorem 2.1.33], 

0 > F ( f +  e h 1A~ ) -- F(f)  - - I ( f +  8 h 1a~ ) + I ( f )  

= 8 (F ' ( f ) ,  hlA• } +o(8)--sSi ' ( f  ) hlANdt (5.13) 

- 8 S (~ [ i ' ( f+  ssh 1Are) - - i ' ( f ) ]  ds) h 1AN dt. 

Since on A N 

i ' ( f + s s h .  1AN)<i'( f+h)<N, se[0, 1], ee(0, 1], (5.14) 

we have by dominated convergence that the second integral in (5.13) tends to 
zero as e$0. Hence (5.13) implies 

( i'(f), h 1AN ) > ( F'(f), h 1AN ). (5.15) 

Repeating the argument with e e [ - 1 ,  0), we conclude (5.15) but with the sense 
of the inequality reversed. Thus, 

(i'(f), h 1A~ ) = (F'(f) ,  h 1Au ). ( 5 .16 )  

Since A~TA, A is an arbitrary measurable subset of If, and h > 0  a.e., (5.16) 
implies that 

i'(f) = F ' ( f )  a.e. (5.17) 

Let us assume that (5.17) fails on a null set N. We define 



332 T. Eisele and R.S. Ellis 

fo(t)_~f(t)  for t~11"\ N, (5.18) 
((i')-~((F'(f))(t)) for teN. 

Since fo = f  a.e. and F' is an integral operator with a smooth kernel, we have 
F'(fo)=F'(f)  on all of 11". Thus, i'(fo)=F'(fo) on all of ~.  The function fo is 
continuous since fo=(i')-l(F'(fo)) and each ~ in (5.4) is continuous. We re- 
mark that 

- oo <ess infi ' (f)  < ess sup i '(f) < ~ (5.19) 

and thus that i ' ( f )~ / f .  [] 

Vl. Proofs of Theorems 1.1, 1.2, 1.4, 1.5, 2.2-2.3 

Under the hypotheses of these theorems, we find all relevant solutions of the 
equation (5.2). By our work in Sect. IV and V, we will then be able to 
complete the proofs of the theorems. 

V1.1 Proof of Theorems 1.1, 1.4, and 2.2 

We prove these theorems for a larger class of interactions than the class of 
continuous J > 0 .  Given J > 0  on l l ' x ~ ,  we say that J is irreducible if for all 
s, t s l r  there exists a sequence u o =s, ul, u 2 ..... u,= t such that J(ui,u~+ 1)>0 for 
each iE{0, 1 .... , n - 1 } .  Clearly J is irreducible if J > 0  on II" x]r .  

We prove Theorems 1.1, 1.4, and 2.2 assuming that J :  ~ x ] l ' ~ I R  is con- 
tinuous, non-negative, and irreducible and satisfies (1.6). 

It suffices to prove Theorem 2.2, which generalizes Theorems 1.1 and 1.4 
fi'om p_-'(61 + 3_1)/2 to arbitrary P~b" The statements about the Curie-Weiss 
spontaneous magnetization mCW(p; fi) are checked in Appendix B. Below we 
prove for peff  b that 

_ f{0}  for O<fi<flc(p ) -  1/Sx2dp(x), (6.1) 
~-[{mCW(p; fl) 1, --mCW(p; fl) 1} for fi>fic(P). 

Then the p-versions of the limits (1.8), (1.9), and (1.38) follow from parts (i), 
(iii) (a), and (iii) (b) of Theorem 4.1. 

We prove the first line of (6.1). By Theorem 5.1(ii)-(iii), it suffices to prove 
that if 0 < fi =< fi~(p), then f 0 - 0  is the unique continuous solution in ~o  of the 
equation 

i'o(fo(O) =~ ~ J(s, t) fo(S) ds, t~TY, (6.2) 

where J(s, t ) -  J(s, t) + J(t, s). Let foeCg(~) c~ N o solve (6.2) and pick t o ~I1" such 
that ]fo(to)l=max{[fo(01: te~}.  Since f o e N  ~ we have Lfo(to)L<L, where L is 
defined in (2.10). Since i'p is odd and J satisfies (1.5), we have 

i'p({fo(to)[) = fp(fo(to))( = fl IS aV(s, to) fo(S) ds[ < fl [fo(to)[ < fi~(p) [fo(to)[. 
(6.3) 

By (B.14) (in Appendix B), we conclude that [fo(to)l=0 and so fo-=0. 
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We now prove the second line of (6.1). For fi>/3~(p), the function f o = 0  
continues to solve (6.2) but we claim that 0 ~ .  In fact, i f f = u l ,  some u~lR, 
then 

Since 

,~U 2 

(fi F - I) ( f )  = - ~ - -  i o(u). (6.4) 

(flu2~2 - ip(u))'[,= 0 = O, (flu2~2 - io(u))"],= o = fl - 1/~ x 2 d p(x) = f i -  tic(P) >. O, 

f l u 2 / 2 - i o ( u ) > ( f l F - l ) ( O )  for all u sufficiently small, and thus Oq}@p. We are 
done once we prove that i f f ~ o  belongs to ~ and is continuous, then 

If(t)l=mCW(p; fl) for all teIF. (6.5) 

We first prove that ]f[eNe. Since i v is even and d>O, we have 

sup (fiF - I) ( f )  = ( f ie  - I) ( f )  <= (fiF - I) (I f[) < sup ( f l F -  I) (f) .  (6.6) 
f e . ~  f~ .~  

This implies that I f l ~  and thus by Theorem 5.1(iii) 

i 'p(lf(t)l)=gjff(s,  t)[f(s)l ds, t dF .  (6.7) 

Since Ift is continuous and by Theorem 5.1(ii) I f l ~  ~ we can pick to ,qEIF 
such that 

L > If(to)[-  max If(t)l >-_ min I f ( o ] -  If(q)l => O. (6.8) 
te ' lr  t ~  

By (6.7) and (1.6), 

i'o(If (to)[ ) = f l  ~ J(s, to)If(s)l ds <= fl / f  (to)[, 

i'o(If(toI ) = ~ [. Y(s, tO If(s)[ ds >= fi [f(tl)l. 

By (B.16) (in Appendix B), we have 

0 < If(to)[ < m c w(p;/3), If(q)l -- 0 

(6.9) 

(6.1o) 

or rnCW(p; g ) < l f ( t O l < L .  (6.11) 

We consider two possibilities. If If(t1) [ >0, then (6.11)implies Jr(to) ] = If(t1) ] 
=mCW(p; g). By (6.8), this yields (6.5). If If(tl)l =0, then we would have equality 
in (6.10); hence ~ If(s)[ J(s, t l )ds=O.  We prove that this leads to a contradiction. 
Given u, v ~  and an integer k>  1, we define 

k--1 

j , k  _ I . . .  S d < . . .  d sk Y(u, s l I I-[ J(s,, ~i +1) Y(s~, ~), 
i = i  

where for k = l  the empty product is replaced by 1. Since Ifl~0, we have 
L >  ff(to)[ >0. Since J and thus J are continuous and irreducible, there exists 
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an integer n > l  such that I f ( to) l ' J*"( to , t l )>0.  We 
- I l l  (to)/i'p(lfl (to))>0. By the convexity 9 of i; on [0, L) and (6.7), 

" t  0 = ~ [fl (s.) Y(s., q) ds. >= c~ ~ zp(Ifl (s.)) J(s., ta) ds. 

>=,.. >_ (/3~)" S Ill (So) Y*"(So, t~) ClSo > O. 

This contradicts shows that If[ ( t l )=0 cannot hold, and we are done. 
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define 

[]  

VI.2 Proof of Theorems 1.2, 1.5, and 2.3 

It suffices to prove Theorem 2.3, which generalizes Theorems 1.2 and 1.5, from 
p -  (61+ 6 1)/2 to arbitrary p ~Nb' We are given p ~fYb and J(s, t ) - J ( s -  t), where 
J is defined by (2.11). We prove that 

f{0} for O<fi<fla(P)--2/lVt, (6.12) 
~=~{f("  +s), se~} for /~>~,(p), 

where f is given by (2.12) in terms of a quantity # that satisfies # 
=(j~cos(2rcpt)} (this is (2.13)). Given (6.12), the p-versions of the limits (1.11), 
(1.12), and (1.41) follow from parts (i), (iii)(a), and (iii)(c) of Theorem 4.1. 

By Theorem 5.1(iii) one can characterize f ~  up to a null set by studying 
solutions of (6.2). We first prove that f satisfies (6.2) if and only if f has the 
form 

f (t)=7'o(~v#cos(2rcp(t + s))), t~'IF, (6.13) 

where s is some number in ql? and # satisfies 

#= ~ 7'o(~v# cos(2rcp t)) cos(2rcp t) dt. (6.14) 

We then study solutions of (6.14) for different values of /L Given f E ~  and 
k~{0, 1, ...}, we define the Fourier coefficients 

f ^ (k) - ~ exp (2 zt i k t) f (t) d t, f * (k) - Re I f  ^ (k)] = (cos 2 rc k t , f ) .  

For J in (2.11), equation (6.2) for f b e c o m e s  

i' o( f  (t)) = - ~ b f A (0) + ~ v Re I f  A (p) exp( - 27z i p t)]. (6.15) 

We show that f of the form (6.13) with s e ~  and # satisfying (6.14) is a 
solution of (6.15). We first consider s=0.  Since 7'0 is odd, we have 

f(t + 1/(2p))= - f ( t ) ,  all t e~ ,  

so that f ^ (0 )=0 .  If # satisfies (6.14), then since f is symmetric about 0, # 
=f^(p)=f*(p) .  Since i;=(7;) -1, (6.13) with s = 0  is exactly (6.15). We now 
consider (6.13) with general seJr. It suffices to prove that if f is any solution of 

9 i,o(x)/x<i,o(y)/y for O<x<y<L. 
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(6.15), then h- f ( "  +s) also solves (6.15). But h ̂  ( 0 ) = f  ^ (0) and 

h ̂  (p) = f ^  (p) e x p ( -  2nips). 

Hence h satisfies (6.15) if and only if for all t s ] r  

i'p(f(t+s))= -~f^(o)+fvReEf^(p)exp(-Zrcip(t+s))]. (6.16) 

But (6.16) follows from (6.15) by substituting (t + s) for t in the latter equation. 
We now prove the converse, namely that any solution of (6.15) has the 

form (6.13). We need a lemma. 

Lemma 6.1. Let f be any solution of (6.15). Then there exists s~'IF such that 

f(s+t)=f(s-t) for all t6"Ir. (6.17) 

Proof. We consider two cases, f ^ ( p ) = 0  and f^(p)4=0. If f ^  (p)=0, then all 
solutions of (6.15) are of the form f=u l ,  u constant, where u must satisfy i'o(u ) 
=-flu. The only solution of this equation is u=0,  so that f=-0  and (6.17) is 
valid for any seT.  We now consider the case f^(p)@0. Equation (6.17) is 
equivalent to 

f (2s - t )=f ( t )  for all t~'ff. (6.18) 

We prove that (6.18) holds with 

1 
s - -  a rg ( f  ^ (p)). (6.19) 

27cp 

By (6.15), it suffices to check that for all t6"ll" 

Re[xexp(-2rcip(2s-t))]=Re[xexp(-27~ipt)], where x -  f~(p)@O. (6.20) 

Writing x=exp(loglx]+iargx), we check (6.20). [] 

We now prove that if fsat isf ies  (6.15), then f h a s  the form (6.13). Again we 
consider two cases. If f ^ ( p ) = 0 ,  then as in the proof of Lemma 6.1, f - 0 .  This 
has the form (6.13) with # = 0  ( # = 0  satisfies (6.14)). We now consider the case 
f^(p)+O. We pick s ~  so that (6.17) holds and define h(t)-f(t+s), teJr. It 
suffices to prove that h has the form 

h(t) = 7'p(flv# cos(2~p t)), t~JF (6.21) 

for some # satisfying (6.14). By the calculation leading up to (6.16), h solves 
(6.15), and since f satisfies (6.17), h is symmetric about 0. Thus h^(p)=h*(p), 
which is non-zero since f ^  (p)@ 0, and 

h(t)=7'o(-flbhe(O)+fvhe(p) cos(2~pt)), t ~ .  (6.22) 

We claim that once we have proved that he(0)=0,  we will be done. In fact, 
setting #-h*(p), we see that (6,22) reduces to (6.21) and the equation #=h*(p)  
is exactly (6.14). We now prove that h*(0)=0. If b=0 ,  then from (6.22) 
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h(t+l/(2p))=-h(t), so that h*(O)=O. If b>O, then we assume he(O)4=O and 
obtain a contradiction. If h~(O)>O, then since 7'p is strictly increasing and odd 
and h~(p)4=O, we have from (6.22) 

(1) 
h(t)<7'o(flbh~(O)+fivhe(p) cos(27cpt))= - h  t+~pp 

for all t e~ .  This leads to the contradiction 

(6.23) 

he(O)=~(h(t)+h(t+;))dt<O. (6.24) 

Similarly, assuming h e (0)< 0 leads to h e (0)> 0. Thus, h * (0)= 0. This completes 
the proof that any solution of (6.15) has the form (6.13). 

We now study solutions #=/~(fi) of (6.14). We assume that v>0;  v<0  can 
be handled similarly. We need only consider g(fi)>0. If # solves (6.14), then 
- #  solves (6.14), and h ,=-hu, where hu is defined by (6.21). Since 
h(t+l/(2p))=-h(t), h and - h  generate the same orbit {h(.+s),ssTY} in ~ .  
Hence, if we knew that for fl>fl~(p), (6.14) has a unique solution Ni l )>0 (this 
is proved below), then whether we use #(fl) or -#(fl),  the second line of (6.12) 
remains unchanged. 

We write H(/~)=H~,~,p,p(#) for the right-hand side of (6.14) and note the 
following properties: 

(a) H(0)=0, H(/~)>0 for/~>0;  

(b) H is strictly increasing on IR; 
(6.25) 

(c) H is strictly concave on [0, oe); 

(d) for each/~>0 lira H~,v,p,o(l~)=2L/~= lim H(#), 
fl~ee t~oe 

where L - s u p  {x: x in support of p}. Since 7'p is odd and 7'p(t)> 0 for t > 0, (a) 
follows from the equation 

H(#) =~ 7;(fly# [cos 2rcpt[)Icos 2rcptl dr. (6.26) 

Property (b) follows from the strict convexity of 7o and (c) from the oddness of 
7~" (as in (6.26)) and the strict concavity of 7'p on (0, o9). The latter holds since 
p e n  b (see (2.6) and the discussion that follows (2.6)). Property (d)is a con- 
sequence of the limits 

lim 7;(0 =L,  lim 7;(0 = - L .  (6.27) 
t ~  t ~  - - 0 0  

Properties(a)-(c) imply that (6.14) has the unique solution/~ = #(fl)= 0 when- 
ever fl satisfies 

dH~,d~,p(# ) u=o < d~ -= 1; (6.28) 

i.e., whenever 
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1 2 
O</~<vy~(O)/2 v S x2 d p ( x ) -  fl.(p ). (6.29) 

For fl>fi,(p), (6.14) has the solution # = 0  as well as a unique positive root # 
=#(fi). By (6.25) (b) and (d), we see that 

#(fi) is monotonically increasing and lim #(fi)= 2L/rc. (6.30) 

See Fig. 1 

2L/~- 

~([3) 

Fig. 1. Solving (6.14) for fl>fl,,(p) 

When substituted into (6.21), # = 0  gives rise to h_=0 while #(fi) gives rise to 
h~0.  Hence the second line of (6.12) will follow once we prove that 0q~9~ for 
fi> rio(P). We prove this by showing that for all sufficiently small u e l R \  {0} 

(fi F - I) (u cos 2)zp t) > (fl F - I) (0). (6.31) 

Since d{( l~F- I ) (u  cos2~rpt)}/du=O at u=0,  it suffices to prove that 

du  2 
du 2 { ( f lF - I ) (u  cos2~pt)}[u=o>O. (6.32) 

A short calculation shows that the left-hand side of (6.32) equals 

~v 1 _v(/~_ po(p)). (6.33) 4 2S xzdp(x) 

Since fl>f]~(p) and we have assumed that v>0, (6.32) holds. The properties of 
j~,~,p,p listed in Theorems 1.2 and 2.3 follow from (6.21). The limit (1.14) and 
its generalization to PSNb (see the Remark after the statement of Theorem 2.3) 
follow from (6.25), (6.27), and (6.30). [] 

Appendix A. Laplace's Method for Doubly Indexed Function Space Integrals 

The proof of the following theorem is based upon unpublished notes of S.R.S. 
Varadhan. 
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Theorem A.1. Let f2 be a topological space and tP a a-algebra of subsets of f2 
which includes all open and closed subsets of Q. Let {Pro, n; m = 1 , 2  .... ;n  
=1,2,  ...} be probability measures on (f2, 70. Let {an; n=1 ,2  .. . .  } be a sequence 
of positive numbers such that an-*oo and for all closed subsets JT" in (2 and open 
subsets ff in f2 

1 
lim,,+o~sup limn+~sup ~ log Pro, n( Sf  ) --< - I ( ~ ) ,  (1.1) 

lim inf lim inf 1 log P,,, n((~) > - I(f~). (1.2) 
?n~ oo n ~  oo a n 

In (A.1)-(A.2), I is some extended real-valued functional on f2, and for de_Q,  
I ( d )  = inf { I ( f ) : f e d } .  Let F be a continuous functional on f2 such that 

1 
lim lim sup lim sup @log ~ expl,anF(f)]dP,, n(f )=  -oo .  (1.3) 

L ~ m  m ~ a o  n ~ o o  (A n { f : F ( f ) > _ L }  

Then sup I F - I ]  < oo and 

lira lim l l o g  ~ exp[a n F ( f ) ]  dPm, n(f)=su p [ F ( f ) - I ( f ) ] ,  (1.4) 

and for any closed subset :K in E2 

1 
lira sup lim sup ~ log ~ exp a n F( f )  dP,,, n(f) < sup [F ( f )  - I ( f)] .  

m+m n ~  a n ar f e3~" 
(A.5) 

Remarks. 1. The proof of the bound (1.5) requires only (1.1), not (A.2). 

2. Setting J d = f f = f 2  in (A.1) and (A.2), we see that in f I=0 .  Thus, 
a 

I: ~2~[0, ~ ] .  If F is bounded above, then (A.3) is trivially satisfied and sup I-F 
- I] < sup [F] < oo. r~ 

f2 

3. 1,29; w considers the case of sequences of probability measures {~; n 
=1,2, . . .}  and of functionals {Fn; n=1,2, . . .} .  If the analogues of (A.1)-(A.2) 
hold with {P,n,n} replaced by {P,} and F by Fn, if F n tends to F suitably as 
n~oo,  if I is lower semi-continuous on f2, and if { feO:  I ( f ) < M }  is a compact 
of f2 for every finite M, then 

1 
lim = ~ expl,a n F,(f)] dP,(f)=sup I F ( f ) -  I(f)-l. 

n + ~  a n o f e . Q  

For the case where F is continuous and Fn=F for all n, Theorem A.1 (applied 
to Pm, n -P ,  for all re, n) is stronger since it does not require that I be lower 
semicontinuous or that {fef2: I ( f ) < M }  be compact. The real use of [29; w 
is its ability to handle sequences of functionals {Fn} under a fairly weak hy- 
pothesis on their convergence to F. 
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Proof of Theorem A.1. For  see  T we define 

Um,,(d ) -" ~ exp [all F(f)] dPm,,(f), 
s~  

U~, , -  U~,,(f2)- ~ exp [all F ( f ) ]  dPm,ll(f ). 
O 

(a.6) 

The first step is to prove sup IF-l]  < oe. By (A.3) there exists a real number C 
such that 

lira sup lira sup 1 lou U < C. (A.7) 
t l l ~  CO l l ~  CO a l l  

Given any gEO and e > 0, we define the open set 

if-" { fE~:  F(f) > F(g) - e}. 

By (A.2) and (A.7) 

C > lira inf lira inf 1 log U,,,, > lira inf lira inf i log Urn, ll(~) 
l l l ~  cO n ~  cO a l l  m ~  cO l l ~  cO a l l  

_> F(g) - e - I(ff) > F(g) - I(g) - e. 

(A,8) 

Since g and e>  0 are arbitrary, we conclude from (A.8) 

sup [F - I] < C < + oe 

and 

lira inf lira inf 1 log U,,,, > sup IF - lJ. 

The second step is to prove 

(A.9) 

1 
lim sup lim sup - -  log U,,, < sup [F - I],  (A.10) 

m ~  CO n ~  CO a n ' 

which with (A.9) gives (A.4). We prove (A.10) first under the assumption that 
S - s u p F <  oe. (For such an F, condition (A.3) is trivially satisfied.) We define 

f~ 

D-max{-sup[F-I],S},  F l - { f ~ O : - D < F ( f ) ' < D } ,  and Fz-{fs~2 :  F ( f ) <  
n 

' -D}.  Since D>S, we have F1uFz=~?. Let us suppose that we can prove that 

lira sup lira sup 1 log U,,,,(F~) < sup [F ( f )  - I ( f ) ] .  (A. 1 1) 
m ~  co l l ~  co ~ n  f G E l  

Then 

lira sup - - l o g  U,~ , = m a x  limsup l l o g  U,,,ll(F1), l imsup log U~,ll(Fz) 
m~ n a l l  ~ \ m~ n a n m~ II 

< max (sup I F -  I],  - D) 
F1 

< sup [ F -  I],  
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which is (A.10). Hence it suffices to prove (A.11). This is equivalent to proving 
(A.10) under the assumption that M - s u p  Ifl < oo. 

O 

We pick NE{1,2,.. .} and for j e { - N , - N + I , . . . , N - 1 }  define the closed 
subsets 

We have 

We have 

and so by (A.1), 

N - 1  

~) XN,j=~2. By property (A.1), for e a c h j e { - N , . . . , N - 1 }  
j = - N  

(A.12) 

1 

l imsup ~ log Pro, n (:CN, j) ------ -- I(3CN, j). (A. 13) 

U n ~-< ~ exp Pm n(Y~j) 
' - - j =  - N  N ' ' 

lim sup - -  log U,~ n -< max 
m,n~oo a n ' - - j e { - N  . . . . .  n - l }  

M 
_< max sup [ F ( f ) - I ( f ) l + - -  

j e { - N  . . . . .  N - I }  f E ~ I v , j  N 

= sup I F ( f ) -  I ( f ) ]  + M. 

Taking N ~  o% conclude (A.10). 
We now prove (A.10) for a continuous F unbounded above but satisfying 

condition (A.3). We pick L sufficiently large so that 

1 
lim sup - -  log U m n({F > L}) _< sup [ F -  I]. (A.14) 

, ~ , n  G ' - - o 

This is possible by condition (A.3). We define F - m i n ( F , L )  and U~,n as in (A.6) 
with /7 written for F. Since/7 is continuous and F_<_L, we have by the earlier 
case, by (A.14), and by the inequality f f < F  

1 ( 1 1 ) 
lim sup - -  log U m n = max lim sup - -  log U,, n, lim sup log Urn, n({F > L}) 

< max (sup [~=- I], sup IF - I]) = sup I F -  I]. 

This is (A.10). 
To prove (A.5), we repeat the proof of (A.10) with the sets {gffN,j} in (A.12) 

replaced by {XN, j c~X }. [] 
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Appendix B. Verification of Statements about the Curie-Weiss Model 

Let p be a Borel probability measure on R which is not a one-point mass and 
which satisfies 

~exp(kx2)dp(x)< oo for all k>O. 

We denote the set of such p by J/ .  Later on, we shall impose additional con- 
ditions on p. The hypothesis in the main body of this paper that p have bound- 
ed support is needed only to treat the general case of the circle model. For 
the Curie-Weiss case, unbounded pe~Jr can be treated without much ad- 
ditional work. 

For p~J~, we define the Curie-Weiss model by (1.4). Since p satisfies (B.1), 
Z,C~ v is finite. Our first result evaluates the specific free energy ~pCW(p; fl) as- 
sociated with (1.4). 

Theorem B.1. For p ~  

_fl~,cw(p; fl)_ lim -I logZC~V 
4 

n~oO n 
(B.2) 

- sup [flu2~2- io(u)] = sup [?p(t) - tz/(2fi)], 
u ~ ,  t e R  

where ip is defined in (1.19) and ~)p is defined in (1.20). 

Proof. Let {Y j; j =  1, 2, ,..} be a sequence of i.i.d, random variables each distrib- 

uted by p and set S , -  ~ Yj. Let g(x)-x2/2. Then 
j=l 

ZC~=,exp[nflg(x)] ~ erob { ~ d x } .  

We apply Theorem A.1 in Appendix A with f2-1R, ~ the Borel subsets of IR, 
F - g ,  Pm,,'-Prob{S,/ne.} for each m, ne{1,2,...}. By Lemma 3.8, the bounds 
(A.1) and (A.2) are valid with I - i  o. Hence we will have proved the first equal- 
ity in (B.7) once we prove (A.3). We have by the convexity of g and Ceby~ev's 
inequality 

, exp[nfig(x)] ProS { ~ s d x }  
{x: 13g(x)>=L} 

--< ~=1~ exp [-n(c~ + 1) L] Pr~ { fl j=l~' g(Yj) > eL} 

< ~, exp [n(~ + 1) L] exp [ -  3 neL] K(fi) 
c t = l  

= ~ e x p [ - n ( 2 e - 1 ) L ]  K(fl), 
~ t = l  
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where K(f) "- ~ exp [3 fig] dp< ~ by (B. 1). We conclude that 

lim lim sup -l log ~ e x p [ n f g ( x ) ] P r o b { ~ E d x } = - o o .  
L ~ c ~  n ~ a o  t2 { x : f l g ( x ) > L }  

This is (A.3). 
In order to prove the second equality in (B.2), we apply Theorem C.1 in 

Appendix C to the closed convex functions g and ip. [] 

As a consistency check, we show that for the Curie-Weiss model, (B.2) in 
Theorem B.1 agrees with (2.4) in Theorem 2.1. This verifies a claim made after 
the statement of Theorem 1.3, of which Theorem 2.1 is a generalization. Theorem 
2.1 calculates the specific free energy ~(fl) corresponding to the joint distri- 
butions {P, ~} in (2.1). For the Curie-Weiss model, F in Theorem 2.1 is given by 
f ( f ) -  �89 d t) 2. In this case, Theorem 2.1 states that 

(B.3) 

For Theorem 2.1, we need pEJg b. 

Theorem B.2. For ps~//4 b the supremum in (B.3) equals the first supremum in 
(B.2). 

Proof Let g(x)-x2/2. If f equals a constant u a.e., then 

g(Sf) - I ( f )  = g(u) - ip(u), 

so that _fOCW(p; f)<___fO(fl). On the other hand, for any feJeg, t~ql', by 
(B.2) 

f ig(f  (t))-ip(f(t)) <= - fl ~c W (p ; fl) (B.4) 
and so 

fig o f -  I ( f )  < - ftl/CW(p ; f). (B.5) 
l r  

By Jensen's inequality g(~f)=<~gof, so from (B.5) we conclude - f l O ( f ) <  
_f~,cw(p. f): [] 

Finally, we verify the statements in Theorems 1.1, 1.4, and 2.2 concerning 
the Curie-Weiss model. It suffices to consider Theorem 2.2, which generalizes 
Theorems 1.1 and 1.4 from the measure p - ( 6  t + 6_ 1)/2 to p satisfying the one- 
site GItS inequality. Again, we do not restrict ourselves to p with bounded 
support. In other words, we now assume that peN, where the latter class is 
defined by (2.5) and (2.6). (B.2) states that 
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We define 

_~r ~)=sup {~_io(~)} (B.6) 

4 
T P ue~. 

We prove that 

~cw [{0} for O<fl<flc(p)-l/~xZdp(x), (B.S) 
=~{ +_mCW(p; fl)} for fl>flc(P), 

where for/? >/~c(P), mCW(p; fl) is the unique positive root of the equation 

tim = i'o(m ). (B.9) 

Defining L=sup{x:x in the support of p}e(0, oo], we also check that 
mCW(p; fl)'~ L as fl~oo. 

Since pc(q, by (2.6) and the discussion that follows (2.6), the function 7'0 is 
strictly concave on [0, oo). By the strict convexity of i o on [0,L), i'p is strictly 

t ,t increasing on [0,L), and since it is the inverse of 70, to is strictly convex on 
[0, L). 

We prove that the supremum in (B.6) is achieved for ue(-L,L). If L<oo ,  
then this follows from Theorems 5.1(ii) and B.2. If L=o% then it suffices to 
prove 

flu 2 2 -ip(u)~-oo as f u [ - ~ .  (B.10) 

By (B.1), for any e > 0  

t 2 
7p(t)- log ~ exp(tx) dp(x) <2e + K1 (e), (B.11) 

where K 1 (a) - log 5 exp(e x 2/2) d p (x) < oo. Thus for any real u, 

ip(u)_ sup[ut_Tp(t)]>:up [ut_t2_~_Kl(O] eu2 t ~  = - 2  --Kl(e)' (B.12) 

Taking a >/?, we obtain (B.10). 
The supremum in (B.6) is achieved at points u which satisfy 

flu= i'o(u ). (B.13) 

For all f l>0, u - 0  satisfies this equation. We first consider 0<fl<flc(p). Since 
i' o is strictly convex on (0,L), for u~(O,L) 

i~(u) > i~(o) = 1/~ x ~ @ ( ~ ) -  Pc(p), 
and so 

i'o(u)>fic(p)u for ue(O,L). (B.14) 



344 T. Eisele and R.S. Ellis 

Thus, if O<fi<=fi~(p), u'-O is the only solution of (B.14). This gives the first line 
of (B.8). If fi>fl~(p), then by Lemma 5.2 (also valid if L =  oo) and the strict 

. t  convexity of ~o on [0,L), there exists a unique strictly positive solution 
mCW(p;/3) of (B.13) with mCW(p;/3)e(O,L). See Fig. 2. 

ib(u) 

rncw{gd3) 
Fig. 2. Solving (B.13) for fi>fl~(p) 

By symmetry, -mCW(p; fi) is also a solution. Since for fl > tic(P) 

d ( f l u  2 ' ) d 2 ,flu 2 ,I 
--zo(u) ._o=0,_ (u)).:o:#-/3c(p)>0, (B.15) 

the supremum in (B.6) cannot be achieved at u - 0 .  Thus, we obtain the second 
line of (B.8). From Fig. 2 and the fact that i'o(u)'r oo as uTL, it is clear that 
meW(p;/3) is strictly increasing in fl for fl>flr and that mCW(p; #)~L as fit oo. 

Figure 2 also shows that for/3 > tic(P) 

{~=0 for O<-u<-mCW(p;fi), 
f iu -  i'o(u ) (B.16) 0 for m cw(p;/3)<u<L and u=0.  

This is used in Sect. VI.1 in the proof of Theorem 2.2. 
We end this section by explaining why mCW(p;/3) is called the Curie-Weiss 

spontaneous magnetization. Let h > 0  be a given real number (the external 
cw magnetic field). We define measures P,~,~,h by formulae (1.4) with an additional 

summand +/3h x~ inserted in the exponents of (1.4). We denote by E,,~, h 

t3 cw In [8; Thm. 7.2.2(c)(i)], it is proved that for expectation with respect to ,,~,h" 
pef~ 

{ 1 ~ pcw ~y~,)~ 0 for O<#<flc(p), 
h+olim ,~lim -n ~=lz" ~,,,, h t'~ ~ , = m c W(p; 8) > 0 for /3 >/3~(p). (B.17) 

This is the definition of spontaneous magnetization [28; p. 95-1. 

Appendix C. A Theorem Concerning Legendre Transformations 

Theorem C.1 gives a result about Legendre transformations which generalizes 
(1.26). This theorem is then applied to derive (1.27) from (1.24) (two formulae 
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for the Curie-Weiss specific free energy) and to compare formula (1.22) for the 
circle model free energy with the formula for this quantity derived in [15; 
Theorem 1.21. 

Let 5F be a real Banach space and FI" Y'-+IRvo {+ oo} a convex functional 
on Y'. We assume that S v - { x :  Fl(x)<ov}~=O. We say that F~ is closed if the 
subset (epigraph of F 1) 

g (F1) -  {(x, u)e@, x ~ :  u>=Fl(x)} (C.1) 

is closed in ~ x N. We denote by s the dual space of Y'. The Legendre trans- 
formation of Fz is the function F* with domain 

5#v~ - {ee:g'* sup [cffx) - Vl(X)] < oo}. (C.2) 
x E ~qL" 

For ~e~* ,  we define 

F**(c 0 -  sup [c~(x) - ffl (x)]. (C.3) 
x ~..qf 

Since F 1 = + oc on X \  5#v~, we can replace ~ in (C.3) by @ .  

Theorem C.1. We suppose that F~ and F z are closed convex functionals on X. 
Then 5'~F,i + 0 and 

sup [F l (x ) -F2 (x ) ]=  sup [F*(~)-F*(c0].  (C.4) 
X ~ ' F  2 ~ ff 5OFI~ 

Proof We define M - s u p  IF  I -F21 and claim 
5~ 

M>F*(cO-F*(c 0 for all ~eS#~. (c.5) 

(C.5) is trivial if M = + o o .  But if M < + o o ,  then @ c ~ . ,  and for all 

F* (c~) + M => ~(x) - V 1 (x) + M > co(x) - F 2 (x). (C.6) 

For  es@~ (C.6) implies (C.5). Therefore 

sup IF 1 - F2] > sup IF* - F*1. (C.7) 
YF 2 5OF~' 

By [20; Theorem, p. 451 5#v~ q=0 , cJvt=t=r , F* and F* are closed convex function- 
als and for x ~ f ,  Fi**(x)=Fi(x)(i=l,2), where x~Sr is naturally imbedded in 
5F** by 

x(x*)-x*(x) for all x*~Y'*. 

In particular @~,c~f=SPv2. Reapplying (C.7) with F~ replaced by F2* and F 2 by 
FI*, we find 

sup IF 1 (x) - Fz(X)] > sup [F*(c~) - F**(00] 
X~SOF 2 OIesoF~ 

=> sup [F**(x**)-F**(x**)] 
x**~soF~* 

> sup [Fi**(x)-F**(x)l 
XesoF~*C~" 

-- sup [F*(x)-F~(x)]. 
X~SOF 2 

This gives (C.4). [] 
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We apply Theorem C.1 to formula (1.24) with Fl(U)--flu2/2 and Fz(u ) -  ip(u). 
These functions are closed convex functions on I (  with 3 1 = I (  and the in- 
terior of 3 2  equal to the interval (l, L) (defined in (3.20)). Hence formula (1.27) 
follows from Theorem C.1. 

We now compare formula (1.22) for the circle model specific free energy 
~(/~) with the formula for this quantity derived in [15; Theorem 1.2]. In fact, 
the relationship between the former and the latter is exactly that between the 
Curie-Weiss formulae (1.24) and (1.27). Formula (1.22) gives -fl~p(fl) in the 
form of the left-hand side of (C.4) with X-~,~, F~(x)- f lF(x)-(~/2)( jx ,  x), 
F2(x ) -  I(x). We assume that the kernel J(s, t) of F is translation invariant, sym- 
metric (i.e., J(s,t)=J(t,s)) and continuous on ]F x IL We claim that the hy- 
potheses of Theorem C.1 are satisfied if and only if the integral operator 
J h(s)- ~ J(s, t) h(t) dt is non-negative semidefinite i 0. 

We now (partially) verify the last statement. Formula (3.39) expresses l(x) 
as the Legendre transformation of the convex functional F on o04 v. We have 
5~r= 24( since for h 6 ~  

C(h) = ~ [log S exp(h(t)x) dp(x)] d t (c.8) 
_-<�89 Ilhll2'log~exp(x2/2) dp(x)< ~.  

By [1; w F is weakly lower semicontinuous on ~ and is therefore a 
closed convex functional. By [20; Theorem, p. 45], we conclude that I(x) is a 
closed convex functional on ~ and that I * = F ' *  =F .  Thus the hypotheses on 
F2-I  in Theorem C.1 are satisfied. We now consider F~-3F. If J is not non- 
negative semidefinite, then there exists an h e ~ ,  k=~0, 2 > 0  such that 
j h  = - 2h. Now 0 = F 1 (0) = F~ ((h + ( - h))/2) >(F~ (h) + r~( - h))/2 = -  ,~ ~ II h II 2, which 
shows that F 1 is not convex. Conversely, if J is non-negative semidefinite, then 

( J h l ,  h2) + ( v C h 2 ,  h2) - 2 ( j h l ,  h2) = ( j ( h l  - h2) , h t - h2) > 0, 

which implies that �89 + Fl(h2) ] > f l((hl  + h2)/2 ) for all hi, h 2 6aut ~ Hence F 1 
is convex. It is not difficult to verify that 

F*(c,)=~ I1r c,~:r (C.9) 

where J - z / z  is defined as follows. Define o~ to be the subset of ~ on which 

j is positive-definite. Then l /~- ,  the unique non-negative definite, symmetric 
square root of J ,  is invertible on a dense subset ~2 of ~ .  In (C.9), we define 

for 
[ +  ~ for c~e34~\~2 . (C.10) 

10 A translation invariant, continuous, non-negative semidefinite kernel is nuclear [24; Thm. 
1.5.1]. Thus, J is the covariance function of a mean  zero Gaussian measure on ~ [17; Theorem 
v.6.1]. 
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We conclude from Theorems 1.3 and C.1 that if j is non-negative semi- 
definite, then 

-fl~(fi)=sup [flF(f)-l(f)]=sup [F(h)-~fi llJ-I/2hl[2]. (C.11) 
f ~  h~o~  

The second supremum in (C.11) is the formula for -flO(fl) given in [15; Theo- 
rem 1.2] under the assumption that J(s, t) he the covariance function of a mean 
zero Gaussian measure P on ~(Ir). (The proof in this paper required (g(IF) 
rather than ~4D.) The latter assumption implies that J is non-negative semide- 
finite (cf., footnote 10)), which is the condition we needed to derive (C.11). The 
functional F* in (C.9) is the entropy, or action, functional of the Gaussian 
measure P [16, 30]. 

Note. Connection with the Lebowitz-Penrose Theorem. Consider a ferromagnetic 
system on a subset A of the lattice 2g r, some r~{l,2,. . .}.  Let the interaction 
strength between sites i and j be Jij-J(]li-jll), where J is a function of com- 
pact support, S J(f]xH)dx=l, and [l-I[ is the Euclidean distance. Scale the 

interaction by J~)-dJ(e[li-jll), where e>0  is small, and denote the corre- 
sponding specific free energy (i.e., after taking A 1"2g r) by $(~)(fl). The Lebowitz- 
Penrose theorem [-28; p. 105] states that lira r exists and equals the Curie- 

e ~  0 

Weiss specific free energy. The difference between this set-up and the circle 
model is that in the latter we have e= 1In and so the thermodynamic limit 
(n~  oo) and the e ~ 0  limit are taken simultaneously. Nevertheless, Theorem 1.4 
in the present paper implies that for suitable ferromagnetic interactions the 
circle model specific free energy and the Curie-Weiss specific free energy are 
equal (as are the corresponding laws of large numbers). The dichotomy occurs 
in the antiferromagnetic case, for which the circle model specific free energy 
and laws of large numbers are completely different from the Curie-Weiss limits. 
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