A Law of the Iterated Logarithm for Martingales*

R.J. Tomkins
 Department of Mathematics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2

1. Statement of the Theorem

In this note, techniques of Chow and Teicher [2], Heyde [3] and Stout [5] will be employed to prove the following law of the iterated logarithm for identically distributed martingale difference sequences. $(I(A)$ will denote the indicator function of an event A).

Theorem. Let X_{1}, X_{2}, \ldots be identically distributed random variables ($r v$) with $E\left(X_{1}^{2}\right)=1$. Suppose $\mathscr{F}_{0} \subset \mathscr{F}_{1} \subset \cdots$ are sigma-fields such that X_{n} is \mathscr{F}_{n}-measurable and $E\left(X_{n} \mid \mathscr{F}_{n-1}\right)=0$ almost surely (a.s.) for each $n \geqq 1$.

Let $\left\{a_{n}, n \geqq 1\right\}$ be a real sequence satisfying
(i) $A_{n} \equiv \sum_{j=1}^{n} a_{j}^{2} \rightarrow \infty$ as $n \rightarrow \infty$,
(ii) $n a_{n}^{2}=O\left(A_{n}\right)$ as $n \rightarrow \infty$, and
(iii) $\lim _{n \rightarrow \infty} A_{n}^{-1} \sum_{j=1}^{n} a_{j}^{2} E\left(X_{j}^{2} \mid \mathscr{F}_{j-1}\right)=1$ a.s.

For $m \geqq 1, n \geqq 1$, define the rv

$$
Y_{m, n} \equiv X_{n} I\left(\left|X_{n}\right| \leqq m\right)+m\left(I\left(X_{n}>m\right)-I\left(X_{n}<-m\right)\right)
$$

and

$$
Y \equiv \liminf _{m \rightarrow \infty} \liminf _{n \rightarrow \infty} A_{n}^{-1} \sum_{j=1}^{n} a_{j}^{2} E\left(Y_{m, j}^{2} \mid \mathscr{\mathscr { F }}_{j-1}\right) .
$$

If (iv) $Y>0$ a.s. then

$$
\begin{equation*}
Y^{1 / 2} \leqq \limsup _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} a_{j} X_{j}}{\left(2 A_{n} \log \log A_{n}\right)^{1 / 2}} \leqq 1 \quad \text { a.s. } \tag{1}
\end{equation*}
$$

In particular, if (v) $Y=1$ a.s., then

[^0]\[

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} a_{j} X_{j}}{\left(2 A_{n} \log \log A_{n}\right)^{1 / 2}}=1 \quad \text { a.s. } \tag{2}
\end{equation*}
$$

\]

Chow and Teicher [2] showed that (2) holds if X_{1}, X_{2}, \ldots are independent, identically distributed $r v$ with $E\left(X_{1}\right)=0$ and $E\left(X_{1}^{2}\right)=1$ and if the a_{n} 's satisfy (i) and (ii). Their theorem is implied by our result since, taking \mathscr{F}_{n} to be the sigmafield generated by X_{1}, \ldots, X_{n}, (iii) and (v) are obvious in this case. (See also the work of Teicher [6].)

Our result also contains Heyde's theorem [3] (and, hence, Stout's theorem [5]), but this fact is by no means obvious. Heyde showed that

$$
\limsup _{n \rightarrow \infty}(2 n \log \log n)^{-1 / 2} \sum_{j=1}^{n} X_{j}=1 \quad \text { a.s. }
$$

for every stationary martingale difference sequence satisfying

$$
E\left(X_{1}^{2}\right)=1 \quad \text { and } \quad \lim _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{n} E\left(X_{j}^{2} \mid \mathscr{F}_{j-1}\right)=1 \quad \text { a.s. }
$$

Taking $a_{n}=1$ for $n \geqq 1$, (i) and (ii) are trivial, whereas (iii) is precisely Heyde's second hypothesis. The validity of (v) can be established by reproducing much of the proof of Heyde's result (cf. expression (14) of [3]); it must be stressed that the derivation of (v) in this case is neither short nor simple.

2. Proof of the Theorem

Choose a positive real sequence $d_{n} \rightarrow \infty$ exactly as in [2] and let

$$
b_{n}=n^{1 / 2}\left(d_{n} \log \log A_{n}\right)^{-1 / 2}
$$

Now introduce Stout's truncation scheme [5]: for $n \geqq 1$, let

$$
\begin{aligned}
& Y_{n} \equiv X_{n} I\left(\left|X_{n}\right| \leqq b_{n}\right)+b_{n}\left(I\left(X_{n}>b_{n}\right)-I\left(X_{n}<-b_{n}\right)\right), \\
& Z_{n} \equiv Y_{n}-E\left(Y_{n} \mid \mathscr{F}_{n-1}\right), \\
& Z_{m, n}=Y_{m, n}-E\left(Y_{m, n} \mid \mathscr{F}_{n-1}\right) \quad \text { for } m \geqq 1, \\
& Y_{n}^{*} \equiv X_{n}-Y_{n} \quad \text { and } \quad Z_{n}^{*}=Y_{n}^{*}-E\left(Y_{n}^{*} \mid \mathscr{F}_{n-1}\right) .
\end{aligned}
$$

Since (ii) holds and the X_{n} 's are identically distributed, the arguments in expression (8) of [2] yield

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{\left|a_{n}\right| E\left(\left|X_{n}\right| I\left(\left|X_{n}\right|>b_{n}\right)\right)}{\left(A_{n} \log \log A_{n}\right)^{1 / 2}}<\infty . \\
& \text { But }\left|Y_{n}^{*}\right| \leqq\left|X_{n}\right| I\left(\left|X_{n}\right|>b_{n}\right) \text { so } \\
& \sum_{n=1}^{\infty} \frac{\left|a_{n}\right| E\left|Y_{n}^{*}\right|}{\left(A_{n} \log \log A_{n}\right)^{1 / 2}}<\infty . \tag{3}
\end{align*}
$$

Since $E\left|Z_{n}^{*}\right| \leqq 2 E\left|Y_{n}^{*}\right|$, (3) and (i) imply (using Kronecker's lemma as in [2]),

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j} Z_{j}^{*} /\left(A_{n} \log \log A_{n}\right)^{1 / 2} \rightarrow 0 \text { a.s. } \quad \text { as } n \rightarrow \infty \tag{4}
\end{equation*}
$$

Following [3], note that $E\left(Y_{n} \mid \mathscr{F}_{n-1}\right)=-E\left(Y_{n}^{*} \mid \mathscr{F}_{n-1}\right)$ and $\left|Y_{n}\right| \leqq b_{n}$ so, for all $n \geqq 1$,

$$
\begin{equation*}
E\left(E^{2}\left(Y_{n} \mid \mathscr{F}_{n-1}\right)\right) \leqq b_{n} E\left|Y_{n}^{*}\right| \tag{5}
\end{equation*}
$$

Recalling that $d_{n} \rightarrow \infty$ and using (ii),

$$
\begin{equation*}
A_{n}^{-1} a_{n}^{2} b_{n}=O\left(\left|a_{n}\right|\left(A_{n} \log \log A_{n}\right)^{-1 / 2}\right) \tag{6}
\end{equation*}
$$

(3), (5) and (6) show that

$$
\sum_{n=1}^{\infty} A_{n}^{-1} a_{n}^{2} E\left(E^{2}\left(Y_{n} \mid \mathscr{F}_{n-1}\right)\right)<\infty
$$

Hence $\sum_{n=1}^{\infty} A_{n}^{-1} a_{n}^{2} E^{2}\left(Y_{n} \mid \mathscr{F}_{n-1}\right)<\infty$ a.s.
Applying Kronecker's lemma, we get
$A_{n}^{-1} \sum_{j=1}^{n} a_{j}^{2} E^{2}\left(Y_{j} \mid \mathscr{F}_{j-1}\right) \rightarrow 0$ a.s. as $n \rightarrow \infty$.
For $n \geqq 1$, define the $r v$

$$
u_{n}^{2}=\sum_{j=1}^{n} a_{j}^{2} E\left(X_{j}^{2} \mid \mathscr{F}_{j-1}\right), \quad s_{n}^{2}=\sum_{j=1}^{n} a_{j}^{2} E\left(Z_{j}^{2} \mid \mathscr{F}_{j-1}\right)
$$

and

$$
K_{n}=2\left|a_{n}\right| b_{n} s_{n}^{-1}\left(\log \log s_{n}^{2}\right)^{1 / 2}
$$

note that K_{n} is \mathscr{F}_{n-1}-measurable.
Fix $m \geqq 1$. If $b_{n} \geqq m$ then

$$
\begin{equation*}
E\left(Y_{m, n}^{2} \mid \widetilde{\mathscr{F}}_{n-1}\right) \leqq E\left(Y_{n}^{2} \mid \mathscr{F}_{n-1}\right) \leqq E\left(X_{n}^{2} \mid \mathscr{F}_{n-1}\right) \quad \text { a.s. } \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(Z_{m, n}^{2} \mid \mathscr{F}_{n-1}\right) \leqq E\left(Z_{n}^{2} \mid \mathscr{F}_{n-1}\right) \leqq E\left(X_{n}^{2} \mid \widetilde{\mathscr{F}}_{n-1}\right) \quad \text { a.s. } \tag{9}
\end{equation*}
$$

(8) is evident, whereas (9) follows from corollary 1 of [1] (as noted by Stout [5]).

For each $m \geqq 1$, we have, in view of (8),
$\liminf _{n \rightarrow \infty} A_{n}^{-1} \sum_{j=1}^{n} a_{j}^{2} E\left(Y_{m, j}^{2} \mid \mathscr{F}_{j-1}\right) \leqq \liminf _{n \rightarrow \infty} A_{n}^{-1} \sum_{j=1}^{n} a_{j}^{2} E\left(Y_{j}^{2} \mid \mathscr{F}_{j-1}\right) \quad$ a.s.
Letting $m \rightarrow \infty$ and applying (iv) and (7), then,
$\liminf _{n \rightarrow \infty} A_{n}^{-1} s_{n}^{2} \geqq Y>0 \quad$ a.s.
Furthermore, (iii) and (9) imply that
$\limsup _{n \rightarrow \infty} A_{n}^{-1} s_{n}^{2} \leqq 1 \quad$ a.s.

Note that $E\left(Y_{j}^{2}\right)=E\left(X_{1}^{2} I\left(\left|X_{1}\right| \leqq b_{j}\right)\right)+b_{j}^{2} I\left(\left|X_{1}\right|>b_{j}\right) \rightarrow E\left(X_{1}^{2}\right)=1$. By the Toeplitz lemma and the fact that $E\left(Y_{n}^{2} \mid \mathscr{F}_{n-1}\right) \leqq E\left(X_{n}^{2} \mid \mathscr{F}_{n-1}\right)$ a.s. for all $n \geqq 1$,

$$
\begin{aligned}
& A_{n}^{-1} E\left|u_{n}^{2}-\sum_{j=1}^{n} a_{j}^{2} E\left(Y_{j}^{2} \mid \mathscr{F}_{j-1}\right)\right|=A_{n}^{-1}\left(E\left(u_{n}^{2}\right)-\sum_{j=1}^{n} a_{j}^{2} E\left(Y_{j}^{2}\right)\right) \\
& =1-A_{n}^{-1} \sum_{j=1}^{n} a_{j}^{2} E\left(Y_{j}^{2}\right) \rightarrow 0
\end{aligned}
$$

Hence

$$
\left(u_{n}^{2}-\sum_{j=1}^{n} a_{j}^{2} E\left(Y_{j}^{2} \mid \mathscr{F}_{j-1}\right)\right) / A_{n} \rightarrow 0 \quad \text { in probability }
$$

In light of (iii) and (7), $s_{n}^{2} / A_{n} \rightarrow 1$ in probability. This fact and (11) ensure that $\limsup _{n \rightarrow \infty} s_{n}^{2} / A_{n}^{2}=1$ a.s. whence

$$
\begin{equation*}
s_{n}^{2} \rightarrow \infty \quad \text { a.s. } \tag{12}
\end{equation*}
$$

Moreover, using (ii), there exists $C>0$ such that

$$
K_{n}=\frac{2\left|a_{n}\right| n^{1 / 2}\left(\log \log s_{n}^{2}\right)^{1 / 2}}{\left(d_{n} s_{n}^{2} \log \log A_{n}\right)^{1 / 2}} \leqq C d_{n}^{-1 / 2}\left(A_{n}^{1 / 2} / s_{n}\right)\left(\log \log s_{n}^{2} / \log \log A_{n}\right)^{1 / 2}
$$

so, taking (10) and (11) into account,
$K_{n} \rightarrow 0$ a.s. as $n \rightarrow \infty$.
But $\left(\log \log s_{n}^{2}\right)^{1 / 2} \frac{\left|a_{n}\right|\left|Z_{n}\right|}{s_{n}} \leqq K_{n}$ a.s. so, because (12) and (13) hold and (Z_{n}, \mathscr{F}_{n}, $n \geqq 1$) is a martingale difference sequence, theorems 1 and 2 of Stout [4] yield

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} a_{j} Z_{j}}{\left(2 s_{n}^{2} \log \log s_{n}^{2}\right)^{1 / 2}}=1 \quad \text { a.s. } \tag{14}
\end{equation*}
$$

It is clear from (10) and (11) that
$\lim _{n \rightarrow \infty}\left(\log \log s_{n}^{2} / \log \log A_{n}\right)=1 \quad$ a.s.
(1) now follows readily from (4), (10), (11), (14) and (15). If (v) holds, (2) is immediate from (1). Q.E.D.

References

1. Chow, Y.S., Studden, W.J.: Monotonicity of the variance under truncation and variations of Jensen's inequality. Ann. Math. Statist. 40, 1106-1108 (1969)
2. Chow, Y.S., Teicher, H.: Iterated logarithm laws for weighted averages. Z. Wahrscheinlichkeitstheorie verw. Gebiete 26, 87-94 (1973)
3. Heyde, C.C.: An iterated logarithm result for martingales and its application in estimation theory for autoregressive processes. J. Appl. Probability 10, 146-157 (1973)
4. Stout, W.F.: A martingale analogue of Kolmogorov's law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Gebiete 15, 279-290 (1970)
5. Stout, W.F.: The Hartman-Wintner law of the iterated logarithm for martingales. Ann. Math. Statist. 41, 2158-2160 (1970)
6. Teicher, Henry: On the law of the iterated logarithm. Ann. Probability 2, 714-728 (1974)

[^0]: * Research supported by the National Research Council of Canada.

