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Summary. In two different ways a result is proved on the inclusion between 
a pair of non-random functions of the empirical distribution function based 
on uniform spacings. Applications in nonparametric statistics are discussed. 

1. Introduction 

It is the purpose of this paper to prove a result on the inclusion of the 
empirical distribution function (dr) based on uniform spacings, between a pair 
of non-random functions by two different methods. The first method is directly 
based on the well-known property that normalized spacings formed from 
ordered uniform spacings are themselves distributed as uniform spacings. It 
subsequently enables us to convert the problem into a similar one for the 
ordinary empirical dr, based on the original independent uniform random vari- 
ables (rv's), so that the sharp results in Robbins (1954) and Wellner (1978) can 
be applied. 

The main tool in the second approach is an upper bound for the moment- 
generating function (mgf) of a certain sum of dependent zero-one rv's in terms 
of the mgf of the corresponding sum of independent zero-one rv's, which is 
based on the negative dependence structure of uniform spacings. This method 
is self-contained and is of interest in its own right since it can be used in other 
situations as well. 

The results we obtain with these two methods described above are com- 
parable and close to the classical results in case of an empirical df based on 
independent and identically distributed rv's. 

To be more precise, let X1, X2, . . . ,  X N_ I(N >2) be a random sample from 
the uniform (0, 1) distribution and let 

0 ~-Xo:N_ I ~ X I : N -  1 ~ " "  ~ X N -  I :N-  1 ~ X N : N -  1. ~ 1 
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be the ordered sample. The uniform spacings are then defined by 

Dn,N=X,:N_~--X,_I:N_ 1 (n= 1,2, . . . ,N) 

whereas for the ordered spacings we use the notation 

DI:N <:D2:N <:"" <:DN:N" 

It is well-known that the uniform spacings are exchangeable rv's (see Pyke 
(1965)). The common marginal df is 

FN(s)=P(DI,N<=S)=P(X~:N_I<=S)=I--(1--s) N-1 , s6 [0, 1] (1.l) 

and the empirical df based on the uniform spacings is as usual defined by 

N 

fiN(S) =N-1 Z l[o,sl(Dn,N), Se[0,1] 
n = l  

where ls(" ) denotes the indicator function of a set S. 
We shall develop the two approaches described above in the Sects. 2 and 3 

in order to obtain lower bounds for the probabilities Pa and P2 defined by 

P,=P(FN(s)<fl-IFN(s), for s e [0, 1]), 

P2=P(FN(S)>=flFN(s), for se[D~:N,1]) , fie(O, 1), 

whereas in Sect. 4 we shall discuss the applicability of these results towards 
statistics. 

J. Beirlant et al. 

2. The First Approach 

Throughout the paper the symbol Y will be used to denote the law of a 
random variable or vector. 

The main tool in this section is the well-known relation 

~(D,,N, Dz,N, ..., DN, N)=~LF(ND,: u, (N--1)(D2:N--DI:N),..., DN:u--DN_I:N), 
(2.1) 

see e.g. Karlin (1966, p. 264) or Pyke (1965). 
It is immediate from (2.1) that 

5f(Dl:u, D2:u,..., DN:N)= ~q~(T1, T2,..., TN) (2.2) 
where 

T,= ~ (X,,:N_I--X,,_I:N_,)/(N--m+I), n = l ,  2 , . . . ,N.  
m = l  

It follows by simple algebra that 

Xn:N_I/N ~= r n ~Xn:N_I/(N - -  n -'[- 1); n = 1, 2 . . . .  , N. (2.3) 
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It is already clear from relation (2.3) that with probability one the empirical 
df fin lies above the polygonal line connecting the points (1/N, 0), (1/(N-1), 1/N), 
..., (1, ( N -  1)/N). 

For the evaluation of lower bounds for P1 and P2 we also need an approxi- 
mation of the inverse 

F~71(s)=l-(1-s)  1/(N-1), for s~[0,1); F j l ( 1 ) = I ,  

of F N in (1.1). Using the expansion for the binomial series we find that 

1--(1--s)I/(~-I)=s/(N--1)+pN(s), for s < l ,  

where, provided N > 2, the remainder term satisfies 

O<pN(s)<sZ/((N--1)(1--s)), for 0 < s < l .  (2.4) 

Furthermore we use some results on the ordinary empirical df of the 
uniform rv's/~N-1, say, viz. 

P(1~_l(s)<(1/7)s, for sEE0, 1 ] ) = 1 - 7  (2.5) 

for every 7~(0, 1) and N > 2  (see Robbins (1954)), and 

P(FN_~(s)>Ts, for Se[Xl..N_I,I]) 
> 1 - e(1/7) exp ( -  1/7)) (2.6) 

for every 7~(0, 1) and N > 2  (see Wellner (1978)). 
We can then state the following theorems. 

Theorem 2.1. For fie(O,�88 N >  2 we have 

Proof We 
inequality 
and N > 2 .  

P1 

P1 >-- 1 - / ~ / ( 1  - ~). 

shall use (2.2) along with the first inequality in (2.3) and the second 
in (2.4). Note that in particular XN:N_l=l>NG71(fl) for fie(0,�88 
It follows that 

=P(Fx(Dn:N)>fin/N, for n=  1,2, . . . ,N) 

>P(X,:N_I>NF;I(f in/N),  for n= 1 , 2 , . . . , N - I )  

>P(X,:s_z>(fi /(1-3))(n/(g-1)) ,  for n = 1 , 2 , . . . , N - 1 )  

=P(fN_l(s)G((1--fi)/fl)s, for se[0, 1]) 

= 1 - fl/(1 - 3), 

where in the last step we use (2.5) with 7=fi/(1-fi) .  [] 

Theorem 2.2. For fie(O, 1) and N >  2 we have 

P2 > 1 - e((1 - fi)/fi) exp ( -  (1 - fi)/fl). 

Proof Again (2.2) will be used, but this time together with the second in- 
equality in (2.3) and the first inequality in (2.4). We see that 
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P2=P(FN(D,:N)<=(n-1)/(flN), for n = 2 , 3 , . . . , [ f l N ] + l )  

> P ( X , : x _ l  <=(N-n+l)FNl((n-1)/( f lN)) ,  for n=2,3 , . . . , [ f lNS+l)  

>P(X,:x_~<=((1-fl) / f l)((n-1)/(N-1)),  for n = 2 , 3 , . . . , [ f i N ] + l )  

=P(l~_l(s)>=(fl/(1-fi))s, for se[Xl:N_l ,  1]) 

> 1 - e((1 - fl)/]3) exp ( - (1 - fi)/fl), 

where in the last step we use (2.6) with 7=f l / (1 - f l ) .  [ ]  

3. The Second Approach 

For  ke{1,2 ,  ..., N} we denote  the k-dimensional  df of  a subset of  k uniform 
spacings out  of  D1, N, ..., DN, N by 

Fk, x(s 1 .. . .  , Sk) = P(D1, x ~S1, D2,N ~S2, ..., Dk,x <Sk), 

for all (Sl, s2, ... , sk)d-0 , 1] ~. 

In part icular  remark  that for k = l ,  FI,x-FN as defined in (1.1). For  
k~{1, 2, ..., N} let 

~,N(Sl, ..., S k) = P(D1,N > Sl, D 2,N > S2, ..., Dk,N > Sk), 

for all (sl, . . . ,  sk)~[0 , 1-1 k. 

For  notat ional  convenience we will write (x, x . . . .  , x ) = x  ") for x (~  ~. 
Let  Dir  (cq, c%, ..., e,~; % + 0  denote  a Dirichlet distr ibution with parameters  

c~1, a2 . . . .  ,c~m;%+l. Recall that  if ~(Y1,  Y2 . . . .  , Ym)=Dir(al, e: ," . ,a~;C~,n+l)  
then we have 

.., ) 1--Y2y1 ' l _ y 1 ' "  1_-~1 Y~ = D i r ( e z ,  e3, "",era; am+l) 

(see e.g. Wilks (1962, p. 180)). Moreover ,  from Wilks (1962, p. 179) it is also 
clear that  

5r D2,N, ..., Dx_ 1,N)=Dir (1, 1, ..., 1; 1). 

Hence  we have the following Lemma.  

Lemma 3.1. 

~cf( DZ,N , Da,N , .  DN, N DI,N'~=~(DI,s_I ,D2,N_I,  
\I--D1,N 1--D1,N l - D 1 ,  N ] 

where (D~,x_l,  D2,N_ 1 . . . .  , DN_I,N_I) is a vector of ( N - l )  uniform spacings of 
a sample of size N - 2  from the uniform (0,1) distribution. 

The  main  tool in this section is Corol lary  3.1, which is based on the 
negative or thant  dependence structure of uni form spacings. Fol lowing Block et 
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al. (1980) a random vector (I11,-.., Y,,) is said to be negatively lower orthant 
dependent (NLOD) if for every (Yt, Y2, -.., Ym) eNm 

P(Yt <Yt,  Y2 <=Y2, ..., Ym<ym) < H P(Y~<Y,), 
i = t  

and is said to be negatively upper orthant dependent (NUOD) if for every 

(Y2, Y2, ..., ym)~F,P 

e(r t>yl ,  Y2>y2, ..., r~>ym)<_ ( i  P(~>y~). 
i = t  

Lemma 3.2. The vector of uniform spacings (Dr,N, Dz,N, ..., DN,N) is both NLOD 
and NUOD, which implies that for every k~{1, 2, ..., N} and every 
(st, . . . ,  Sk)E[O, 1] k we have 

k 

~,~(st,..., s~)< H F~,~(s,) 
i = l  

and 
k 

8,~(sl . . . .  ,sk)<_ Fl ;t,~(s,). 
i = l  

Proof. This fact can easily be derived from Block et al. (1980, p. 32) since 
(Dr,N, D2,N,..., DN,N) is uniformly distributed on the (negatively tilted) area 

N 

n = l  

Corollary 3.1. For N > 2  let S N be a sum of N exchangeable zero-one rv's 
Z1, Z 2 . . . . .  Z N with E(Zt) =p=FN(s ) for certain sE(O, 1). Moreover suppose that 

E Z~ =Fk,N(S ), for k = 2 , 3 , . . . , N .  
i =  

Then for h~lR we have 
E ( e as~,) < E ( ehSN), 

where '~N is a Binomial (N, p) rw 

Proof. The statement follows from Lemma 3.2 in view of Proposition 3.1 of 
Block et al. (1980) which says that a vector (Y1, ..,, Y,,) is NLOD (resp. NUOD) 
if and only if 

E O,(~) -<- iv[ E(4,(y)) 
i= i ~ l  

whenever all rhi are nonnegative and decreasing (resp. increasing). The lemma 
was also established independently in Beirlant et al. (1981). Their proof hinges 
on the expansion of the mgfs of S~ and SN in powers of h. [] 
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We next state the first main theorem of this section which is the analogue 
of Theorem 2.1 but slightly different and proved by a different method. 

Theorem 3.1. For fie(O, �88 N >  2 we have 

P1 > 1 - f i -  (4 e B2/(1 - 4fl exp (1 - 4fi))). 

Proof Following the approach of van Zuijlen (1982), we have 

P1 = P(ffN(D.,N) <=fl- I FN(D..zv)) 
N 

>=1- ~ P(ffN(D~,N)>fl-I FN(D.,N)) 

N 

= 1 -  ~ P(#[Di,  N <Dn,N]>N[3-tFN(D.,N)--I) 
n= 1 i::l:n 

N 1 

- - 1 -  ~ f e(ce[O~. N <sJ>Nfi - lb~(s) - l]D. ,N=s)dFN(s)  
n~ 1 0 ir162 

1 

= I - N  S P(e[Di ,  N <=-sl>Nfl-iFN(s)-l lOl,~=s)dF~ (s)" (3.1) 
0 2<i<~N 

For se(�89 1) we have by Lemma 3.1 that with probability one, given D1,N=s, 
the number of D~,N, 2<i<_N, not greater than s is equal to N - 1 .  Moreover, 
fl<F~(s) for fi<�88 and d_�89 so that N f l - I F s ( s ) - I > N - 1 .  So 

p(#[Di ,  ~ <sJ>Nfi- lFr~(s)- l lD1,N=s)=O, for s~(�89 1). 
2<i<N 

Hence, (3.1) and Lemma 3.1 imply that 

P1 >-= 1 - N ~ P (S~-1 > N fi- ~_b~ (s ) -  1) dF N (s) (3.2) 
o 

where S N_ 1 is a sum of N -  1 exchangeable zero-one rv's Zt ,  ..., Z N_ ~ with 

E a i  ~- tgk 'N-1  \ \ ~ S ]  ] '  k = l ,  2 . . . . .  N - 1 .  
i= 

Next, define for j = 0, 1, 2, ..., N - 1  

= fs~(O, ~ j,6 Ij 

= {se(O, �89 1 <=Nfl-~F~(s) - 1 <j}, 
and 

IN= {se(O, �89 > fl} = {sE(O, �89 fi- ~ FN(s)-- 1 > N -  1}. 

On Ij, j = O, 1, ..., N, we have 

P(Sav_ ~ > N i l -  ~ FN(s) -- 1) = P(S N_I >j). (3.3) 

Since it can be seen easily that for se(0, �89 

-~N- 1 (20 <- ~ ( 2  s) __< 2FN(s), 
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we have on Ij, j= l, 2, ..., N, for fl<�88 

(N-1)FN_ 1 <2NFN(s)<2N(J~+ I)fi <4jfi. (3.4) 
N 

Now, using Markov's inequality and Corollary 3.1 we have on Ij, j =  1, 2, ..., N, 
that for every h > 0 

P(SN- 1 > J) < e-hJ E( ehs~- 1) 
< e-hJE(eh~ 1) 

S N - 1  

< e x p ( - h j - ( N - l ) F N _ ~ ( l ~ s s ) ( 1 - e h )  ). 

Since 0<fl<�88 we can take h=- log(4f l ) ,  and using (3.4) we have on Ij, 
j = l ,  2 . . . .  , g ,  

P(SN- 1 >J) < exp ( - j ( - l og (4 f i )  + 4 f l -  1)). (3.5) 

Writing for convenience FN(Ij) for the measure induced by F N assigned to Ij, it 
follows from (3.2), (3.3), and (3.5) that for tie(0, [), 

N 

P ~ > I - N  ~ ~P(SN_~>j)dFN(s ) 
j = O  l j  

> I - N  Io) exp(-j(log(4fi)+4fi-1))Fs(I j 

+co 

> 1 - f l - f i  ~ exp(- j( log(4f i)+4fl-  1)) 
j = l  

exp (log (4fl) - 4fi + 1) 
= l - f i  ( 1 - exp ( log (4 f i ) -4 f l+ l ) )  

> 1 - f i -  (4efi2/(1 - 4fi exp (1 - 4fi))). [] 

The section's analogue to Theorem 2.2 is the following 

Theorem 3.2. For tie(O, 1), N > 2 ,  we have 

eft 1 exp(_f l -1)  
P 2 ~ l  

1--eft -1 exp(--f1-1) 

Proof. Following the approach taken in van Zuijlen (1976) we have 

~=:P F~(D,,:N)> >=1-  

= 1 -  ~ P F N(D.:N) > 
n ~ 2  
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Now, for n=2,  3, ..., [fiN] + 1 

n - 1  
P (FN(Dn:N) > ~ - )  = P(SN <=n-1) 

where S N is a sum of N exchangeable zero-one rv's Z1, Z 2 . . . .  , Z N with E(ZI)  
n - 1  

= p = ~ -  and for every k~{2, 3, ..., N} 

From Markov's inequality and Corollary 3.1 it follows, for h > 0  and n=2,  3, 
..., [f iN] + 1, that 

P(S N < n - 1) = P(e-hS~ > e-h(n- 1)) 

<= eh(n- I ) E(e-hs~v) 

< eh('- l)(1 - - p + p e - h )  s 
~ e h ( n  - l ) - N p ( 1 - e  -a) 

since 1 - x < e  -~. Choosing h = - l o g  fi yields for n=2,  3, ..., [fiN] + 1 

P(S  N < n - 1) < e-,(~og ~ +~- ~ - 1), 

where log fi+ fi - 1 -  1 >0  for fie(0, 1). 
Hence 

+ao 

P 2 > l  - ~ e-n(l~ 
n = l  

efi -1 e x p ( - f i  -1) 

1 - e f t  -1 exp ( -  fi -1) [] 

Remark 3.1. In order to give applications in nonparametric statistics (as done 
in Sect. 4) it is also necessary to establish lower bounds for 

151 =P(1 - f i -1 (1  --FN(S))<FN(s), for se[0, 1]) 
and 

/5 2 = P0eN(s)< 1 --fi(1 --FN(S)), for  se[0, DN:N]), fie(O, 1). 

This can be done by looking at the rv's D ' , , N = I - D , , N ,  n = l ,  2, . . . ,N  with df 
F} and empirical df f~, say. Clearly one has the following relations 

/51 =P(l~n(s)<=fi- l F/v(s), for seE0, lJ) 
and 

/52= n(F}(s )>  flFN(S), for se[D'~:N, 1]), 

where D'I: N is of course the smallest of the D',,N, n=  1, 2, ..., N. Since (D'I,N , 
D~,N, ..., D},N) is also both NLOD and NUOD, lower bounds for/51 and P2 
can be derived following the approach of this section. 

Paralleling the proofs of the Theorems 3.1 and 3.2 one obtains that for 
some universal number NoeN, 
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P~>=l-f l - (2ef i2/(1-2f iexp(1-2f i ) ) ,  for fi~(0,�89 and N > N  o 
and 

/52>1 e f i - l e x P ( - f i - ~ )  for fi~(0,1) and N>_2. 
= l _ e f l - l e x p ( _ f l - 1 ) '  

The method developed in Sect. 2 doesn't seem to yield a good result in this 
case. This can b e intuitively understood as the probabilities/51 and P2 are to a high 
degree determinated by the behaviour in D',: N resp. D~:N, i.e. in DN: N" resp. 
DN_~: N. The inequalities (2.3), however, become less sharp for larger values of 
n, 

4. Applications 

In this section we gi~.e two applications of the linear bounds for fin obtained in 
the Sect. 2 and 3. T,t wilt be convenient to work with the rescaled spacings 
ND,,N-D, ,  N. Remark from (1.1) that the common marginal df of the D,* N is 

F*(x)= 1 -  , x [0, N]. 

For the ordered D*N we use the notation D~.~D~ .N ~ . . .  <D*.N, whereas the 
empirical df of the rescaled spacings Dn*,N wi l lbedenoted  by  Fff. Note that 

1F (x), for x [0, N]] 

= [/~,(s) < fi- ~F;~(s), for se[0, 1]] (4.1) 
and 

[ff~(x)> fl F*(x), for x~[D*:N , N]] 

= [fiN(s) ~ fi~v(s), for s~[D 1 :N, 1]], (4.2) 

so that the theorems of Sects. 2 and 3 can be restated in terms of/~,~. 
We next define the empirical spacings process X~v by 

X~*(x) =N~(~*(x)-F2(x)) ,  x~[0, N] 

and the reduced empirical spacings process )(N by 

XN(s)~-N~(ff~v(F~-I(s))-s), s~[0, 13. 

Moreover, let { V(s)lO < s  < 1} be a Gaussian stochastic process (defined on the 
probability space of X~) with mean zero and covariance function E(V(s)V(t)) 
= s(1 - t) - v(s) v(t) for all 0 _< s < t _< 1 where v(s) = - (1 - s) ln~l - s). 

Finally, we define R:(0, 1 ) ~  1R to be the function 

R(s) = Is(1 - s ) ]  - 1, 

and write Ilfll~ for the supremum over [a, b]_~lR of the absolute value of any 
f :  [a, b] --* IR. 
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Application 1 

In a separate paper Beiflant and van Zuijlen (1982) show that for 6e(0, �89 

]I(X* - V(F*))R~-~(F~)I[No = II(XN-- V)R~-~I[~ ~ "  O, (4.3) 

a result which implies the weak convergence of the weighted empirical spacings 
process. For 3=�89 (the unweighted case) (4.3) has been established i.n Shorack 
(1972a). A critical part of the proof of (4.3) consists in showing that 

I[(XN--V)R-}-alI1/Np~O and II(2N-V)R-~-~II 1 1 ~  0. (4.4) 
N 

To show (4.4) we need' the following 1emma in the proof of which we make an 
essential use of the linear bounds. 

Lemma 4.1. There exists Ke(O, +o~) such that for every N = 2 , 3 , . . . ,  every 
~], and every c > 0 

P( sup IXN(s)lR~-a(s)>c)<K(cNa) -1 
O<s_< 1 

--N 
I - -  1 < s < l  

N--  

Proof. The proof is patterned on that of Lemma 1.4 in van Zuijlen (1978). We 
note from Theorem 2.1 or 3.1 that for 0<__fl__<�89 N>2 there exists C> 1 with 

P ( s u p  I X N ( s ) I > ( f l - I - 1 ) I / N ) < C f l ,  
\0<s_< l_ S 

- N  

so that for every 3ie(0,�89 

P( sup IXN(S)I e@-~(s) > ~ ( ~ - 1  _ 1) N -~) ~ C~ 
0<s_< 1~ 

--N 

which proves the lemma for c > ] / 2 N  -~ and hence for all c>0.  The part of the 

lemma where we consider s > 1 - 1  follows by a similar argument. [] 
- N 

Moreover we mention a Lemma, also proved in Beirlant and van Zuijlen 
(1982) which together with (4.3) implies that for every ~>0 and be(0,�89 there 
exists M(~, 5) such that for every N e N  

p([IXNR~-~]I~ >=M)<=e _ (4.5) 

which means that IIJ~NR~-OI]~L , ~-~ , N h[XuR (F~)l]o is bounded in probability. 

Lemma 4.2. There exists Ke(O, +o~) such that for every 5e(0,�89 every 
0<0< �89  and every c > 0  

P(I V(s)l <= cR-  3+ ~(s), for all se [0, 0] w [1 - 0, 1]) 

> l _ K c  -4 Rl-a~(s)ds . 
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Application 2 

We next give an application of the linear bounds to linear combinations of 
(functions of) ordered spacings. Such statistics are useful in a number of 
practical problems, such as problems of fit; see Pyke (1965) for an extensive 
survey. It is interesting to include linear combinations with relatively high 
weights for the smaller and larger spacings as e.g. in Jackson (1967). See also 
Beirlant and van Zuijlen (1982). More precisely, let us consider statistics of the 
form 

N 

D* SN= ~, c.N~(.:N) 
n = l  

where qN,  C2N, "",  CNN are given numbers (the weights) and 7~: (0, + oo)-+lR is 
a given function. 

We assume that the weights are generated by a given function J: (0,1)-§ 
according to 

Nc~N = J (n / (N  + 1)). 

Writing J ( sN / (N  + 1))=du(s) for se(0, 1] we may represent S N by 

N 

S N = ~ JN(Ff(x) 7~(x) dF*Cx). (4.6) 
0 

We are interested in the asymptotic distribution of statistics of this type, in 
particular when we allow IJ[ to tend to oo as s+0 or sT1, which corresponds to 
relatively high weights for the smaller and larger spacings. 

This way of representing the statistics S N in the form (4.6) almost naturally 
leads to a Chernoff-Savage (1958) approach for the asymptotic distribution 
theory; see Ruymgaart and van Zuijlen (1977; 1978) where the same approach 
has been used for linear combinations of (functions of) ordinary order statis- 
tics. In the proof a number of properties of empirical df's like the one in 
Theorem 2.2 or 3.2, that might be of independent interest, appears to be 
needed. 

Writing 
N 

~N = S JN(~:f (x)) ~(x) dFf(x), 
0 

a proper standardization of S u turns out to be 

N~ (SN -- l'N) = A o N + A 1 N + BN 
where 

N 

o N = N+ S JN (Vf (x)) ~ (x) d [ F f  (~) - F f  (x)3, 
0 

N 

A l u  = ~ X*(x)J(u*)(Ff(x)) T(x)  dF*(x), 
0 

N 

BN = N~ ~ [JN (tiff (x)) -- a N (Vff (x))] ~Y (x) dF f  (x) - A ,  N. 
0 
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As far as the A-terms are concerned, notice that AoN+A1N is a sum function 
of unordered spacings, to which a version of central limit theorems established 
by Holst (1979), Beirlant et al. (1982) can be applied for proving the asymptotic 
normality. 

For the asymptotic normality of the A-terms some conditions are needed, 
in particular in order to guarantee the existence of moments. These conditions 
will also be needed to prove the asymptotic negligibility of B N which is in fact 
the only real problem. These conditions are that T is measurable, J has a 
continuous first derivative j(1) throughout (0, 1), and that there are numbers 
ce(O, + oo) and a, be(O, �89 with a + b <1 such that 

]T(F~-l(s))[<cRb(s), s~(0, 1), uniformly in N, (4.7) 

IJ~ s~(0, 1), ie{0, 1}. (4.8) 

It will be convenient to briefly write B N as 

N N 

BN=N ~ ~ ( . . . ) d f ~ - N  ~ ~ (...)dF~. 
0 0 

The proof that BN--w*O, as N--+ + 0% will follow at once if we can show that 
each of the integrals 

N 

B l u = N  ~ f " ...)dF*, BzN=N~ f ( . . .)df~, (4.9) 
0 F~r 1 ( 1 -  ?) 

F~- 1 (V) N 

B3N=N~ ~ (...)dF*, BcN=N~ ~ (...) dF~ ~ 0 ,  (4.10) 
o F * -  i(1 - ~) 

as 7J, O and N--~ + ~ ,  along with 

F~v- 1 (1 --V) F~v- l (1 --7) 

N ~ ~ ( . . . ) d f * - N  ~ ~ ( . . . ) d F ~ - ~ O  (4.11) 
F/~- 1(~) F/~- 1(~) 

as N--~ + ~ ,  for all 7~(0, �89 
In dealing with the integrals in (4.9) the importance of Theorem 2.2 or 

Theorem 3.2 will become apparent. We restrict ourselves to a full proof of the 
asymptotic negligibility of BtN. The second integral B2N can be handled by 
similar methods using the results stated in Remark 3.1. 

Let us notice that the random measure dfff restricts integration to the 
random interval 

- -  D *  ~: ' ~ N -  [- I : N '  D N : N ] '  

N / ( N + I ) f * ( x ) ~ [  1 1 l c  0 and that ~ - ~ ,  1 - ~ i -  ] ( , 1) for x~A N. Hence the mean 

value theorem applies to the integrand and yields (for xEA~) 

N -~(JN (f~ (x)) - "IN (F~ (x))) = N ~ (f~ (x) - F~ (x)) J(N ~) ( G} (x)) = X~ (x) J(N ~) ( G* (x)), 
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where G*(x) is . . . .  d . . . .  poi . . . . .  -i~i:, ,oov~,o,~ l~*(~) and F*(x). The point  
d~(x) satisfies 

^* * (4.13) F~(x) AF~(x)<_d*(x)<_F*(x)+_ _ IIF;'* -F;llo.* ~ 

We next in t roduce the subsets 

0(1~ _ {coe~lfy(x)>_f i fy(x) ,  xsAN}, N,f l - -  

(21 _ {co~f21 ]IX, R4-~(F~)II~ < C} N,C - -  

for some 6E(O, � 8 9  F r o m  now on let us fix an arbi t rary e>0 .  As a result 
of relations (4.1) and (4.2), Theo rem 2.2 (or 3.2), and the boundedness  in 
probabil i ty of . 4-a , iv I]XsR (F~)llo (see 4.5)) we may  claim that  there exist fi~ and 
C~ such that  

p t (9 (~ )  . - ' , (2)  t~U,p~ZN, c)~l--~ for all N > 2  (4.14) 

provided fi<fi~ and C>C~.  F r o m  now on we shall also take fi and C fixed 
such that  (4.14) is satisfied. 

"~(2L that For  any 7~(0,�89 we have on ~'~N,~ 

F*(x )+  Jiffy - F ~ I I ~ < F * ( x ) +  CN-~<_�89 for x~[0, F*-  1(7)] (4.15) 

and provided N is chosen sufficiently large. Combining  (4.13) and (4.15) we see 
"~'(2L we have that  on ~zN, c 

~/~ , ,< ~ ,  < 1 (x) A F~(x) = GN(x ) __g, for XEANC~ [0, Fff-~(7)], (4.16) 

provided N is sufficiently large. 
(9(1) ra r ~ ( 2 )  The  condi t ion (4.8) on J and (4.16) entail that  on ~162 '~zS, c we find the 

bound  
IJ(N' )( d~v(x))[ < c R ~ + 1 ((~*(x)) 

<=cR "+ l(fi~(x) /x F*(x)) 

< cR ~+ 1(fiE* (X)) 

< c (1/f i f  + ~ R ~ +i (F~ (x)), (4.17) 

for X E A N ~ [ O  , * - ~  F~ (~)3. 
r r-, 0 (2)  the Finally, it follows from (4.7), (4.12), and (4.17) that  on ~176 '""N,C 

integrand (including N ~-) of the integral B1N is bounded  by 

N ~ [JN(I O* (x)) - JN(F* (x))l [ ~P(x)[ 

< c 2 C (lift) ~ +i R a +1 (F* (x)) R b (F~ (x)) R -  ~ + ~ (Fff (x)) 

<cZC(1/fl)a+lR~+b++~+~(F;~(x)), xeAuc~[o , r~ (7 )  ]. 

So for each . . . .  c)(1) r a  0(2)  R itself is bounded  by ~ a ~ N ,  fl' ' a : " N , c , ~ I N  

F~v- 1 O) 
C a C(1/fi) a-~x 

0 

a+b+,~§ , ^ ,  R (F~ (xl) dF~ (x) 
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and hence 
F~v-- ~(~,) 

E(1 IB~Nl)<=ciC(1/fl) ~247 ~ R"+b+}+a(T~(x))dF*(x) 

= C  2 C(1/~) a+ l ~ R " + b + ~ + a ( s ) d s ,  
o 

-~0, as 7,L0, (4.18) 
b e c a u s e  a + b + � 8 9  

It  is n o w  o b v i o u s  f r o m  (4.14) a n d  (4.18) tha t  B1N c o n v e r g e s  to ze ro  in 

p r o b a b i l i t y  as N - +  + 0o and  7~0. 
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