
Z. Wahrscheinlichkeitstheorie verw. Gebiete 
61, 405-415 (1982) 

Zeitschrift fi~r 

Wahrschein l ichkei t s theor ie  
und verwandte Gebiete 

�9 Springer-Verlag 1982 

Weak and Strong Uniform Consistency 
of Kernel Regression Estimates* 

Y.P. Mack 1 and B.W. Silverman 2 

1 University of California, Division of Statistics, Davis, CA 95616, U.S.A. 
2 University of Bath, School of Mathematics, Claverton Downs, Bath, BA2 7AY, United King- 
dom 

Summary. We study the estimation of a regression function by the kernel 
method. Under mild conditions on the "window",  the "bandwidth"  and the 
underlying distribution of the bivariate observations {(X i, Y3}, we obtain 
the weak and strong uniform convergence rates on a bounded interval. 
These results parallel those of Silverman (1978) on density estimation and 
extend those of Schuster and Yakowitz (1979) and Collomb (1979) on 
regression estimation. 

I. Introduction 

Let (X, Y), (Xf, Y~), i=  1, 2 . . . .  be i.i.d, bivariate random variables with common 
joint distribution F(x,y) and joint density f(x,y). Let g(x) be the marginal 
density of X and let r(x)=E(YlX=x) be the regression of Y on X. Nadaraya  
(1964) and Watson (1964) independently proposed nonparametr ic  estimators of 
r(x) based on the kernel method as introduced by Rosenblatt  (1956) for density 
estimation. Specifically, they have the form 

where 

and 

to(x) = h . ( x ) / g . ( x ) ,  

1 "  (x-x t g.(~)=~- Z 6 t-3~-. I' 
l~Onj-- 1 

(1) 

Here 6 is a kernel function and {b,} is a sequence of "bandwidths"  tending to 
zero as n tends to infinity. Watson (1964) gave some heuristic analysis of (1) in 
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conjunction with another class of nonparametric regression estimates which 
are the forerunners of the nearest neighbor method (see Royall (1966), Stone 
(1977) and Mack (1981), for instance). Rosenblatt (1969) obtained the bias, 
variance and asymptotic distribution of (1). Analogous results for the multi- 
variate case were obtained by Collomb (1977). Schuster (1972) demonstrated the 
multivariate normality at a finite number of distinct points. Major (1973) 
studied a variant of r, (where g is estimated by a histogram) and obtained the 
asymptotic distribution of maximum deviations as well as rate of strong 
uniform consistency on a finite interval. Nadaraya (1974) considered the limit- 
ing distribution of the weighted quadratic functional given by ~[-r,(x) 
-r(x)] 2. g,(x)2dx. Noda (1976) proved the pointwise strong consistency of (1) 
and also derived the rate of convergence of the MSE at a continuity point of 
r(x). Konakov (1977) investigated the behavior of the weighted quadratic 
deviation S [r~(x)- r(x)] 2. p(x). g~(x) 2 dx for a class ~of weight functions p. 

Recently, Schuster and Yakowitz (1979) derived uniform convergence 
bounds and uniform consistency on a finite interval for r,. Johnston (1979) and 
Wandl (1980) studied the global deviation along the same lines as Bickel and 
Rosenblatt (1973), and Revesz (1979) considered similar questions for variants 
of kernel and nearest neighbour regression estimates. Under quite different 
conditions on the joint distribution of (X, Y) from those of the present paper, 
and without considering rates of consistency, Collomb (1979) gave necessary 
and sufficient conditions on the bandwidth for strong uniform consistency of 
r,; his main condition is n-lb2 llogn-~O. Independently of us, Wandl (1980) 
has obtained rates of uniform consistency. Though these rates contain an exact 
scale constant, the conditions on the bandwidth are much more restrictive than 
ours and in addition the marginal distribution of Y is assumed to have 
bounded support; thus, although Wandl's results are deep, even the standard 
case of regression with normal errors is not covered. Major (1973) obtained 
similar results for a different class of estimators. 

In the present paper, we derive the weak and strong consistency of r, on a 
bounded interval, together with rates of convergence. Our conditions involve 
only a moment condition on Y and mild conditions on the bandwidth and the 
smoothness of the kernel. Under these assumptions, we show that the weak 
and strong uniform convergence rates are O(n--~b#~log (1/b,)); this is the rate 
shown by Wandl (1980) to be best possible under much more restrictive 
assumptions. The results of Schuster and Yakowitz (1979) yield a rate of 
uniform convergence in probability slightly slower than O(n-~b#a); their 
bounds are not good enough to allow any rate of strong convergence to be 
obtained by the use of the Borel-Cantelli lemma. 

Note that although only the two-dimensional case is considered here, the 
technique can be extended to the higher dimensional case, with different rates 
of convergence. These rates, however, will not be compatible with the uni- 
variate case since it is still unknown whether the strong uniform approxima- 
tion of the multivariate empirical process by a multivariate Brownian bridge (a 
device which is necessary in our analysis) has a compatible rate as in the 
univariate or bivariate case. Nevertheless, one can proceed as in Rosenblatt 
(1976) by appealing to the results of Cs6rg6 and R6v6sz (1975) and R6v6sz 
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(1976) to derive some multivariate regression estimation results for the multi- 
variate case. 

As footnotes to the above discussion, first, the idea of invariance principle 
in nonparametric regression has been exploited earlier by Bhattacharya (1976), 
although the form of the estimate considered there was based on induced order 
statistics (or concomitants); second, we would like to mention some related 
works on density estimation where strong uniform consistency was proved 
without the invariance principle. These include, among others, Bosq (1970), 
Deheuvels (1974), Bertrand-Retail (1974), Geffroy (1974), Reiss (1975), Bleuez 
and Bosq (1976), Hall (1981) and Stute (1982). 

The main results of this paper are given in Sect. 3 at the end; in the next 
section we give the technical preliminaries to these results. 

II. Some Preliminaries 

Let 
h(x) = ~y f (x ,  y) dy 

and write (suppressing the arguments of the functions) 

r , - r = A + B + C ,  (2) 
where 

A = g 2 1 . ( h - E h n )  ' 

B = Eh, ,  (g,. E g , ) - l .  (E g, - g,), 

C = (E g,)- 1. (E h. - h) + h. (g- E g,)- 1. (g _ E g,). 

In order to study the uniform convergence of r~(x) over a bounded interval 
J on which g is bounded away from zero, by using (2) together with the work 
of Silverman (1978) on the weak and strong consistency of g,(x), it is enough 
to study that of hn(x ). In fact, most of our arguments follow the same fashion 
of that paper except for a truncation applied to h,(x) at the beginning so that 
we can carry out some integration by parts later. The outline of the present 
paper is thus organized as follows: 

(i) truncation; 
(ii) strong approximation; 

(iii) uniform convergence with rates. 

Throughout this discussion, unless otherwise stated, sup, inf and ~ will be 
taken over the entire real line. We assume g(x) and h(x) are continuous on ]R 1. 
Other conditions on g and h will be imposed as the occasion demands. The 
kernel function 6 is assumed to satisfy condition 

(C1) (a) 6 is uniformly continuous with modulus of continuity w a and of 
bounded variation V(b); 

(b) b is absolutely integrable w.r.t. Lebesgue measure on the line; 
(c) ,5(x)~O as lxl--+oo; 
(d) 5 Ix log Ixi] ~ Ida(x)l < o o .  
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Let B, define an increasing sequence of positive numbers such that B,--+ oQ 
as n ~  oe. We introduce also the truncated estimate 

" 

h,B(x) = 

1 x - t  

lY] < B n  

where F,(., .) is the empirical distribution of the (Xj, Yj)'s, and I is the indicator 
function on a set. 

Our first result deals with the truncation error in replacing h, by hr. 

Proposition 1. Suppose, for some s > O, E[Y[ x < oo 

sup ~ ]ylSf(x, y) dy = M  s < oQ. 
x 

Provided 6 is absolutely integrable and B,  is an increasing sequence for which 
X,  B2  s converges, 

sup rh,(x) - hB, (x) - E { h,(x) - hB, (x) } l -- O(B,i - s) 
x 

with probability I (w.p.1). 

Proof  Since P(IY, J>B,)<=B2SEJY] s, it follows that, w.p.1, ]Yn[<B~ for all suf- 
ficiently large n, and hence, since B, is increasing, by elementary real analysis, 
that for all sufficiently large n, 

IYjI<B. for all j<=n. 

This implies that sup Ih=(x)-h~(x)[ is eventually zero w.p.1. 
It remains to bound the expectation term. Using the fact that, by a 

standard argument, 

sup ~ [ y l f ( x , y ) d y < M s B ~  -s, 
x lyl > B ~  

it follows that 

<~l~(~)ld~.sup ~ Jy[ f ( z , y )dy  

=O(B1, -s) w.p.1. 

Combining the results of the last two paragraphs completes the proof. 
Next, we give a decomposition of the truncated estimate hB,(x). 

Proposition 2. On a rich enough probability space, there exists a version B ~ of  the 
two-dimensional Brownian bridge such that 

h~(x) = E [h~(x)] + n -~ p,(x) + e,(x), 
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where 
P"(x)=b;lh,L<B. ~ 6 (~-,,)x-t ydBO(T(t,y)) 

with T: IR2~[0,  1] z denoting the transformation (see Rosenblatt (1952)) defined 
by 

T(x, y) = (Fx(x), Fytx(ylx) ), 

F x being the marginal d.f of X and Fyi x the conditional d.f of Y given X, and 
where 

~.(x)= 1_ ~ x - t  

with 
A,(t)= S yd,[Z,(t,y)-B~ 

ly[ <B~ 

Z,(t, y)=n~[F,(t, y)-F(t, y)] is the two-dimensional empirical process, and 

Proof Write 

where 

s u p  I~.(t)l = o [B.(n b.)- 1(log n) 2] w.p. 1. (4) 

h~ (x) - E B 1 1 x - t h,(x) : n - ~ b '  SS 6 ( ~ - ) y d Z , ( t , y )  
lyl <B,~ 

uB(t)= S yd, Z,(t,y). 
lyl<B~ 

Employing the strong approximation result of Tusn~dy (1977) for a two- 
dimensional empirical process, we can find a suitable probability space sup- 
porting both Z,  and a two-dimensional Brownian bridge B ~ such that 

sup]Z,(t, y) -B~ Y))I-- O(n-~(log n) 2) w.p. 1. 
t ,y 

Hence (3) follows by using an integration by parts. Replacing Z,  by B ~ after a 
change of variables, and keeping track of the error in the approximation, we 
obtain (4). 

Next, we state the strong and weak uniform convergence rates of the 
Gaussian process p,. For convenience, we let 

1 -�89 

Proposition 3. Suppose M=sup Sy2 f(x, y)dy is finite, c5 satisfies condition (C1). 
Then x 

% sup Ip.(x)l-- Op(l). 
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I f  in addition, Z.  b. ~ < oo for some 2 > O, then 

%sup[p,(x)[=O(1) w.p.1. (5) 

Proof Since the arguments used here are analogous with those used in Silver- 
man (1976, 1978), we give only the essentials. Define 

U*(t)= ~ ydB~ 
]yl < g~ 

Note that U* has the same covariance structure as U if, which is (for s < t) 

where 

and 

c o v ( Y . I { X < t ,  [Y[ <B,}, Y . I { X < s ,  ]YI <B,})=  v,B(s)- #,B(s). #,B(t), 

Hence 

vB(') = ~ y2dyF(',Y) 
ryl<B. 

#if( ')= S ydyF(' ,y) .  
lyl < B~ 

E E U . * ( s ) -  u . * ( t ) ]  ~ B ~, = v,, ( t )  - v,, (s) - [# .B (s) - #.~ ( t ) ]  

< v~.(t)- vB(s) 
t 

= ~ ~y2f(x,y)  dxdy  
IT] < B. s 

t 

<= ~ ~y2f(x,y)  dxdy  
- - c ~ S  

= v( t ) -  v(s), (6) 
where 

v( ' )= ~ y2 dyV(',y). 

Thus under the assumption that sup ~y2f(x, y ) d y = M <  0% we have that for all 
X~ x 

v'(x) = S yZ f(x ,  y) dy<=M < o~. 

Therefore, for 0 < z < a 2 = E ( Y  2) = v(oo), v- l(z) can be defined so that v- l{v(.c)} 
= z. Define 

Vn('C ) = Un~ ( V -  1 (-'c)). 

It follows from (6) that U~*(s)= V,{v(s)} for all s and that 

< E[V.(z)-- V.(z')] 2 =[ ~ - z  I- 

Let 0 be the modulus of continuity of V,. Then the trivial generalization of 
Garsia (1970), given by Silverman (1976), Lemma 2, implies that there exists a 

random variable A with EA <41~2o -4 such that 0(e) is majorized by 

16(log A) �89 e ~ + 16 ]/2 q(e), 
where 

1 r l  lq ~ 
q(e)= ! ~ [71Ogr] dr. 
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Hence, 

= ~ [ U * ( x - b , r ) -  U*(x)] da(r) 

1 
<--  ~ [V,(v(x-b, v))- V,(v(x))l. Id~(~)l 
=bn 

1 
<--  50(Mb,  1~[)" IdcS(~)l ~---b/1 

Thus 

~,,suplpn(x)l<16(logA)~M~ log �9 S I'c}~ Ida(~)l 

l og - -  ~ q(M bn[~l ) [d(3(~)l. (7) + 161/2b2~ b~ 

Using arguments similar to Silverman (1978), pp. 180-181, the second term of 
(7) tends to 

16 ] / 2 M  ~ ~ ['cl ~ Id~5('c)l 

by conditions (a) and (d) of (CI); and the first term of (7) is Op(1) if b ~ 0 ;  and 
is O(1) w.p.1 if S ,b~<oo  for some 2>0.  

The final result of this section combines Propositions 1, 2 and 3 to give 
bounds on the behaviour of h n -  E h,. 

Proposition 4. Suppose the conditions on ~ and f of Propositions 1, 2 and 3 hold, 
and that as n--+oo, b,,--+O and n" bn-+oo for some t / < l - s  -1. Then 

sup Ihn(x ) -  E h,(x)} = op(1). (8) 

If, in addition, n 2n- t b ~  oo then 

sup [h,(x) - E h~(x)l = O p(n- ~ a 21). (9) 

I f  the condition b,~O is replaced by S,  b;~ < oo for some 2>0 ,  then the probabili- 
ty orders of magnitude in (8) and (9) can be replaced by orders of magnitude 
w.p.1. 

Proof. Using the notation of Proposition 1, 2 and 3, let 

E,  =sup  Is~(x)[, 

E2=suptn-* p,(x)l, 
and 

E 3 = sup [hn(x) - hff(x) - E {h~(x) - h~(x)} I. 

Then sup lh~-Eh,  I is dominated by E, +E2+Ea, and bounds for the E~ are 
given in the propositions above. Suppose first that b , ~ 0  and n"b--,oo. Set 6 

~+a 
= � 8 9  and B~=n . Then, applying Propositions 1 and 2, with 
probability 1 
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E 1 = o(n- (~- 1)/~ b21 na(log n)2) 
= o(n-" b;  ~) (lO) 

and 
E 3 = o(n-(s- 1)/~) = o (n-"). (11) 

Since, from Proposition 3, E2=Op(n-~o:2* ) it follows that E2=op(1 ) and 
hence, using (10) and (11), that (8) holds. 

From (I0) and (11) it follows that, w.p.1,, 

{n �89 a n (E I -k E3) } 2 : o(nl - 2 rt bs 1) 

and hence, using results for E;, that (9) holds under the specified condition. 
The final remark of the proposition follows immediately by appealing to (5) in 
Proposition 3. 

IlL Main Results 

In what follows, set 

0 ,=  1 log 

and assume the following condition on f, g and h: 

(C2) (a) ElYlS<oo and sup~ ly r f ( x , y )dy<o% s > 2 ;  
x 

(b) f, g and h are continuous on an open interval containing J. 

Note that EIyIs< oo is equivalent to the integrability w.r.t, x of ~ lyl~f(x, y)dy, 
and so the boundedness of this quantity is a very mild additional condition. It 
will be seen that under appropriate conditions on bn, the weak and strong 
uniform convergence rates of the regression estimate over a suitable bounded 
interval J are O(0n). The first two lemmas are known results in the literature. 

Lemma 1 (Silverman, 1978). Suppose 6 satisfies condition (C1) and g is uniformly 
continuous. Provided b ,~O and nl-~ b,-+ ~ for some e>0, 

sup]g,(x)-g(x)l=o(1) w.p.1 
x 

and 
0~-* sup Ign(x)- Egn(x)l = Op(1). 

x 

I f  also E n b~ < co for some 2 > 0 then 

021 sup Ign(x)-Eg,{x)l =0(1) w.p.1. 
x 

Lemma 2 (Parzen, 1962). Suppose 6 satisfies conditions (C1) and c~ is continuous 
and absolutely integrable. Let ~n be the convolution of 0 and 6,(u)= 6(u/bn)/b n. 
Then 

sup [~bn(x ) - q5 (x)[ = o(1). 
J 

We are now ready to state our main results. 
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TheoremA.  Suppose ~5 satisfies conditions (C1) and f satisfies conditions (C2). 
Suppose J is a bounded interval on which g is bounded away from zero. Suppose 
that x r . b .  < oo for some 2 > 0  and that n"bn-+oo for some t / < l - s  -1. Then 

sup I r , ( x ) - r ( x ) [ = o ( 1 )  w.p.1. 
J 

Theorem B. Suppose the conditions of Theorem A for 6 and J hold, and that f 
satisfies conditions (C2) for some s > 2 .  Suppose n 2 n - l b . ~  for some t / < l  
- s  -1. Furthermore, suppose g and h have bounded second derivatives, ban =o(0.) ,  
and ~ (u )=5( -u ) ,  then 

021 sup [r~(x) - r(x)l = Op(1); (12) 
J 

and if Z.  bX. < oo for some 2 > O, then 

021 s u p l r , ( x ) - r ( x ) l = O ( 1 )  w.p.1. (13) 
s 

The proofs of  the theorems involve in the first step a decomposi t ion  of  r, 
according to (2). For  Theorem A, we apply P ropos i t i on4  and the lemmas 
above by not ing that  h is absolutely integrable by (C2). For  Theorem B, we 
apply Propos i t ion  4 and deal with the bias in the usual way by Taylor  expan- 
sion. 

No te  that  if we put  b ,=n  -~ for some fixed c~>0, then the condi t ion for 
s t rong uniform consistency is 0 < e <  1 - s  -1, while for weak and strong uni- 

1 1__2. form consistency with rate 0,, the condi t ion is ~ < ~ < s The last condi t ion 

requires that  Y has s-th absolute momen t  for s > ~ .  However,  if Y is bounded  
a.s., then the condi t ion becomes � 8 9  which is still considerably weaker 
than  the condit ions imposed on the bandwid th  by Major  (1973) and Wandl  
(1980). 
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