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Summary. Let P be the uniform probability law on the unit cube U in d 
dimensions, and P, the corresponding empirical measure. For  various clas- 
ses cg of sets A c I  ~, upper and lower bounds are found for the probable 
size of sup {IP,-P)(A)I: A ~cg}. If c~ is the collection of lower layers in I 2, o r  

of convex sets in 13, an asymptotic lower bound is 

((logn)/n)~/2(loglogn)-~-l/2 for any c5>0. 

Thus the law of the iterated logarithm fails for these classes. 
If c~ > 0, fi is the greatest integer < c~, and 0 < K < 0% let c~ be the class of 

all sets {x d <f(x l , . . .  , xd_ 1)} where f has all its partial derivatives Of orders 
< fl bounded by K and those of order fi satisfy a uniform H/51der condition 
IDP(f(x)- f (y) ) l<KIx-y]  ~-~. For  0 < c ~ < d - 1  one gets a universal lower 
bound t in  -a / (a - l+~) ,  for a constant 6=6(d , a )>0 .  When c~=d-1  the same 
lower bound is obtained as for the lower layers in I 2 or  convex sets in 13. 
For 0 < e < d - 1  there is also an upper bound equal to a power of logn 
times the lower bound, so the powers of n are sharp. 

1. Introduction 

First let us define a collection of sets in d-dimensional Euclidean space IR e 
whose boundaries are given by functions with derivatives up through some 
order fl bounded and satisfying a H61der condition of order 0 < ~ - f l < l .  
Specifically, let ~ > 0 and K > 0. Let fi be the greatest integer < ~. Let 

DP=c3EPl/Oxf 1... OXPd ~, [P] =P l  +- ' -  +Pd, 

for Pl integers >0,  P--(Pl,. . . ,Pd). For  a function f on IRd such that DPf is 
continuous whenever EP] < l ,  let 
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[Ifl[~ = max sup {[DPf(x)I : x ~ IR d} 
[p] < p 

+ max sup {IDPf(x) - DPf(y)l/lx - yl ~-p} 
[pl=fl x~-y 

where lul=(u~+..  *" 2,1/2 �9 --Uk~ , u f f ] R  k. 

Let I ~ be the unit cube {xalRa: 0 < x ~ < l ,  j = l  .. . .  ,d}. Let x(a ) 
=(Xl , . . . ,Xd_I ) ,  X a N  d. Then let cg(e,d,K) be the collection of all sets of the 
form 

{xe la :  O < x a <  f (x(a)) } 

for all f on Na-1 with /Ifrl~<K. 
As the most difficult result in this paper (Theorem 3) gives an asymptotic 

lower bound for empirical and Poisson processes over classes ~ ( d - 1 ,  d, K), the 
relatively small class c~(c~, d, K) just defined will suffice here. Larger classes with 
the same degree of boundary smoothness, hut allowing unions and intersec- 
tions of a fixed (for each class) number of such sets have been defined and 
studied previously ([5, 6, 14], R6v6sz (1976a-b)). Corresponding asymptotic 
results will also hold for them. 

Throughout, let P be the uniform Lebesgue measure on I a. Let X(1), 
X(2),..., be independent and identically distributed with law P, P~ 

=n-1  ~ ~x(j), and Vn=nl/2(Pn--P ). Let d be the ~-algebra of measurable sets 
i = l  

completed for P. 
The main results of the paper will be stated in this section and proved in 

later sections. 
For any collection ~ of measurable sets and finite signed measure # let 

][# ]l ~ = sup [# (A)[. If cg = cg(~, d, K) let 
Aeff 

I1~11~,~,/, = Ir~[l~(~,~,K). 

Theorem 1. I f  0 < c~ < d -  1 then for  any K > 0 there is a c~ > 0 such that for all 
possible values of  P,, we have 

IlP -- pll~,a,K> CSn-~/(a- l +~) 

Remarks. Theorem 1 is related to a result of N.S. Bakhvalov (1959) and will be 
proved, by a technique similar to his, in Sect�9 2. 

Specifically, Bakhvalov (1959, Teorema 1, p. 6) implies that for each d 
= 1, 2, ..., and c~ >0, there is a V = 7(d, e )>0  such that for all possible values of 
P~, we have 

(1.1) sup {~ fd (P~-e ) :  IJ/l[~__< 1} >Tn -~/a. 

This gives information for empirical measures mainly when c~<__d/2, since 
for c~>d/2 the supremum even over _+ffor a single f=t=0 tends to be of order 
n - i / 2 .  

In (1.1) one can, replacing 7 by ~/2 if necessary, restrict the supremum to 
those f with j f d P  = 0, implying the results of Kaufman and Philipp (1978, Sect. 



Empirical Process on Large Classes 357 

4) with some improvements: 3=1,  e=0, and no independence, lacunarity or 
other probabilistic assumption is needed. 

The next result applies to a general probability space (X,~C,Q). Here v n 
= n l / 2 ( Q n - Q ) .  For a collection cgc~4 and e>0  let [6] 

NI(e ' cg, Q) = inf {m: ~ A 1 , . . . ,  Am ~ S~r : VA ~ c~ 3 i,j: A i ~ A c Aj  and Q (Aj \AI )  < ~}. 

Let Pr*(A)=inf{Pr(U): U D A } .  

Theorem 2. I f  c g c d  and for  some constants ~, l<~ ,<oe ,  and K < o %  
Ni(e,C~, Q ) < e x p ( K z - ; )  for  0<~=<1, then 

Pr* { Ilvn 114 > n~ n) ~} ~ 0 

as n ~ 0% where 0=(~-1) / (2~+2)  and for  any r/>2/(~+ 1). 

Remarks.  The classes cg(cqd, K) will satisfy the hypothesis of Theorem 2 for 
= ( d - 1 ) / ~  (Kolmogorov and Tikhomirov, 1959, Sect. 5, Theorems XIII-XV; 

1 
[5, (3.2), as corrected, 1979, with its proof]). Then in Theorem 2, we get 0 = -  

2 
This 0 cannot be reduced, by Theorem 1. Conversely, the exponent 

d - l + c ~"  
c t / ( d - l + e )  in Theorem 1 cannot be improved. It remains to find the best 
exponent t /for log n in Theorem 2, a problem left open here. 

The condition ~=> 1 in Theorem 2 is necessary, as we clearly cannot have 
0 < 0  even for (g consisting of a single set A with 0 < Q ( A ) < I .  

Theorem 2 will also be proved in Sect. 2. 
On I a, for each 2 > 0  let Xz be the Poisson point process with intensity 

measure 2P. That is, for each measurable set A ~ I  a, X~.(A) has a Poisson 
distribution with parameter 2P(A), and for disjoint measurable sets A~, the Xx 
(A~) are independent. Let Yz be the centered process 

h (A, c~) = X ~(A, ~ ) -  ;~P(A), 

which has mean 0 and still has independent values on disjoint sets. In Theo- 
rems 3 and 4 P is again uniform on Ia; In=log. 

Theorem 3. I f  0 < cr = d -  1 then for  any K > 0 and g) > 0 there is a c > 0 such that 
as 2--, + ~ 

Pr {11YzL, a,K>c()~ln)O ~/2 (lnln 2) -~176 ~ 1 

and as n ~ Go, 

Pr {n I]~ - P [l~,a,~: > c(n in n) 1/2 (ln In n)- 0.5 -~} ~ 1. 

Theorem 3 will be proved in Sects. 3-4. Kaufman (1980) proved that 
[Iv~ is unbounded in probability. 

If ~ > d - 1 ,  then I]VnlI~,~,K is bounded in probability (and further, central 
limit theorems and laws of the iterated logarithm hold: R6v6sz, 1976b; Sun 
and Pyke, 1982; [6, 14]). 
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If ~ < d - 1 ,  then it was known (without Theorem 1 above) that the central 
limit theorem must fail since the limiting Gaussian process is almost surely 
unbounded over ~(c~, d, K) [4, Theorem 4.2]. For ~=  d - 1 ,  the power ~/of log n, 
between 1/2 (Theorem 3) and 1 (Theorem 2) remains to be settled. 

A lower layer in IR 2 is a set B such that if (x,y)~B, u < x  and v<y,  then 
(u, v) ~ B. 

Steele (1978, Sect. 7), Wright (1981), and others they cite, prove laws of 
large numbers (Glivenko-Cantelli theorems) uniformly over the lower layers, 
for suitable P, as had R. Ranga Rao (1962) for convex sets, in all dimensions. 

For the central limit theorem or law of the iterated logarithm the critical 
dimension is 2 for the lower layers and 3 for the convex sets. For these classes 
the central limit theorem fails since Ilv.l[~ is unbounded in probability [7]. The 
next result, apparently for the first time, allows us to conclude that 
[Iv, rl~/(loglog n) 1/z is also almost surely unbounded for ~q=lower layers in N 2 
or convex sets in 11t 3 (for previous results see e.g. Stute, 1977). 

Theorem 4. The conclusion of Theorem 3 also holds if d = 2  and cg(1,2, K) is 
replaced by the collection of all lower layers, or by the set of all lower layers in 
~(1,2,K). For d=3,  the conclusion of Theorem 3 holds if cg(2,3, K) is replaced 
by the collection of all convex sets in IR 3. 

Theorem 4 will be proved in Sect. 5. 

Acknowledgment. Thanks  to Walter Philipp for several conversations, specifically for the case ~ = 1 
in Theorem 2, where he has proved a more refined result, and for pointing out W. Schmidt 's work. 
Thanks  also to Rae Shortt  for a helpful comment.  

2. Proof of Theorems 1 and 2 

First, to prove Theorem 1, let f be a C a function on IR d-l ,  0 outside I d-l ,  
with f > 0  in the interior of I a-1. For any e with 0<e__<l, set f~(x)=e~f(x/e). 
Then 

(2.1) IIf~ll~ Ilfll~. 

Given n, let j = j , =  [(2nc) 1/(~+d- 1)] where [x] is the greatest integer < x  and 
c = K  ~.fdx/(2 Ilf]l~). Then 1/(2n) <cj  1-d-~. We have 

sup 2ncj~ -~-~ = M < oo. 
n > l  

Let 0, =j~+e- 1/(2nc). Then 1/M < O, < 1. 
Let h=KO, f / (2  [Ifll=). We decompose I e-a into jd-1 disjoint cubes C i, i 

=1, . . . , j~-l ,  of side 1/j. Let ci~[ a-1 be the vertex of C i closest to 0. Let 

A i = {x e Id: 0 < X d <=j- ~ h (j(x(d) - ci))}. 

Then the sets A i are disjoint. Since by (2.1) 

K 0, II A/j rl j (2  [If II~) < K/2, 
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the union of any set of  the Ai, together  with {XeId: X~=0} forms a set in 
cd(e, d, K). We  have  for each i 

P(Ai ) =j l  -d-~ ~ h dx =j t -d -~  O,C = 1/(2n), 

and Pn(Ai)=0 or P,(Ai)>l/n. Either  at least hal f  the A i have P,(Ai)=0, or at 
least hal f  have  P,(Ai)> 1/n. In  either case, 

[]Pn - P []~,d,~ > jd- 1/(4n ) > cj ~/(2M) > (in -~/(~+a- 1) 

for some 6=5(e,d ,K)>O, proving  T h e o r e m  1. 

Proof of  Theorem 2. The p roof  is similar to that  of/-6,  T h e o r e m  5.1]. Given  n, 
let 

k(,0 = 1-(1_ 0). log2 n -  ~ log2 log n] - ( � 8 9  0). log2 

as n ~ oo (log 2 = log to base  2). 
Fo r  k- -1 ,  2, .. . ,  let N(k)=NI(2  -k, cd, Q). By its definit ion choose sets Aki ~ d ,  

i= l , . . . ,N(k ) ,  such that  for all A~(d  there are i and j with A k i c A c A k j  and 
Q(Aki\Aki)<2 -k. Let AOl=0 (empty set) and A 0 2 = X .  Fo r  each A ~  and k 
=0 ,  1, .. . ,  choose such an i=i(k, A) and j=j(k ,A) .  Then  for k >  1, 

Q(Ak, i(k,A) AAk- 1,i(k- 1,A)) < 22-k, 

where A denotes  symmetr ic  difference. 
Let  N(k) he the collection of all sets B=Ak~\Ak_~, j or Ak_~,j\Aki or 

Akj\Akr such that  Q(B)<=22-k(k>= 1). Then  c a r d ( 2 ( k ) ) < 2 N ( k -  1) N(k) 
+ N(k) 2 __< 3 exp (2K 2k~-). 

For  each B~N(k) we have by  Bernstein 's  inequal i ty  (Bennett,  1962) for any  
t > 0  

(2.2) Pr {Ivn(B)l > t} < exp ( -  t2/(23-k + tn -  1/2)). 

Set t=t , ,k=n~ -~-~ for a 5 such that  0 < 5 < 1  and t / > ( 2 + 2 5 ) / ( 1 + 0 ,  
as is possible since t l>2/(1 + 0 ,  and where  c=6 / (1  +5).  Then  for 1 <_k<_k(n), 

23-k > 8n~ l/2(log n), > t,,k n-1/z. 

Then  (2.2) gives 

Pr {Iv.(B)l > t.,k} < e x p (  - t,,2 k/24-k). 
Hence  

P,k = Pr { sup Iv.(B)l > t~,~} 
B~.~(k) 

< 3 exp (2K 2 k~ - 2 k- 4 t2, k) 

= 3 exp (2K 2 k~-  2 k- 4 c 2 n2O (log n) 2~ k -  2 - 2a). 

We have 2 0 / ( � 8 9  F o r  k<k(n) we have n~176 so 
n 2~ > 2 k(r 1)(log n) '(~- ~), and 

P,k < 3 exp (2 K 2 kr - 2 ~ -  ~ c 2 (log n) "(~ + 1) k -  2 - 2 a). 
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Now k < l o g n  since � 8 9  so 

P.k < 3 exp (2 k~ (2 K - c 2 2-  ~(log n) ~) 

where 7 = 7 ( ( + 1 ) - 2 - 2 6 > 0  by choice of 6. Thus for n large enough so that 
(log n) ~ > 32 K/c 2, 

k(n) 

P.k < 3 (log n) exp (4K - c 2 2 - 3 (log n) ~) ~ 0 
k = l  

a s  n ---> oo.  

Let ~n be the event that Iv,(B)l<tn,k for all B ~ ( k ) ,  k=l , . . . , k (n) .  Then 
P r ( ~ , ) ~  1 as n ~  oo. On ~ ,  for each AeCg and i=i(k(n),A), j=j(k(n),A),  

k(n) 

Iv.(Ak(.),,)l <2  ~ t. ,k=2cn~ ~ k -1-~ 
k = l  k=>l 

__< 2n~ n)", 

and Iv.(Ak(.)d\Ak(.),i)[ < n~ n)". Now 

n 1/2 Q (Ak(n) ' j\Ak(,), i) < n 1/2/2k(n) < 2 n o (log n)". 

Thus nl/ZQ,(Ak(,),;\Ak(~),i)<--_3n~ n, so ]vn(A\Ak(,),i)l<3n~ Thus on 
g,, Iv,(A)l<5n~ for our arbitrary AeCg. Using a smaller ~/ we can drop 
the 5, proving Theorem 2. 

If ~ = d -  1, the method of proof of Theorem 1 shows that for larger n there 
are smaller and smaller sets on which v, is not small. But Theorem 3 gives 
better information. 

The proof of (1.1) above by Bakhvalov (1959) is like the proof of Theorem 1 
here, replacing d - 1  by d, and letting j = [(2n) a/d] + 1. On the f l >  2n little cubes 
C i let g = 0  on those with P,(Ci)>0. On all other C i let g ( x ) = - f l / j ( x - c i ) .  
Then [Igl]~__< II/ll~ and using g gives (1.1). Bakhvalov notes, in turn, that Kolmo- 
gorov had used a similar method to prove a lower bound for the metric 
entropy of classes {f: IINII~<K} in the supremum norm [13]. Later, W. 
Schmidt (1975) applied such a method to classes of convex sets. 

3. Lemmas:  Poissonization and Random Sets 

First, let us relate empirical and Poisson processes (" Poissonization"). Consid- 
er the following property of a function f defined for large enough x > 0: 

(.) for any e > 0  there is a 6 >0  such that whenever 

�9 f ( Y )  V 
x > l / 6  and 1 -  x <6  then l - f i ~ )  <e. 

If f is continuous, and slowly varying (Karamata), i.e. for all k>O, 
f ( k x ) / f ( x ) ~  1 as x ~  + ~ ;  or if f is regularly varying, i.e. for some real r, 
f (x)=xrL(x)  where L is slowly varying, then (*) holds (see e.g. Feller, Vol. II, 
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VIII.8, Lemma 2). The following Lemma will treat more general situations 
than are needed in this paper. For  any probability space ( S , d , P )  we can 
define the Poisson processes Xa and Y~, as in Sect. 1 for the uniform P, and 
the empirical processes P, and v,. 

(3.1) Lemma. Let (S, suc, P) be a probability space and c g ~ r  where we assume 
that for each n and constant t, sup(P, - tP) (A)  is measurable. Let f be a function 

A~Cg 

satisfyng (,) such that f()`)-~ + oo and f()~)/2~O as 2--* + oo. Suppose that for 
some constant c>O and some K with 0_<tc<_1, we have 

lim inf Pr {sup Y;.(A) > e f()`) ).1/2} = ~c. 
) ~  A e ~  

Then for 0 < K < c we have 

lim inf Pr {sup v,(A)/f(n) > K} > ~c. 
n-~co A e ~  

Proof Let n(2) be a Poisson variable with parameter )o, independent of the 
X(i). Then n(2)P,(x) has the properties of Xx, as is well known (Kac, 1949; 
CsSrg6 and R6v6sz, 1981, pp. 250-251). Also, n(2) can be defined from Xa or 
Y~, by n(2)=X~(S)=(Y~+2P)(S). We can then write 

Yz = n(2) P,(;.} - ).P = n()`) (P,(;o - P) + (n(2) - )`) P, 
(3.2) Yz/2 I/2 = (n()`)/2) 1/2 v,(z) + (n(2) - 2) it- 1/2 p, 

where if n(2)=0, we replace P,(z) and v,(~) by 0. As 2 ~ o 0 ,  P r ( n ( 2 ) > 0 ) ~ l ,  
n(2)/21/2~ 1 in probability, and (n(2) - 2) 2-1/2 is bounded in probability. 

From this construction we see that sup Yz(A) is also measurable. 
AeCg 

If the Lemma fails, then there is a 0<tc and an infinite sequence of values 
m = m k --* + oo such that 

Pr (sup v,,(A) > Kf(m)) <__0. 
A~C~ 

Take 0 < e < 1 / 3  such that K ( l + 7 e ) < c .  Then take a 6 > 0  such that (.) holds 
for f We may assume 6<1 /2  and ( l + 6 ) ( l + 5 e ) < 1 + 6 e .  We may also assume 
that for all k, m=mk>2/3 and 1 +2e<Kef (m)  1/2. 

Let 5m=(f(m)/m) 1/2. Then since f(m)/m-~O we may assume that 3m<6/2 
for all m=m k. For any m=mk, if (1-6m)m<_n<_m and A ~ d ,  then 
mPm (A) > nP, (A), so re(P,, - P) (A) > n(Pn - P)(A) - m 6,,, and 

Vm(A ) >= (him) 1/2 v,(A) - f ( m )  '/2 > (1 + 6)- 1 v,(A) - f ( m )  1/2, 

or vn(A ) <=(1 + g))(v,n(A ) + f(m)l/2). Now 

m m f(m) _ 1 
1 - n  = n -  1 <28,~<6 implies <e  

f(n) 

and 1If(n)<(1 +e)/f(m), so if v.(A)>O then 

v,(A)/f(n) < (1 + 2e) (Vm(A)f(m)-1 + f (m)-  1/2). 



362 R.M. Dudley 

So since (1 +2e) f (m) - l /2<Ke ,  

Pr {sup v, (A) > Kf(n)  (1 + 3 e)} < 0. 
A~Cg 

For each m=rnk, set 2=(1-6~/2)m.  Then as k ~ o o ,  since f (rnk)~oo we 
will have 

P r ( ( 1 - 6 m ) m < n ( 2 ) < m ) ~  1. 

Then for any 7 with 0<7<~c and k large enough, since the X(i) are inde- 
pendent of n(2), 

Pr {sup  Vn(x)(A ) ~ Kf(n(,)O) (1 + 3~3)} < 7. 
AeCg 

, f ( n ) l  
By (*), for (1-(Sm)m<n<m we have ~ - o ~  <e, so that for k large enough we 
may assume 

Pr {sup v,(x)(A) > K f(2)(1 + 5~)} < 7- 
Ae~ 

By (3.2), we then have for k large enough 

Pr {sup Ya(A) > K21/2f(2) (l + 78)} < (7 + K)/2 < to, 
AsC~ 

a contradiction, proving Lemma 3.1. 

Note. Pyke (1968) has related estimates with and without Poissonization. 

For any real x let x § =max(x,0).  

(3.3) Lemma. There is a constant c > 0  such that whenever z has a Poisson law 
with parameter rn > 1 then 

E ( z - m )  + >=cm 1/;. 

Proof Let j be the greatest integer <m. Then by a telescoping sum and 
StMing's formula with an error bound (e.g. Feller, Vol. I, Sect. II.9, p. 54), 

E ( z - m )  += ~ e-mmk(k-m) /k !  
k>m 

> m e-  " mJ/((j/e) J (2 re j) I/2 e I/(12])) 

>(rnJ+l/y+l/2)e-13/12(2~)-l/2>cml/2 (with c=0.135). Q.E.D. 

Now the Poisson process X~ has the property that for any two disjoint 
measurable sets A, B ~ ' ,  given the a-algebra generated by Xz on B and its 
measurable subsets, or any sub-or-algebra ~ of that a-algebra, the conditional 
distribution of X~(A) given (r is Poisson with parameter 2P(A). This property 
will be extended to suitable random sets A =  C~ and B=L~, where P(A) is ~- 
measurable. 

More generally, let (X, d )  be a measurable space. Let ~r = s J  be such that 
for any A , B ~ d  I and C e d ,  A u B ~ d  I and A c ~ C ~ d ~ .  (For example if 
( X , d , # )  is a a-finite measure space, we can take d i = { A ~ d :  /z(A)< or}.) Let 
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Y: (A, oo)--+ Y(A)(CO) be a real-valued stochastic process indexed by A earl f, 
with met?  for a probability space (f2,N, Pr), such that for any disjoint 
A1, . . . ,A ,  esJI ,  Y(Aj) are independent, l < j < m ,  and Y(AlvoA2)=Y(A1)  
+ Y(Az). Then we say Y has independent pieces. Clearly each Ya is such a 
process. 

For each C e sg let Nc be the smallest a-algebra for which all Y(A)(.)  are 
measurable for A < C, A e sd I. 

Let G be a function from f2 into sO. Then (by analogy with stopping times) 
we call G(.) a stopping set iff for all C e ar {co: G(co) c C} e tic. 

Given a stopping set G('), let B E denote the a-algebra of all sets B e ~ such 
that for all C e a/, B r {G c C} e ~c .  

(3.4) Lemma. Suppose Y has independent pieces and we have random sets Gs(co) 
--G(j)(co), j = 0  .... ,m, and A(co) in sgy such that: 

i) Go(cO ) is a fixed set Goes/y ;  

ii) for all co, GocG,(co)c  ... oGre(co), and Gm(CO) c> A(co)=0; 
iii) each Gj(co), and A(co), has only countably many possible values G(j, i)= G~i 

and C~= C (i) respectively; 
(iv) for all i and for 1 <j < m, {Gs(. ) = Gji} e Nau-  1) and {A (.) = Ci} e ~ ( ~ .  
Then the G~(') are all stopping sets, and the conditional probability 

Pr { Y(A) (.)) <= t l -~G(,,)} = ~ I{A(o))= c(o} Pr { Y( Ci) ~ t} 
i 

almost surely, for each t e IR. 

Proof First it will be shown by induction on j that Gs(.) are stopping sets. 
Clearly G o is. For the induction step, given C e s r  and j >  1, 

{Gjc C}= ~ { {G;=Gji} : G~ic C}. 
i 

For each i, {Gj=Gs~} eNG(;_I). If Gsic C, then by ii), 

{Gj = Gsl } =- {Gj = Gji } ~ {G j_ 1 ~ C} ~ ~c  

by definition of N~(;-1) and the induction hypothesis. Thus {Gjc C}, as a 
countable union of sets in Nc, is in Nc, so Gj is a stopping set. 

If A(o))=C i and G,,(CO)=Gms for some co, then Cic~G,,s=O by ii), so Y(C 3 
is independent of ~G~s. Let Bi={A( . )~-Ci}~Nc( , ,  ) by iv). For each j, {Gin 
= G~s} e ~G(,,- 1), by iv), so by ii), 

{Gm ~ Gins } = {Gm = Gins } c~ {G m_ 1 ~ G~j} e ~G.,j' 

For any B~NG(m), B ~ {G,,=Gms } =B c~ {G,,cG,,s} c~ {Gin= G,~S} e.~G~.:. So a.s. 

Pr (Y(A) ~ t[ ~G~) = ~ Pr (Y(A) <= t l NG~) 1B~ I{G~= G~s} 
i , j  

= ~ Pr (Y(Ci) < t j ~G~) 1B, l{c~ = 6..~ 
GJ 

= ~ P r ( Y ( C i ) < t  ) lB.  Q.E.D. 
i 
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Note .  Evstigneev (1977, Theorem 1) proves a strong Markov property for 
suitable random fields, indexed by closed subsets of a Euclidean space, which 
might also be used, with some work, in place of Lemma 3.4 above. 

4. Proof  of  Theorem 3 

P , - P  ~ d K is a measurable random variable [6, proof of (5.12)]. Writing X~ 
=n(2)P~(a) as in the proof  of Lemma (3.1) we see that rl Y~II~.e,K is also measur- 
able. 

Theorem 3 for Y~ implies it for P~- P, taking a smaller value of c and using 
(3.1). Let us prove it for Yz. 

By assumption d>2.  Let J=[0 ,1E,  so 

J d - I = { x ~ I R d - I "  O < _ _ x j < l , j = l , . . . , d - 1 } .  

Let X(d ) = < X l ,  . . .  , Xd_ 1 > ,  X E ]p_d. 

Let f be a C ~ function on 1R d- 1 with f ( x ) =  0 outside the unit cube j a - 1  
and f ( x ) >  0 for x in the interior of j d - 1 .  We choose f so that 

sup sup IDPf(x)[ < 1 
x [p] =< d - 1 

and such that at all points x of the sub-cube 

{x: 1/3<=xj<2/3 ,  j = l , . . . , d - 1 } ,  f ( x ) = s u p { f ( O ' t ~ I a - 1 } = 7 ,  

say, 7 < 1. 
A sequence of sets and functions, some of them random, will be defined 

recursively as follows. As the j th stage, j =  l, 2, . . . ,  j a - 1  is decomposed into 
3 j(a-1) disjoint sub-cubes Aji of side 3 - j  for i=  1, . . . ,  3 j(a-1),  where each Aji is 
also a Cartesian product of left closed, right open intervals. 

Let Bji be a cube of side 3-J-1,  concentric with and parallel to Aj~. Let xj~ 
be the point of A~ closest to 0 and yj~ the point of Bj~ closest to 0. For  6 > 0  
and j = 1, 2, . . . ,  let 

Cj = C J -  1 (log (j + 1)) - 1 - 2~ 

where the contant C > 0  is chosen so that ~ cj < 1. 
For  x ~ N  a-1 let j>__l 

f ji (x) = c~ 3 - j(d- 1) f ( 3  ~(x - xjl)), 

gii(x) = cj 3 - u + l)ca- 1) f ( 3  ~ + 1 (x - Y ~i)). 

Then the supports of fji and gj~ are the closures of Ai~ and Bj~ respectively. 
Note that on Bji , f Y g j i  > 3a-  1 > 1. 

Let So=1/2.  We will define recursively a sequence of random variables 
sji(e) ) = + 1 and let 

k 3 j ( a -  1) 

(4.0) Sk=So+ ~,, ~; sj,(co)fj,. 
j = l  i=1 

Then since ~ c j 3 - J ( d - 1 ) < l / 3 ,  d>2,  we have 0 < S k < I  for all k. 
j>__t 
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Given S j_ 1, J ~-~ 1, let Cji = C~i(co) = {x ~ jd: IX d _ S j_ 1 (x(e~)(co)[ < gji(x(d~)}' Let 
sji(co)= + 1 if Yz(Cji(co))>0, otherwise sj i(co)=- 1. This completes the recursive 
definition of the sj~ and so of the S k. 

Recursively, one sees that each Cji has only finitely many possible values, 
each on a measurable event, so the sj~ and S k are all measurable. 

Since the interiors of the Aj~ are disjoint, we have for any k>  1 

k k 

sup suplOPSk(x)[ < ~ sup ]DPfjl(X)l< ~ c j< l .  
[p] < d -  1 x j =  l [pl<d - 1  j =  l 

The volume of C~i(co ) is always 

(4.1) P (Cji (co)) = 2 S gjl dx = 2 I~ c j~9 (j + l~(d- 1~ 

where 0 < # = Sfdx  < 1. 
Now let us show that Cj~(co) for different i,j are always disjoint. For 

1 < j  < k and any co, i and x ~ Bj~ we have 

IS~(x)- S~_ l(x)l (co) > 7cj 3-J~d- ~ _  F, 7c~3-~d- ~ 
r > j  

>?cj3-J(e-  1~(1-�89 

> ~/cj 3 -j(a- 1)/2 > sup (gji + sup gk + 1,,.)(Y). 
y r 

Thus if sj~(co)= + 1, then for any r and any x~Bj~, 

S~(x) (co)- gk+ ~,~(x)->- s j_ ~ (x)(co) + gj~(x), 

so Cj~(co) is disjoint from Ck+ t,,,(CO). They are likewise disjoint if s2~(oo)=- 1, 
interchanging + and - ,  > and < 

For the same j and different i, the Cj~(co) are disjoint since they project into 
disjoint Bj~. 

Given 2 > 0  let r=r()~) be the largest j, if one exists, such that 
2)~#c~>9~j+ 1~(~- ~. Then as ,~ --, + o% r(2) ~(log 2)/((d - 1)log 9). 

Let Go(co)=0. For m=  1, 2, ..., let 

G(m)(co) = Gin(co) = [,.) { Cji(co): j <= m}. 

Let Hm(co)={x: O<xd<Sm(X(~)(co)}, SO that for all co, Hm~Cg(d- l ,d ,  2d). Let 
Am(co)=H,,(co)\am(co ). Then from the disjointness proof, 

I-I~(co) c~ Gin(co) = [.9 { C j i ( c o ) :  j < m ,  s~i= + 1}. 

For each m, each of these sets has finitely many possible values, each on a 
measurable event. For each m, we apply Lemma 3.4 to these G j, with A =Am. 
Then each G~ is N~(~_ ~ measurable, Am(" ) is Nmm~ measurable, and the other 
hypotheses of Lemma (3.4) clearly hold. Thus, conditional on ~ ( ~ ,  Xz(A)  is 
Poisson with parameter 2P(A~(co)). Also, 

m 3J( a 1) 

(4.2) Yx((I-Im c~ Gm)(co))= 2 ~ L(C~z) +- 
j = l  i = 1  
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Now P(C3i ) does not depend on co nor  i, and C3~(. ) is NG(j-1) measurable.  
Thus by L e m m a  (3.4), applied to A = C,,~, replacing G,, by Gm\Cm~, the Yx(C3~ ) 
for different i or  j are joint ly  independent ,  and each has the law of  Y~(C) for a 
fixed set C with P(C)=2~g31 dx. 

Taking  m =  r(2), (4.2) is a sum of independent  nonnegat ive  parts of centered 
Poisson variables with parameters  )~P(C3~)> 1, by (4.1). Thus by L e m m a  (3.3), 
for a constant  c > 0, 

r().) 3 -/(a u 

2-1/;EY~((I-ImC~G,,)(co)) >c ~ Z P(C3i) 1/2 
j = l  i = 1  

r(2) 
=c ~ 3J~d-~)(2#Cj/9(J+~)(a-~))l/2 by (4.1) 

j = l  

r(2) 

=c3~-~(2#) ~/= ~ (Cj-~(log@+l))-~-~) ~/2 (def. of c3) 
j = l  

r()t) 

= c (2# c )  ~/~ 3 ~ -~ ~ j -  ~/~(log ( j +  ~))- o.~-~ 
j = l  

r(2) 
> a a (lo g (r (2) + 1)) - o.5 - ~ ~ j -  1/2 

j = i  

> 2a a (r(2) ~/~ - 1) (log (r(2) + 1))- o. ~ - 

for some constant  a a >0.  For  2 large the above is 

> 3 b a (log 2) ~/2 (log log 2) - o. 5 - 

for some ba>0.  
By independence of the Yz(Cj~), the variance of Yx((I-I~(x)c~ Gr(x))(co ) is less 

than 

r(~.) 3~ a -  ~) r(2) 
~ 2P(Cj~)=2 ~ 3J<a-~)2#Cj-~(log(]+l))-~-2~q -r162 

j = l  i = 1  j = l  

Thus by Chebyshev's  inequality, 

Pr {2-1/2 ya(iir(~ ) c~ Gr(,))(co) > 2ba(log 2)1/2 (log log 2) - ~  -a} ~ 1 

as ,~--, + ,o. 
By L e m m a  (3.4), the condi t ional  distr ibution of Ya(A~(z)(co))(co) given ~(~(x)) 

is that  of  Yx(D) for P(D)=P(Ar(z)(CO)), where EY~(D)Z<2 for all D. Thus EY~ 
(Dr(x)) z <2, Yx(Ar(~))/21/2 is bounded  in probabili ty,  and 

Pr  { g~ (fI~(~))) >= b a (2 log 2) 1/2 (log log 2) - 0. s - ~} __. 1 

as 2--, + oo. This proves Theorem 3 (for Y~o) if K>2d.  For  smaller values of 
K > 0  we can just mult iply the constant  C (in c 3, fji and gj~) by K/(2d), 
complet ing the p roof  of Theorem 3. 



Empirical Process on Large Classes 367 

5. Convex Sets and Lower Layers 

We have measurabil i ty of  the relevant norms as in [6, (4.3), (4.4), (5.13)]. 
Theorem 4 will be proved first for the convex sets in case d = 3. In  the p roof  of  
Theorem 3 in the last section, let us take d = 3  and define S k, k >  1, by (4.0) 
with a new definition of  So: 

So m_ �88 - (x I _�89 _ (x 2 _1)2. 

Then  since ~ c~/9 j < 1/4, 0 < S k < 1 for all k. The rest of  the p roof  remains the 
j__>l 

same, to prove Theorem 4 for the convex sets, except for the considerat ion of  
second derivatives, as follows. We now get 

sup sup IDP(Sk-- So)(X)1 < 1. 
[p] _-< 2 x 

Let H ( f )  denote  the Hessian matrix Hij=O2f/SxiSxj  for the function f. Then o) 
H ( S o ) -  _ and H(Sk--So) is symmetr ic  with all its entries in [ - 1 ,  1]. 

Hence  - H ( S k )  is everywhere nonnegat ive  definite. Since S k is C ~176 it is concave 
Roberts  and Varberg,  1973, pp. 100, 103) so that  the set 

= { x :  0 < < 

is now convex. Thus  Theorem 4 is proved for the convex sets in IR 3. 
To prove Theorem 4 for lower layers, we take d = 2  in the p roof  in Sect. 4 

3 x 
and make  the following changes. Choose  C now so that ~ c j <  1/2. Let S o = ~ - ~ .  
Then 0 < S k < I  for all k, since ~ c j 3 - J < l / 6 .  Also J 

j__>l 

S;(x)__<-�89 Z cj<0 
1>1 

for all k and x. Thus each H k is a lower layer. The rest of the p roof  works 
as before, proving Theorem 4. 

References 

1. Bakhvalov [Bahvalov], N.S.: On approximate calculation of multiple integrals (in Russian). 
Vestnik Mosk. Univ. Ser. Mat. Mekh. Astron. Fiz. Khim. 1959, no. 4, 3-18 (1959) 

2. Bennett, G.: Probability inequalities for sums of independent random variables. J. Amer. 
Statist. Assoc. 57, 33-45 (1962) 

3. Cs/Srg6, M., R6v6sz, P.: Strong Approximations in Probability and Statistics. Akad6miai 
Kiad6, Budapest (1981) 

4. Dudley, R.M.: Sample functions of the Gaussian process. Ann. Probab. 1, 66-103 (1973) 
5. Dudley, R.M.: Metric entropy of some classes of sets with differentiable boundaries. J. Approx- 

imation Theory 10, 227-236 (1974); Correction, ibid. 26, 192-193 (1979) 
6. Dudley, R.M.: Central limit theorems for empirical measures. Ann. Probab. 6, 899-929 (1978); 

Correction, ibid. 7, 90%911 (1979) 



368 R.M. Dudley 

7. Dudley, R.M.: Lower layers in N z and convex sets in N 3 are not GB classes. Lecture Notes in 
Math. no. 709, 97-102. Berlin-Heidelberg-New York: Springer 1979 

8. Evstigneev, I.V.: "Markov times" for random fields. Theor. Probability Appls. 22, 563-569 
=Teor. Verojatnost. i Primenen. 22, 575-581 (1977) 

9. Feller, W.: An Introduction to Probability Theory and its Applications, vol. I, 3d ed.; vol. II, 
2d ed. New York: Wiley 1968 and 1971 

10. Kac, M,: On deviations between theoretical and empirical distributions. Proc. Nat. Acad. Sci. 
USA 35, 252-257 (1949) 

11. Kaufman, R., Walter Philipp: A uniform law of the iterated logarithm for classes of functions. 
Ann. Probab. 6, 930-952 (1978) 

12. Kaufman, Robert: Smooth functions and Gaussian processes. Approximation Theory III, ed. 
E.W. Cheney, p. 561-564. N.Y.: Academic Press 1980 

13. Kolmogorov, A.N., Tikhomirov, V.M.: e-entropy and e-capacity of sets in functional spaces. 
Amer. Math. Soc. Transl. (Ser. 2) 17, 277-364 (1961)=Uspekhi Mat. Nauk. 14, vyp. 2(86), 3-86 
(1959) 

14. Kuelbs, J., Dudley, R.M.: Log log laws for empirical measures. Ann. Probab. 8, 405-418 
(1980) 

15. Pyke, R.: The weak convergence of the empirical process with random sample size. Proc. 
Cambridge Philos. Soc. 64, 155-160 (1968) 

16. Rao, R. Ranga: Relations between weak and uniform convergence of measures with appli- 
cations. Ann. Math. Statist. 33, 659-680 (1962) 

17. R6v6sz, P.: On strong approximation of the multidimensional empirical process. Ann. Probab. 
4, 729-743 (1976) 

18. R6v6sz, P.: Three theorems of multivariate empirical process. Empirical Distributions and Pro- 
cesses, ed. R Gaenssler and P. R6v6sz. Lecture Notes in Math. 566, 106-126. Berlin-Heidel- 
berg-New York: Springer 1976 

19. Roberts, A.W., Varberg, D.E.: Convex Functions. New York: Academic Press 1973 
20. Schmidt, W.: Irregularities of distribution IX. Acta Arith. 27, 385-396 (1975) 
21. Steele, J. Michael: Empirical discrepancies and subadditive processes. Ann. Probab. 6, 118-127 

(1978) 
22. Stute, W.: Convergence rates for the isotrope discrepancy. Ann. Probab. g, 707-723 (1977) 
23. Sudakov, V.N.: Gaussian and Cauchy measures and e-entropy. Soviet Math. Doklady 10, 310- 

313 (1969) 
24. Sun, Tze-Gong, Pyke, R.: Weak convergence of empirical processes. Technical Report, Dept. 

Statist. Univ. Washington, Seattle (1982) 
25. Wright, F.T.: The empirical discrepancy over lower layers and a related law of large numbers. 

Ann. Probab. 9, 323-329 (1981) 

Received ApriI 29, 1982; in final form June 15, 1982 


