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On the Balayage of Green Functions on Finely Open Sets 

Klaus Janssen and Nguyen-Xuan-Loc 

Introduction 

Let E be a locally compact space with countable base and let ((W~), (I~), m) 
be a triple with the following three properties (henceforth referred to as case B3): 

a) (W~)~__> o is a Hunt resolvent on E which maps bounded measurable functions 
with compact support into bounded continuous functions (by "measurable" we 
always understand "Borel measurable"): 

b) (I~)~> o is a Hunt co-resolvent on E which maps bounded measurable 
functions wfth compact support into bounded continuous functions; 

c) m is a Radon measure such that (W~) and (I~) are in duality with respect 
to m. 

Then it is well known that there exists a Green function g: E x E~IR+.  More- 
over, g has the property that for every y~E the excessive function g( , y): x~g(x,  y) 
is invariant under balayage onto neighborhoods of y. 

This note arose from the question of characterizing those situations where 
(1) g(.,  y) is invariant under balayage onto fine neighborhoods of y for every 

yeE. 
The answer is that (1) holds if and only if every finely open set is not co-thin at 

each of it's points, or equivalently, iff every co-finely open set is not thin at each of 
it's points. Moreover, (1) implies the strong domination principle (/5). 

Let (E, Jr) be a harmonic space in the sense of Bauer [1] such that the constant 
1 is superharmonic. If a Green function g exists for (E, ~ ) ,  then we can always 
associate a triple ((W~), (IYV~), m) which satisfies the assumptions of B 3 (c.f. Tay- 
lor [13]). As a by-product we obtain the following extension of Chapter 33 in [5]" 
If there exists an adjoint harmonic space for (E, ~ ) ,  then ~,: (x, y)--,g(y, x) defines 
a Green function for this adjoint harmonic space. 

As application we prove the existence of a strong harmonic space which 
satisfies the domination principle (D) but not the strong domination principle (/5). 

In an appendix we show that for Brelot spaces under the assumption of the 
existence of a Green function several properties are equivalent with (/)), e.g. the 
above mentioned property (1), or the fine boundary minimum principle. We do 
not know if (D) implies these properties in this case. 

The second author takes the opportunity offered by this note to correct an 
error in his previous papers [9] and [10] (see the remark at the end of the appen- 
dix). 

1. Preparations 

Under the hypothesis B 3 each of the triples ((W~), (ITV~), m) and ((IYV~), (W~), m) 
satisfies the Kunita-Watanabe hypothesis. Consequently, the potential theory as 
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developed in [11] can be applied by symmetry either to the Hunt process X of 
(W~) or to the Hunt co-process 2 of (I~,). 

Let us recall some notions and results of [11]: 

1.1. Definition. (a) An excessive (resp. co-excessive) function h is called 
harmonic (resp. co-harmonic) iff h is m-almost surely finite and 

/ ~ K  h(resp. R~ OK_h) 
for every compact subset K of E. 

(b) An excessive (resp. co-excessive) function p is called a potential (resp. 
co-potential) if p is m-almost surely finite and if 0 is the only harmonic (resp. 
co-harmonic) minorant of p. 

(c) Let g: E x E--.IR+ be the Green function of the process X, which exists 
according to T4 in Chapter lI of [11]. For every positive Radon measure # 
on E, if the excessive function p, (which is defined by p~(x)=Sg(x,y)dl~(y ) for 
xeE)  is m-almost surely finite, then p, is called the Green potential of l~. Co- 
Green-potentials are defined in the obvious same way with respect to the co-Green 
function ~: (x, y)~g(y,  x) for X. 

The following result holds because of the strong regularity conditions im- 
posed by Ba: 

1.2. Theorem. Assume the case B 3. Then for every potential p on E there exists 
a unique Radon measure I~ such that 

p(x)=Sg(x,y)d#(y)  for all x eE .  

Moreover, every Green potential is a potential t. 

Proof The first assertion is proved in T9, T1 in Chapter III of [11]. By T12 
and D3 in Chapter III of [11] it only remains to show that g( , y) is not harmonic 
for every yeE. Hence assume g( , y) is harmonic for some yeE  and let K be a 
compact neighborhood of y. In particular, CgK is not co-thin at y. On the other 
hand the harmonicity of g ( , y) implies ~ r.K Rg(, y)= g( , y), hence by duality 

^,CK R~(x, )(y)=g(x, y) for every x e X ,  

hence R* CK(y)=u(y) for every co-excessive function u. This contradicts the fact 
that K is co-thin at y. 

2. Balayage of the Green Function on Finely Open Sets 

In this chapter we will always assume the case B 3 . Denote by 0 (respectively 0") 
the class of finely (respectively co-finely) open subsets of E. g denotes the Green 
function for the process X. 

2.1. Theorem. The following properties are equivalent: 
(i) ~o Rg( , y) (x) --= g(x, y) for all (y, x)e0 x E, 0e0. 
(2) 0cb*(0) fc;r all OeO, where b*(A) denotes the set of points which are co- 

regular for a subset A of E. 

i By symmetry this result remains true if we replace "g(x, y)', "potential", "Green potential" by 
"~ (x, y)", "co-potential", "co-Green potential" respectively. 
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(3) 01~b(01)for all 01E0* , where b(A) denotes the set of points which are 
regular for a subset A of E. 

(4) ~,,ol ..g(x, )(y)=g(x, y) for all (x, y)eO 1 x E, 01~0". 

Proof By a symmetry argument it is enough to prove (2)3(3)<=>(4). 

(2)3(3): Assume the contrary, i.e. there exists 01~0" and ye01 \ b ( 0  0. Since 
01 is thin at y we conclude that V.'= {y} u C01 is a fine neighborhood ofy. Let 0 be 
the fine interior of V and denote by W the fine open set 0 \ {y}. Then we conclude 

from W c ~01 y6Ol ~ X \ b , ( ~ O 1 ) c X  \ b , ( W ) .  

On the other hand we know that 01 is thin at y~01, hence {y} is totally thin. This 
implies by (2) 

y EO c b* (O) = b* (F w {y} ) = b* (W) w b* ( {y} ) = b* (W), 

i.e. a contradiction. 
(3)~(4): By duality we have ~ ,0 ,  ~o, ~.g~x, )(y)= g(,y)(x) for all ( x , y ) ~ E x E ,  01~0". 

Consequently, for xeb(01) the property (4) holds. This implies the wanted im- 
plication. 

(4)~(3): Let 01E0*. If (4) holds, then we have by duality "o, Rg(,y)(x) = g(x, y) for 
all ycE,  xa01. Hence we conclude for every xE01 that 01 is not thin at x, i.e. 
01 ~ b(01). 

2.2. Proposition. Assume that one of the equivalent properties of (2.1) holds. 
Then the following statements are true: 

i) Let p be the Green potential of a measure with compact support K such that p 
is finite on K. Then p = RKp. 

ii) The strong domination principle (D) holds, i.e. every finite potential is a 
countable sum of continuous potentials. 

iii) The corresponding "co-statements" hold. 

Proof a) Let 
p(x )=yg(x , y )d# (y )  (x~E) 

be a Green potential of the measure # with compact support K such that p is 
finite. Then we have 

R~(x) =inf{R ~ K c 0, 0~0}. 

By assumption we have R~ for every y~0, hence we obtain by in- 
_ K ~ K  tegration ,~o = R o = p. Consequently we have p -  Rp = Rp. 

b) As a consequence of (a) we conclude the maximum principle for Green 
potentials, i.e. if 

p(x): = ~ g(x, y) dll(y) (x~E) 

defines a potential and if S(p) is compact, then we have 

sup {p (x) : x e S (#)} = sup {p (x) : x E X}, 

since positive constants are excessive. 

By Proposition (7.2) in [-2] this implies the strong continuity principle for 
Green potentials, i.e. the Green potential of a measure with compact support C 
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is continuous on E provided it is finite and continuous on C. Now (ii) is an 
easy consequence from the fact that Green potentials are lower semi-continuous 
and from Lusin's theorem. 

c) The "co-results" follow by symmetry. 

2.3. Consequences for Harmonic Spaces. a) Let (E, ~,e) be a strong harmonic 
space in the sense of Bauer [1] such that a Green function in the sense of [13] 
exists (necessary and sufficient conditions for the existence of a Green function 
can be found in [6]). Assume that positive constants are superharmonic. 

By the results of Taylor [13] we can conclude that there exists a nice process 
associated with (E, ~ )  which has a dual in the sense of Kunita-Watanabe such 
that we are in the case B a . 

Hence all the above results apply here; e.g. if 0cb*(0) for every finely open 
set 0, then the strong domination principle (/)) holds for (E, ~C). This extends 
some of the results which have been obtained by the authors in [7] and [8]. 

b) In particular, if the co-excessive functions are the hyperharmonic functions 
of some harmonic space (E, ~ )  (e.g. if the adjoint harmonic space in the sense 
of Mme. Herv6 [5] exists) then by 1.2 the hypothesis of proportionality of 
extreme potentials with respect to JC is satisfied. 

Consequently, (E, Jt  0 is an adjoint harmonic space for (E, ~() (this extends 
the results of Mme. Herv6 in [5], Chapter 33). 

c) The result of 2.2 has an analogue for general harmonic spaces, where 
a Green function does not necessarily exist. Let ~r be a sheaf of hyperharmonic 
functions on E such that (E, ~/t ~*) is a ~3-harmonic space in the sense of Con- 
stantinescu-Cornea [4]. Assume that Doob's convergence axiom holds. 

Proposition 2. Assume that for every extreme potential p and .for every fine 
neighborhood V of the superharmonic support of p we have RV=p. Then (D) holds. 

In particular, (E, ~* )  is a Brelot space for which semipolar sets are polar. 

Proof. The second assertion follows from Chapter 9.2 in [4]. To prove (/)) 
just adapt the proof of 2.2 to the integral representation for the positive super- 
harmonic functions (which is guaranteed by Chapter 11.5 in [4]) and use Pro- 
position 11.4.12 b) of [4]. 

3. Applications 

We consider the example of the Brelot harmonic space (X, ~ )  which was 
given by Constantinescu and Cornea in [3]: Let r o, rls IR, 0 < r 0 < r 1, X 0 = {ze•: 
ro<lZl<q} and let X be the topological space obtained from {zsC: Izl<q} 
by identification of the points in {z~ ~:  ]zl =< to}. 

Let # be a probability measure on Cro={zs~E: Izl=ro}. For an open subset 
U of X and a function h defined on U we say hsy,~(U) iff h is continuous on U, 
hlvnX ~ satisfies the Laplace equation, and if { X o } = X \ X  o is contained in U, 
then 

~h 
S ~ # ( 0  d#(~)=0 

Cr o 

z This proposition has been announced in [7]. 
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0h h(r 4)- h(x) 
here ~ (4)= limr~l r - 1  (4 ~ Cr o) exists and defines a continuous function 

r > l  

on C~o - 

We denote by r7 the surface area measure on Cro. The following results have 
been obtained in [3]: 

3.1. Properties of (X, 2~,). 
a) (X, 4 )  is a Brelot harmonic space. 

b) Every semipolar set is polar, {Xo} is not polar. 

c) If # = f r ;  with f continuous such that f is a - a . e ,  strictly positive on C~o, 
then (X, ~,v~) has the property (D), i.e. every locally bounded potential is a count- 
able sum of continuous potentials. 

d) If/~ = f r  with f continuous such that f is r ; -  a.e. strictly positive on Cro, 
and if {z~K;: f (z )=0}  has at least two elements, then there are two nonpropor- 
tional potentials with superharmonic support {Xo}. 

Repeating the proof of Theorem 1.3 in [3] with minor change we obtain 

3.2. Proposition. I f  # = f  r~ where f is continuous and strictly positive every- 
where on Cro , then (X, 2/~,) has the property (/5). 

Since constants are harmonic for (X, 4 )  we obtain immediately from the 
definition of (X, g/~,): 

3.3. Lemma. The function Po, defined by Po (Xo)= log r l ,  
ro 

( q )  (zEXo) Po (z) = log 

is a potential for (X, d~u) with S(Po) = {Xo} (where S(po) denotes the superharmonic 
support of Po). 

3.4. Proposition. The following properties are equivalent for (X, Hu): 
(a) (15) holds. 

(b) Every potential p with S(p) = {Xo} is proportional to Po. 
(c) The hypothesis of proportionality holds: 

Proof (a)~(b) :  Let p be a potential with S(p)={Xo}. Then ~=P(X0) is finite 
since {Xo} is not polar. By (15) we conclude from the finiteness of p 

p = Rp^ {xo} - -  R~̂  {xo} -- c~ ~o},  
i.e. (b) holds. 

(b)~(c) :  Let x c X  o and let q be an extreme potential for (Xo, Y~uJXo) with 
S(q)= {x}. q is up to a multiplicative factor uniquely determined. By Satz 5.3.6 
of Bauer [1] there exists a unique potential p for (X, 4 )  such that S(p)= {x} 
and plxo=q+h for some harmonic function h on X o. Since every potential v 
for (X, 4 )  with S(v)={x} arises in this way from a potential for (X0, ~lXo) 
we conclude that p is up to a constant factor the unique potential v for (X, ~ )  
with S(v)= {x}. 
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(c)~(a) :  We have to show that every finite potential is a countable sum of 
continuous potentials. Hence let p be a finite potential. Then p =  ~ ,>  o P,, where 
S(qo)C{Xo} and S(q,)=K,_for a compact subset K, c X  o such (hat q.l~, is 
continuous (neN). Since (D) holds for Laplace equation we conclude that q, 
is continuous for n e N. By the assumption of (c) we know that q0 is proportional 
to Po, hence qo is also continuous. 

3.5. Consequence. From 3.4 and 3.1.c, 3.1.d follows the existence of a harmonic 
space (X, ovfu) which satisfies (O) but not (/)). 

To develop an adjoint theory in the sense of Mme. Herv6 [5] we have to 
prove the existence of a base of completely determining sets (and the hypothesis 
of proportionality). 

Remember that an open subset V of a harmonic space is called completely 
determining iff ~ v=  p for every potential p on X such that S(p)~ C V. 

3.6. Remarks. a) V is completely determining iff ~ V = p  for every extreme 
potential p such that S(p) is contained in the boundary of V. 

b) It is well known that for the harmonic space which is associated with 
the Laplace equation in a relatively compact open subset O of IR z the sets V~ c~ V 2 
are completely determining if 1/1, V 2 are balls in ]R 2 such that V~, V 2 ~ ~2. 

c) To prove the following lemma we use the following result of Sieveking 
([-123, p. 21): 

Let p be an extreme potential. Then { E c X :  [ ~ + p }  is a filter of subsets 
of X. Obviously, this filter contains every neighborhood of S(p). 

3.7. Lemma. The harmonic space (X, 2/f,) has a base of completely determining 
sets. 

Proof Consider the class ~U of subsets V of X such that V ig an open ball 
in C with V c X o or 

g = { x o } W  ze~; :  ro<lzl<ro+ 1 with ro+~< q (neN). 

Every Ve • is completely determining: If V c X  0 then we obtain this by restriction 
to some open neighborhood W of V with W c X  o by 3.6.b; in the case xoeV, 

~CV" X" assume that for some xe  Vand some y in the boundary of Vwe have p, t ) 4:Pr(X), 
where py is an extreme_ potential with S(py)= {y}. Let W be an open ball in I1t 2 
such that ye  Wand  W c X  o. By 3.6.c we conclude 

~ C ( v a w ) ( v  
p, ,~'1, 4= Py(X,) 

for some XleVnW.  But this contradicts the fact that Vc~ W is completely 
determining for (Xb, 5futxo ) (c.f. 3.6.b). 

3.8. Theorem. Assume that (X, 9f,) has a Green function ga. Then there exists 
an adjoint harmonic space (X, :g?~) in the sense of Mine. HervO. Moreover, (X, ~ )  
and (X, 9flu) have the property (D), and ~,: (x, y)--+g(y, x) defines a Green function 
for (X, ~ ) .  

3 By 3.4 this is equivalent with (/5), The assumption is satisfied if # =fa such that f is a continuous 
strictly positive function on C,o. 
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Proof a) By 3.7 we know that (X, ~ )  has a base of completely determining 
sets. Hence the assumption of the existence of a Green function implies the 
existence of an adjoint harmonic space (X, ~ )  in the sense of Mine. Herv6 [5]. 

b) To prove the second part of the statement, it suffices according to 2.1 
and 2.3 to show the following: 

^V Every y e X  has a base U of fine neighborhoods such that Rg(,y)=g(,y) 
for every VE~. 

Now, if y--Xo, then g( ,  y) is proportional with the continuous potential Po. 
Consequently we have for every fine neighborhood V of y 

g( y)_9(xo~ < b y  <g( ,y ) ,  
, - - X . g ( , y ) = ~ . g ( , y ) :  

i.e. g( ,  ^v y)=Rg(,y). 
Next, if yeXo,  then let V be any fine neighborhood of y such that V c X o ,  

and V is compact. To prove ^v Rg~,y)=g(,y) it is by (3.6.c) enough to prove 
^CV Rg(,y)~g( , y). 

Cv (xeV) is the same for both of the harmonic Since the swept measure e x 
spaces (X, ~,)  and (Xo, ~lXo) we conclude kcvg(, y) + g ( ,  y) from the self-adjoint- 
ness of (X o, ~lXo) and th6or6me 32.5.2 in [5]. 

Appendix 
The harmonic space studied in w 3 gives an example of a harmonic space 

which satisfies the domination principle (axiom D) but not the strong domination 
principle (axiom/5). But in this example there exist two nonproportional potentials 
with superharmonic support {Xo} , i.e. no Green function exists. This suggests 
the following natural question: 

Let (E, ~ )  be a harmonic space in the sense of [1] for which a Green function 
exists. Does axiom (D) imply axiom (/5)? 

We did not succeed to find an answer of this question. In the following we 
give several equivalent statements of axiom (/5). 

Theorem. Let (E, ~ )  be a harmonic space with a Green function g such that 
axiom (D) is satisfied. Assume that 1 is hyperharmonic. Then the following properties 
are equivalent: 

(a) The fine boundary minimum principle: Let f be a finely hyperharmonic 
function on a finely open set U in E such that f > -P ly  for some potential p on E. 
I f  fine l iminff (x)>0 for every z in the fine boundary •j,U of U, then f>O.  

x ~ z  

(b) For every finely open set OcE and every yeO we have 

o Rg(,y)(x)=g(x, y) for every xeE.  (1) 

(Remark that this is one of the equivalent statements of 2.1.) 
(c) The maximum principle for Green potential: Let p be the Green potential 

of a measure # with compact support K. Then 

sup {p(x)" xeK}  = sup {p(x): xsE} .  



154 K. J a n s s e n  a n d  N g u y e n - X u a n - L o c  

(d) The strong continuity principle for Green potentials: Let p be the Green 
potential of a measure # with compact support K. I f  the restriction of p to K is 
finite and continuous, then p is continuous on E. 

(e) The strong domination principle (D). 

(f) Let # be a measure with compact polar support K. I f  the Green potential p, 
defined by 

p(x)= S g(x, y) d#(y) (~E),  
is finite on K, then 

co-fine lira sup p(x) < + oo f o r a l l y e K .  
X~y 

(g) For every Green potential p of a measure # on E, # does not charge polar 
subsets of {xEE: p(x)< oo}. 

The proof of the equivalence will proceed in the following way: 

(a) ~ (b) ~ (c) ~ (d) 

(g) ~ (f) ~ (e) 

(a)~(b): Let 0 be finely open and let ye0. Let 01 be a finely open set with 
fine closure 0 { c 0  and ye01. Define U-=E\O{.  U is finely open. Moreover, 
the function f which is defined by 

f (x)=R~ y) (xe U) 

is finely hyperharmonie on U and satisfies f > -  g( ,  Y)[v. Furthermore we have 
fine lim f(x)- -0  for every zE0 s U. 

X~y 
0 Consequently we obtain f >0  from (a), i.e. Rgt.y)= g( ,  y). 

(b) ~ (c) ~ (d) ~ (e): see the proof of 2.2. Remark that the proof of (c) ~ (d) 
(which was given by Proposition 7.2 of Blumenthal-Getoor in [2]) is a standard 
analytical proof. 

(e) ~ (f): Since p is finite, we can represent p as the sum of a sequence of con- 
tinuous potentials. Since a continuous potential with compact polar support 
vanishes on E, we conclude p = 0, i.e. (f). 

(f) ~ (g): Let K be a compact polar subset of [p < oo] and let #1 be the restriction 
of # on K. We have to show that pl(x)= = ~ g(x, y)d/f i(y)=0 for every xEE. 

Obviously pt is a potential which is finite on K. Let } be the function defined 
by ~: =Pl  on E \ K  and }(x): =co-fine lim sup Pl(Y) for x e K .  

y~X 

By (f) we know that ~ is finite. Moreover, ~ is co-finely upper semi-continuous 
on E, hence we conclude from Lemma 5 in [10] 

K �9 0 R~ = lnf{R~: 0 = K, 0 is co-finely open}. 

Since K is polar we obtain 

AK " / " "  0 0 = R~ = lnf{R~: 0 ~ K, 0 is co-finely open}. 
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On the other hand we have for every co-finely open set 0 ~ K  and every xEE 

Rg(, y)(x) d#1 (y) 
K 

~ 0  = S R~(x,)(Y) d#l(Y)-- S g(x, y) d#l(y)=pl(x ). 
K K 

Consequently, Pt vanishes everywhere except on a polar set; Pa being a potential, 
this exceptional set is empty. 

(g)~(a): This is exactly the proof of the fine boundary minimum principle 
given in [-9]. 

Remark. In the papers [-9] and [-10] the second author used the statement (g) 
to prove some generalizations of the fine boundary minimum principle. Hence, 
one of the seven equivalent statements of the last theorem should be added to 
the hypothesis called B 2 in [-9] and [,10] in order to give a correct proof of the 
fine boundary minimum principles of these papers. This of course is superfluous 
if it turns out that the answer to the question of the beginning of this section is yes. 
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