A Remark on the Behaviour at Infinity of the Potential Kernel

Christian Berg and Gunnar Forst

Let $(\mu_t)_{t>0}$ be a vaguely continuous convolution semigroup of probability measures on a locally compact abelian group G, and suppose that $(\mu_t)_{t>0}$ is transient, i.e. that the integral $\int_0^\infty \mu_t dt$ converges vaguely. The positive measure

$$\kappa = \int_{0}^{\infty} \mu_t dt$$

is then called the *potential kernel* for $(\mu_t)_{t>0}$. The purpose of the note is to give some results on the behaviour at infinity of the symmetrized measure $\frac{1}{2}(\kappa + \check{\kappa})$, using the theory of Fourier transformation of positive definite measures.

A (complex) measure μ on G is said to be *positive definite* if

$$\langle \mu, f * \tilde{f} \rangle \ge 0$$
 for all $f \in C_c(G)$,

where $C_c(G)$ is the set of continuous complex functions on G with compact support, and where \tilde{f} for $f \in C_c(G)$ is the function on G defined by $\tilde{f}(x) = \overline{f(-x)}$ for $x \in G$.

Let ω_G be a fixed Haar measure on G and let $\omega_{\hat{G}}$ be the "dual" Haar measure on the dual group \hat{G} . Given a positive definite measure μ on G there exists a uniquely determined positive measure σ on the dual group \hat{G} such that (cf. [1])

 $\mu * f * \tilde{f}(x) = \int_{\hat{G}} (x, \gamma) |\hat{f}(\gamma)|^2 d\sigma(\gamma) \quad \text{for } f \in C_c(G) \text{ and } x \in G,$

where $\hat{f}(\gamma)$ denotes the value at the character $\gamma \in \hat{G}$ of the Fourier transform \hat{f} of $f \in C_c(G)$. The measure σ on \hat{G} is called the *Fourier transform* of μ and is also denoted $\mathscr{F}\mu$.

The convolution semigroup $(\mu_t)_{t>0}$ on G is determined in the following way

$$\hat{\mu}_t(\gamma) = \exp(-t\psi(\gamma))$$
 for $t > 0$ and $\gamma \in \hat{G}$,

where $\psi: \hat{G} \to \mathbb{C}$ is the continuous, negative definite function on \hat{G} associated with $(\mu_t)_{t>0}$ (cf. [2]). The closed subgroup H of G generated by $\bigcup_{t>0} \operatorname{supp}(\mu_t)$ is the annihilator of the closed subgroup $\{\gamma \in \hat{G} | \psi(\gamma) = 0\}$ of \hat{G} .

It is shown in [1] that the symmetrization $v = \frac{1}{2}(\kappa + \check{\kappa})$ of the potential kernel κ is a positive definite measure on G and that the function $\operatorname{Re} \psi^{-1}$ is locally integrable on \hat{G} . Furthermore, denoting by ω_H a fixed Haar measure on H, the Fourier transform of v has the representation

$$\mathscr{F} v = \beta \mathscr{F} \omega_H + (\operatorname{Re} \psi^{-1}) \omega_{\hat{G}}, \qquad (1)$$

where β is a non-negative constant. The measure ω_H , considered as a measure on G, is positive definite, and $\mathscr{F}\omega_H$ is a Haar measure on the subgroup $H^{\perp} = \{\gamma \in \hat{G} | \psi(\gamma) = 0\}$ of \hat{G} .

It follows by (1) that

$$v * f * \tilde{f}(x) = \beta \omega_H * f * \tilde{f}(x) + \int_{\hat{G}} (x, \gamma) |\hat{f}(\gamma)|^2 \operatorname{Re} \psi^{-1}(\gamma) d \omega_{\hat{G}}(\gamma)$$
(2)

for $f \in C_{c}(G)$ and $x \in G$, and the function

$$\widehat{G} \ni \gamma \mapsto |\widehat{f}(\gamma)|^2 \operatorname{Re} \psi^{-1}(\gamma)$$

is in particular integrable on \hat{G} .

The constant β in (1) can be characterized in the following intrinsic way.

Theorem 1. The set of numbers $\alpha \ge 0$, such that the measure $\nu - \alpha \omega_H$ is positive definite, is the closed interval $[0, \beta]$, i.e. β is the largest number $\alpha \ge 0$ such that the measure $\nu - \alpha \omega_H$ is positive definite.

The proof is based on the following result.

Lemma 2. Suppose that G is non-compact and let φ be a real-valued, continuous positive definite function on G. Then

$$\limsup_{\mathbf{x}\to\infty}\varphi(\mathbf{x})\geq 0,$$

i.e. for every $\varepsilon > 0$ and every compact set $K \subseteq G$ there exists $x \in G \setminus K$ such that $\varphi(x) \ge -\varepsilon$.

Proof. Suppose on the contrary that there exist an $\varepsilon > 0$ and a compact set $K \subseteq G$ such that

$$\varphi(x) < -\varepsilon$$
 for $x \in G \smallsetminus K$.

Putting $a = \int_{K} |\varphi(x)| d\omega_{G}(x)$, we may choose a compact set $L \subseteq G$ such that $K \subseteq L$ and $\omega_{G}(L \setminus K) > 2a\varepsilon^{-1}$. Since G is amenable, we may choose (cf. [3], p. 61) $g \in C_{c}^{+}(G)$ such that $0 \leq g * \tilde{g} \leq 1$ and $g * \tilde{g} \geq \frac{1}{2}$ on L, and it follows that

$$0 \leq \int \varphi(x)g * \tilde{g}(x)d\omega_G(x) = \int_{K} \varphi(x)g * \tilde{g}(x)d\omega_G(x) + \int_{G \setminus K} \varphi(x)g * \tilde{g}(x)d\omega_G(x)$$
$$\leq a - \varepsilon \int_{L \setminus K} g * \tilde{g}(x)d\omega_G(x) < a - a = 0,$$

which is a contradiction.

Proof of Theorem 1. For $f \in C_c^+(G)$ such that $\langle \omega_H, f * \tilde{f} \rangle > 0$ and $\alpha \ge 0$ such that $\nu - \alpha \omega_H$ is positive definite we have

$$0 \leq \langle v - \alpha \omega_H, f * \tilde{f} \rangle = \langle v, f * \tilde{f} \rangle - \alpha \langle \omega_H, f * \tilde{f} \rangle,$$

which shows that the set

 $I = \{\alpha \ge 0 | v - \alpha \omega_H \text{ is positive definite}\}$

is bounded. With $\alpha_0 = \sup I$ it is easy to see that $I = [0, \alpha_0]$.

142

Replacing f by f and putting x=0 in (2) we get

$$\langle v - \beta \omega_H, f * \tilde{f} \rangle = \int_{\hat{G}} |\hat{f}(-\gamma)|^2 \operatorname{Re} \psi^{-1}(\gamma) d\omega_{\hat{G}}(\gamma) \ge 0,$$

which implies that $v - \beta \omega_H$ is positive definite, and hence $\beta \leq \alpha_0$.

Writing $\sigma = v - \alpha_0 \omega_H$ we get from (2) that

$$\sigma * f * \tilde{f}(x) = -(\alpha_0 - \beta)\omega_H * f * \tilde{f}(x) + \int_{\hat{G}} (x, \gamma) |\hat{f}(\gamma)|^2 \operatorname{Re} \psi^{-1}(\gamma) d\omega_{\hat{G}}(\gamma)$$
(3)

for all $f \in C_c(G)$ and $x \in G$.

We now apply (3) to a $f \in C_c^+(G)$ for which $\langle \omega_H, f * \tilde{f} \rangle = 1$. Since the second member on the righthand side of (3) tends to zero at infinity by the Riemann-Lebesgue lemma, there exists for every given $\varepsilon > 0$ a compact set $K \subseteq G$ such that

$$\left| \int (x, \gamma) |\widehat{f}(\gamma)|^2 \operatorname{Re} \psi^{-1}(\gamma) d\omega_{\widehat{G}}(\gamma) \right| < \varepsilon/2 \quad \text{for } x \in G \smallsetminus K.$$

By Lemma 2, applied to the restriction of $\sigma * f * \tilde{f}$ to the subgroup H of G, (H is easily seen to be non-compact, since $(\mu_t)_{t>0}$ is transient), there exists $x_0 \in H \setminus K$ such that $\sigma * f * \tilde{f}(x_0) \ge -\varepsilon/2$, and since $\omega_H * f * \tilde{f}(x_0) = \langle \omega_H, f * \tilde{f} \rangle = 1$, it follows that

$$\beta - \alpha_0 = \sigma * f * \tilde{f}(x_0) - \int_{\hat{G}} (x_0, \gamma) |\hat{f}(\gamma)|^2 \operatorname{Re} \psi^{-1}(\gamma) \, d\omega_{\hat{G}}(\gamma) \ge -\varepsilon,$$

and hence $\beta \ge \alpha_0$.

A (complex) measure μ on G is said to tend to zero at infinity, if the function $\mu * f$ tends to zero at infinity for all $f \in C_c(G)$.

Let $C_0(G)$ denote the set of continuous complex functions on G tending to zero at infinity, which is a Banach space under the uniform norm. If the measure μ tends to zero at infinity, the linear mapping $f \mapsto \mu * f$ of $C_c(G)$ into $C_0(G)$, is continuous when $C_c(G)$ is equipped with the usual inductive limit topology, on account of the closed graph theorem.

Lemma 3. Let μ be a measure on G which tends to zero at infinity. For every compact subset $A \subseteq C_c(G)$ and every $\varepsilon > 0$ there exists a compact subset $K \subseteq G$ such that

$$|\mu * f(x)| \leq \varepsilon$$

for all $f \in A$ and all $x \in G \setminus K$.

Proof. By the above remarks the set $\{\mu * f | f \in A\}$ is compact in $C_0(G)$, so for every $\varepsilon > 0$ there exist finitely many functions $f_1, \ldots, f_n \in A$ such that for every $f \in A$ there exists an index $i \in \{1, \ldots, n\}$ such that $\|\mu * f - \mu * f_i\|_{\infty} < \varepsilon$, and the conclusion of the Lemma follows immediately.

Lemma 4. Let μ be a measure on G which is concentrated on a closed subgroup H of G. Then μ (considered as a measure on H) tends to zero at infinity on H if and only if μ tends to zero at infinity on G.

Proof. If μ tends to zero at infinity on G, then μ tends to zero at infinity on H as a simple consequence of the Tietze extension theorem.

Suppose conversely that μ tends to zero at infinity on H and let $f \in C_c(G)$ and $\varepsilon > 0$ be given. Denoting by K the compact support of f we consider the set

$$A = \left\{ (\tau_{-x} f) |_{H} \middle| x \in K \right\}$$

of restrictions to H of the functions $\tau_{-x}f$, $x \in K$, where $\tau_{-x}f(y) = f(x+y)$ for $y \in G$. The set A is easily seen to be compact in $C_c(H)$, so by Lemma 3 there exists a compact subset L of H such that

$$|\int f(x+h-y)d\mu(y)| \leq \varepsilon$$
 for $x \in K, h \in H \setminus L$.

This implies that $|\mu * f(z)| \leq \varepsilon$ for all $z \in G \setminus (L+K)$. In fact, for $z \in G \setminus (H+K)$ we even have $\mu * f(z) = 0$, and for $z \in (H+K) \setminus (L+K)$, writing z = h + x, with $h \in H \setminus L$ and $x \in K$, we find

$$|\mu * f(z)| = \left| \int f(x+h-y) \, d\mu(y) \right| \leq \varepsilon$$

Proposition 5. The measure $v - \beta \omega_H$ (with β as in Theorem 1) tends to zero at infinity.

Proof. By Lemma 4 we may suppose that H = G. For every compact subset $K \subseteq G$ the function

$$x \mapsto v(x+K), \quad x \in G$$

is bounded, because there exists $f \in C_c^+(G)$ such that $f * \tilde{f}(x) \ge 1$ for all $x \in K$, and then

 $v(x+K) \leq v * f * \tilde{f}(x)$ for all $x \in G$,

which gives the assertion, since $v * f * \tilde{f}$ is a positive definite function, in particular bounded.

For every $f \in C_c^+(G)$ the function v * f is uniformly continuous. To see this let $\varepsilon > 0$ be given and let V_0 be a compact symmetric neighbourhood of 0. Putting

$$a = \sup_{x \in G} v(x + V_0 - \operatorname{supp}(f)),$$

there exists a neighbourhood V of 0 such that $V \subseteq V_0$ and

 $|f(x)-f(y)| \leq \varepsilon/a$ for $x, y \in G$ with $x-y \in V$,

and then

$$|v * f(x) - v * f(y)| \leq \int |f(x-z) - f(y-z)| \, dv(z) \leq \varepsilon \quad \text{for } x, y \in G \text{ with } x - y \in V.$$

It follows that there exists for $\varepsilon > 0$ a neighbourhood V of 0 such that

$$|v * f(x) - v * f * g(x)| \leq \varepsilon \quad \text{for } x \in G \tag{4}$$

for all $g \in C_c^+(G)$ satisfying supp $(g) \subseteq V$ and $\int g \, d\omega_G = 1$.

By the Riemann-Lebesgue lemma and formula (2), the function $(v - \beta \omega_G) * h * \tilde{h}$ tends to zero at infinity for every $h \in C_c(G)$, and by polarization we get that $(v - \beta \omega_G) * f * g$ tends to zero at infinity for all $f, g \in C_c(G)$. With $g \in C_c^+(G)$ choosen such that (4) holds, we find that

$$|(v - \beta \omega_G) * f(x)| \leq |v * f(x) - v * f * g(x)| + |(v - \beta \omega_G) * f * g(x)|$$
$$\leq \varepsilon + |(v - \beta \omega_G) * f * g(x)|,$$

which shows that the measure $v - \beta \omega_G$ tends to zero at infinity.

144

Remarks

1) The constant β can also be characterized as the uniquely determined non-negative number α such that the measure $v - \alpha \omega_H$ tends to zero at infinity.

2) In the case H = G we have for all $f \in C_c(G)$:

$$\lim_{\mathbf{x}\to\infty} \mathbf{v} * f(\mathbf{x}) = \beta \langle \omega_G, f \rangle.$$

3) If the convolution semigroup $(\mu_t)_{t>0}$ consists of symmetric measures, then $\beta = 0$ (cf. [1]).

References

- 1. Berg, C.: Sur les semi-groupes de convolution. Lecture Notes in Mathematics **404**. Berlin, Heidelberg, New York: Springer 1974
- 2. Deny, J.: Méthodes hilbertiennes en théorie du potentiel. Potential Theory (C.I.M.E. 1 Ciclo, Stresa). Rome: Ed. Cremonese 1970
- 3. Greenleaf, F.P.: Invariant means on topological groups. New York: Van Nostrand 1969

Christian Berg Gunnar Forst University of Copenhagen Department of Mathematics Universitetsparken 5 DK-2100 Copenhagen Ø Denmark

(Received August 20, 1974)