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A Remark on the Behaviour at Infinity 
of the Potential Kernel 

Christian Berg and Gunnar  Forst 

Let (/~t)t>o be a vaguely continuous convolution semigroup of probability 
measures on a locally compact abelian group G, and suppose that (~,)t>o is 
transient, i.e. that the integral S~ #,dt converges vaguely. The positive measure 

oo 

tc = ~ ptdt 
0 

is then called the potential kernel for (#t)t> o. The purpose of the note is to give 
some results on the behaviour at infinity of the symmetrized measure �89 
using the theory of Fourier transformation of positive definite measures. 

A (complex) measure/~ on G is said to be positive definite if 

@ , f , f )  >0 for all f~  C~(G), 

where C~(G) is the set of continuous complex functions on G with compact 
support, and where f for fE  Cc (G) is the function on G defined by f(x) = f ( -  x) 
for xeG. 

Let cog be a fixed Haar measure on G and let co~ be the "dual"  Haar measure 
on the dual group G. Given a positive definite measure/~ on G there exists a uni- 
quely determined positive measure o- on the dual group G such that (cf. [1]) 

#*f*f(x)=f~(x, 7)lf(7)12d~(~) for feC~(G) and xeG, 

where f(7) denotes the value at the character 7e G of the Fourier transform f of 
f e  Cc(G ). The measure a on G is called the Fourier transform of ~ and is also 
denoted ~/1. 

The convolution semigroup (/~)t > o on G is determined in the following way 

fir (7) = exp ( - t 0 (7)) for t > 0 and 7 ~ G, 

where 0: G-* 112 is the continuous, negative definite function on G associated with 
(l~t),>o (cf. [2]). The closed subgroup H of G generated by Usupp(#~) is the 
annihilator of the closed subgroup {TeGf0(7)=0} of G. t>0 

It is shown in [1] that the symmetrization v = �89 + ~) of the potential kernel ~c 
is a positive definite measure on G and that the function Re 0-1  is locally inte- 
grable on G. Furthermore, denoting by co n a fixed Haar measure on H, the 
Fourier transform of v has the representation 

~ v  = flYcon + (Re ~9 - 1)co~, (1) 
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where fl is a non-negative constant. The measure o)~r, considered as a measure 
on G, is positive definite, and ~ e )  u is a Haar measure on the subgroup H •  
{y~010(7)--0} of G. 

It follows by (1) that 

v * f* f (x)=f io)~  * f , f (x )+~a(x ,  7)[f(y)t 2 Re 0-~(7) d toe(7) (2) 

for f e  Cc(G ) and x~ G, and the function 

G ~  ~-~ If(7)l 2 Re 0-1(7) 

is in particular integrable on G. 

The constant fl in (1) can be characterized in the following intrinsic way. 

Theorem 1. The set of numbers ~ >0, such that the measure v -  cr co H is positive 
definite, is the closed interval [0, fl], i.e. fi is the largest number ~ >0 such that the 
measure v -cr o0~ is positive definite. 

The proof is based on the following result. 

Lemma 2. Suppose that G is non-compact and let p be a real-valued, continuous 
positive definite function on G. Then 

lira sup q) (x) > 0, 
X~O'3 

i.e. for every e > 0  and every compact set K • G  there exists x e G \ K  such that 
~o(x)> - a  

Proof Suppose on the contrary that there exist an 8>0 and a compact set 
K _c_ G such that 

( p ( x ) < - 8  for xeG ' - .K .  

Putting a = ~K]~o (x)[ do~G(x), we may choose a compact set L S G such that K ~ L 
and (2)G(L\K)>2a8 -1. Since G is amenable, we may choose (cf.[3], p. 61) 
g~ C+(G) such that 0 < g , ~ < l  and g*~> �89  on L, and it follows that 

o __< j ,p (x) g �9 ~ (x) do)G(x) = J ~o (x) g �9 ~ (x) do, G(x) + j ~o (x) g �9 ~ (x) do~  (x) 
K G \ K  

<=a-8 ~ g*~ , (x )de)a(x )<a-a=O , 
L \ K  

which is a contradiction. 

Proof of Theorem 1. For f e  C+(G) such that @)n, f ' f ) > 0  and e > 0  such 
that v -  cr is positive definite we have 

0 < (v - c~e) n , f , f )  = ( v , f * f )  - ~  ( o J ~ , f , f ) ,  

which shows that the set 

1 = {e > O lv - c~ co/~ is positive definite} 

is bounded. With ~o = sup I it is easy to see that I = [0, %]. 
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Replacing f by f a n d  putting x = 0  in (2) we get 

( v - f l o ,  n , f , f ) = ~ d l f ( - y ) l  2 Re 0 -  l(7) dc~,d(7)>0, 

which implies that v- r ico  u is positive definite, and hence fl<c~ o. 

Writing cr = v - c~ o o) u we get from (2) that 

a , f , f ( x ) =  -(c% -fl)o)t~ *f*f(x)+fd(x ,  7) jr(?)] 2 Re tp-l(?)do)e(?) (3) 

for all f e  Cc(G ) and xeG. 

We now apply (3) to a f e  C~+(G) for which @ ) u , f * f ) =  1. Since the second 
member on the righthand side of (3) tends to zero at infinity by the Riemann- 
Lebesgue lemma, there exists for every given s > 0  a compact set K ~ G such that 

]~(x, 7)lf(~)lZgeO-l(7)do)G(7)l<e/2 for x e G \ K .  

By Lemma 2, applied to the restriction of c r * f * f  to the subgroup H of G, 
(H is easily seen to be non-compact, since (#~)~, o is transient), there exists x o e H \ K 
such that a * f * f ( x o ) > - e l 2 ,  and since o ) u * f * f ( x o ) = @ ) ~ , f * f ) =  1, it follows 
that 

f i -  % = ~ * f * f (Xo)- fa (x o, y) t f (y)t 2 Re 0-1(7) do)o(y) > - e, 

and hence fi > c%. 

A (complex) measure # on G is said to tend to zero at infinity, if the function 
/~ * f  tends to zero at infinity for all f e  Cc(G ). 

Let C 0(G) denote the set of continuous complex functions on G tending to 
zero at infinity, which is a Banach space under the uniform norm. If the measure 
# tends to zero at infinity, the linear mapping f ~ # , f  of Cc(G) into Co(G), is 
continuous when Cc(G ) is equipped with the usual inductive limit topology, on 
account of the closed graph theorem. 

Lemma 3. Let # be a measure on G which tends to zero at infinity. For every 
compact subset A ~ C~ (G) and every g > 0 there exists a compact subset K c= G such 
that 

I# *f(x)l <= e 

for all f e A  and all x E G \ K .  

Proof By the above remarks the set { # * f l f e A }  is compact in Co(G ), so for 
every e > 0  there exist finitely many functions f~ . . . .  ,f, eA  such that for every 
f e  A there exists an index i e {1, ..., n} such that II# * f - / ~  *f/IJ~ < e, and the con- 
clusion of the Lemma follows immediately. 

Lemma 4. Let # be a measure on G which is concentrated on a closed subgroup H 
of G. Then # (considered as a measure on H) tends to zero at infinity on H if and 
only i f #  tends to zero at infinity on G. 

Proof If # tends to zero at infinity on G, then # tends to zero at infinity on H 
as a simple consequence of the Tietze extension theorem. 
10 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 31 
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Suppose conversely that # tends to zero at infinity on H and let f e  Cc(G ) and 
> 0 be given. Denoting by K the compact support of f we consider the set 

A = {(z_xf)[u I x~ K} 

of restrictions to H of the functions z xs x c K, where z j ( y ) =  f ( x  + y) for y e G. 
The set A is easily seen to be compact in Co(H), so by Lemma 3 there exists a 
compact subset L of H such that 

[~f(x+h-y)d#(y)[<e for x~K, h e H \ L .  

This implies that [la*f(z)l<e for all z e G \ ( L + K ) .  In fact, for z~G'. .(H+K) 
we even have # * f ( z ) = 0 ,  and for z e ( H + K ) \ ( L + K ) ,  writing z=h+x,  with 
h e H \ L  and xeK,  we find 

I# * f ( z )  l = [~f(x + h - y)  d l t  (y)[ < e. 

Proposition 5. The measure v-/3 e)~ (with /3 as in Theorem 1) tends ~o zero 
at infinity. 

Proof By Lemma 4 we may suppose that H =  G. For  every compact subset 
K ~ G the function 

x~-~ v(x + K), xeG 

is bounded, because there exists feCc+(G) such that f , f ( x ) > l  for all xeK,  
and then 

v ( x + K ) < v * f , f ( x )  for all xeG, 

which gives the assertion, since v * f , f  is a positive definite function, in particular 
bounded. 

For  every f e  C~ + (G) the function v * f  is uniformly continuous. To see this 
let e > 0 be given and let V o be a compact symmetric neighbourhood of 0. Putting 

a = sup v(x + V o - supp (f)),  
xEG 

there exists a neighbourhood V of 0 such that VN V o and 

[f(x)-f(y)l<e/a for x, yeG with x - y e V ,  
and then 

Iv*f(x)-v*f(y)] < ~ ] f ( x - z ) - f ( y - z ) ]  dv(z)<~ for x, yeG with x - y e  V. 

It follows that there exists for e > 0  a neighbourhood V of 0 such that 

Iv* f ( x ) - v *  f *g(x)f <e for xeG (4) 

for all g E C~ + (G) satisfying supp(g)~ V and ~ g de%--1. 

By the Riemann-Lebesgue lemma and formula (2), the function (v- /3oG)* h ,  
tends to zero at infinity for every hE Cc(G), and by polarization we get that 
(v - /3  o)G) * f *  g tends to zero at infinity for all f, g e Cc (G). With g e C~ + (G) choo sen 
such that (4) holds, we find that 

I(v - /3  cot)* f(x)[ < Iv *f(x) - v * f*  g (x)] + I(v - /3  e)~)*f* g (x)l 

< ~+ I(v-]3 O~G)*f*g(x)l, 

which shows that the measure v- /3  cog tends to zero at infinity. 



A Remark on the Behaviour at Infinity of the Potential Kernel 145 

Remarks 

1) The  c o n s t a n t  ]~ can  also be cha rac te r i zed  as the u n i q u e l y  d e t e r m i n e d  
n o n - n e g a t i v e  n u m b e r  ~ such tha t  the  m e a s u r e  v -  ~ o)~ t ends  to zero at infini ty.  

2) In  the case H = G we have  for all  f c  C c (G): 

l ira v * f (x) = ~ @)~, f ) .  

3) If the c o n v o l u t i o n  s e m i g r o u p  (/~t)t>o consis ts  of  sym m et r i c  measures ,  
t h e n / ~ = 0  (cf. [1]). 
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