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Abstraet. We study the question of geometric ergodicity in a class of Markov chains on the
state space of non-negative integers for which, apart from a finite number of boundary rows
and columns, the elements p;; of the one-step transition matrix are of the form cz-; where
{ei} is a probability distribution on the set of integers. Such a process may be described as a
general random walk on the non-negative integers with boundary conditions affecting transi-
tion probabilities into and out of a finite set of boundary states. The imbedded Markov chains
of several non-Markovian queueing processes are special cases of this form. It is shown that
there is an intimate connection between geometric ergodicity and geometric bounds on one of
the tails of the distribution {cz}.

1. Introduction

Consider a homogeneous, irreducible, aperiodic Markov chain with a countable
number of states identified by the non-negative integers. We denote the transition
probability matrix by P = (p;), where pj (j, %k =0,1,2,...) is the one-step
transition probability from state j to state k. Let P» = {p{’} be the matrix of
n-fold transition probabilities. It is well known (see, eg., CHUNG [3]) that for each
7, k the limit

lim p%) = 7

n—ro0
exists ; this limit is positive for all pairs j and k if the chain is ergodic and zero if the
chain is null-recurrent or transient. The chain is said to be geometrically ergodic
(KENDALL [9]) if for each pair of states 7, & the rate of approach of p{p to its limib
is geometrically fast. More precisely, the chain is geometrically ergodic when
numbers M;; and gjr exist such that

0=Mp<oo, 0=pgu<l,
|95 — me| < Mprof, (n=0,1,2,...),
for all pairs of states j and k. KENDALL showed that the property of geometric
ergodicity is a class property of an irreducible set of states in the sense that the

geometric rate of approach for one state implies that for all pairs of states. More
precisely again, an irreducible aperiodic Markov chain will be geometrically ergodic

if and only if | p) — o] < M g®

(1.1)

for some finite non-negative M and some p satisfying 0 < ¢ < 1. State 0 is here
meant to represent any given state, the choice of 0 being a matter of labelling only.
VERE-JONES [15] went further and showed that the rate parameters g;r in (1.1)
may all be replaced by a single parameter g (0 =< ¢ < 1) uniform for all pairs of

states.
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Kexparn [10] and VERE-JoNES [I6] examine the question of geometric
ergodicity for some particular Markov chains, namely the imbedded Markov chains
of certain queueing process. For example, KexDALL considers the queing system
M|G/1. In this system there is a single server; customers, arriving in a Poisson
process of rate f3, are served in order of arrival. The service times of successive
customers are independent, identically distributed random variables with distri-
bution function S (-) which is assumed to have a finite non-zero mean, conveniently
taken to be the unit of time. It is further assumed that S (0 --) = 0. The Poisson
rate f§ is in fact the traffic intensity, i. e., the ratio of the mean service time to the
mean inter-arrival time. If we consider the number of customers present (waiting
or being served) immediately after each successive departure then this number
forms a Markov chain for which the one-step transition matrix has the form

ag a1 a4 aAz ...
ag a1 a2 adz ... ]

P=1o0 g a1 A2 ... | > (1.2)
0 0 ag aj J

where ®
Oy = f e

(For a full derivation of this result see KENDALL [7]).

All the imbedded Markov chains considered by KEnpALL and VERE-JONES have
a property in common. They may all be described as being of the random walk
type, by which we mean that the transition probabilities p;; are, apart from a
finite number of boundary rows and columns, functions of & — j only. That is,
the p;r are, apart from a finite number of boundary rows and columns, constant
along any one diagonal of P. The matrix (1.2) in the above example clearly has this
property. In general these Markov chains are random walks on the non-negative
integers subject to certain boundary conditions.

The aim of the present paper is to consider the geometric ergodicity of a
random walk on the non-negative integers whose increments are governed by a
general distribution {¢;;j =0, +1, 42, ...}. The walk is subject to boundary
conditions affecting one-step transition probabilities into and out of the finite set

of boundary states (0, 1, ..., «). The one-step transition matrix is of the from
Poo Po1 --. Pox  Po,atl PO, a2 c oo
Po P11l --- Pla Pliotl PLat2 -vcoenens
P=|Duw pat .. Pux Po, 0+l Pot, o2 «rooeeves . (1.3)
Pat1,0 <er Pot+l,a €0 c1 o ...
Pa+2,0 oo Pat2,00 C— Co c1 ...
................. C-9 C—1 cop ...

Here pji = cg—j for j > o and k > «, while otherwise the p;;, are arbitrary, but
given, and are subject of course to the conditions

D=1 (G=0,1,...,q), (1.4)
k=0 a—j
Pt Pt Pa=20 (> 0). (1.5)

i=—o0
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The imbedded Markov chains considered by KENDALL and VERE-JONES are
particular cases of the above form (1.3). In addition, the form (1.3) includes the
imbedded Markov chain of certain many-server queueing processes discussed by
Kexpairwn [§]. As an example we consider one such process in Section 7.

As a starting point we discuss in Section 3 a particular case of (1.3), namely the
random walk on the non-negative integers in which the origin acts as a natural
reflecting barrier. Here the one-step transition matrix is of the form (3.5) below.
The main result for a Markov chain represented by (3.5) is roughly that geometric
ergodicity occurs if and only if there is some suitable kind of spatial geometric rate
of decrease i. . a geometric bound on one of the tails of the distribution {¢;}. This
kind of result, in which, roughly speaking, spatial and temporal geometric bounds
imply one another, has been given for the case of the strong law of large numbers by
Baum, Karz and Reap [I]. These authors consider, amongst other questions, the
partial sums 81,82, ..., of a sequence of independent, identically distributed
random variables with common distribution function F(x) and mean u. They
show that for given e, the probabilities

pnzPr(

L
n

<e&,

have a geometric upper bound, i. e. satisfy p, =< 4% for some 4 = 0,0 < ¢ <1,
if and only if the tails of the distribution function F () are exponentially bounded,
i.e. if and only if

Fl—2)+1—F(x) < Be = (x> 0)

for some B >0, 1 > 0.

In Section 5 we examine the connection between spatial and temporal geometric
bounds for the more general process represented by (1.3) and again we show that
this connection is an intimate one. The question also occurs as to whether there is
any necessary such connection for general Markov chains. A simple sufficient con-
dition for geometric ergodicity in a general Markov chain, given in Section 8,
shows that the answer to this question is in the negative.

2. Some Preliminary Definitions and Results
Let X be a one-dimensional real random variable. Define
X+ =max(0, X), (2.1)
X~ = min (0, X).

Then X = X+ - X~. Clearly, if B (| X |) < oo, then E(X+) < co and E (X~)> — co.
We say that

E(X)=+oo (2.2)
if E(X*) = <4 o0 and B (X~) > — oo; correspondingly we say that

EX) =—o0 (2.3)
if BE(X-) = — oo and B (X+) < oo.

We now define a class & of regular functions by saying that a regular function
belongs to P if and only if its power sertes has non-negative coefficients and radius of
convergence greater that unily.
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We require the following lemma. This is a slightly more general version of a
result of HEATHCOTE ([], Theorem 1) and is also related to a proposition of

Baum, Katz and REaD ([1], Section 5).
Lemma A. Let X1, X,... be identically distributed, independent random variables
satisfying Pr(X1>0)>0, Pr(X;<0)>0. Then Pr(X;+---+X,=0)<Adon
(n=1,2,...) for someconstants A > 0and 9 (0 << o << 1)if and only if —oco < F(X1)<0

and Pr{X, = z) < Be % (z > 0) for some constants B > 0 and n > 0.
m=1,2,..)). (24)

Proof. Suppose first that for 4 > 0 and 0 < ¢ < 1
SR

PrX;+--+X,z20)=4dpn
., knt1 satisfying the condition &y + ko -

= kn+1) .

For any real numbers %y,
= (, we have that
PrXi 4+ Xp1120) 2Pr( X1 = k) Pr(Xz = ka) -+ Pr(Xpp1
=k

Choose 2 > Osuch that Pr(X; = — 1) > p and take k1 = n4, ks

b

= — 1. Then
Agnil = Pr(Xy + -+ Xpyy = 0) = Pr(Xy = nd) {Pr(X; = — )}

and, defining the number » > 0 by
0 11
{mmE=g) —
we have that forn =1,2, ...
Pr(X;=nl) < Ao {WTQ;——/)}” — A ge-mi,
Now for nd <z < (n 4+ 1) 4,
Pr(X; =2 < Pr(X; =nl)
é A Qe—nni.
= 4 g enl@—ni)-nz
g A 0 enAi—nz
since x — nl < A. Define B = A pen? and then we have independently of # and
(2.5)

for all x > 0,
Pr(X1 =2) £ Ben7,
It follows now that K (X7) < co. We cannot have E(X{) > 0 for by the weak

law of large numbers this would violate (2.4). Nor can we have E (X1) = 0 for then,

according to a result of Spr1zER ([13], Theorem 4.1), the series
S Py 4 X 2 0)

is divergent and this also violates (2.4). Hence we must have — oo < F(X3) < 0,

and the necessity part of the lemma is therefore proved.

To prove sufficiency part, suppose that

— oo =E(X1) <0

(x> 0).

and that for some constants B > 0, n > 0,
Pr(Xi=zxz) < Ben®

o0

J'etx dH (x)
0

Let H (z) be the distribution function of X;. Then the Laplace integral
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exists for £ <. Let 7.(n < 74 =< o0) be the abcissa of convergence of this
integral so that the integral is convergent for ¢ << 7, and divergent for ¢ > 7,
(WIDDER [17]). Define 7_ (=< 0) to be the abcissa of convergence of the integral

0
fetde(m).

— 00

It now follows that the moment generating function .

Mt) = Te“’ dH (z) (2.6)

— 00

exists for 7_ <<t < 74 and so do all its derivatives. We have that

M) = [ewa2dH @) >0 (1= <1<7s)

— 00

so that M (1) is a strictly convex function of ¢.
Since — oo < K (X;) << 0 it follows that
— oo Zlim M'(£) < 0
t—0+
and so M (t) is decreasing in an interval immediately to the right of { = 0. Hence
by convexity there exists a number ¢, such that

0 <ty <<ts
0< M) <1
M () > M (to) (0 <1< 1s, t=1o).

Actually, it is clear from convexity that ¢ is the value of ¢ at which M (f) attains
its unique minimum. Fither M (t) is decreasing for 0 < f < o and increasing for
tg < t << 14 or M (t) is strictly decreasing for 0 < f << 75 < o0 and fp = 7.

Let H® (x) be the distribution function of Xy + --- 4 X, so that

{M(t)}"——«remdﬂ(m(x) (t-<t<t;m=1,2,...).

—co

Then, since £y > 0, we have

Pr(Xy 4 o+ Xy = 0) = | dH® (2)

Q—
< fexp (toz) dH ™ (x)
0—

< {M (to)}".

Since 0 << M (L) < 1, this completes the proof of the lemma.

Corollary. Lemma A remains true if we substitute Pr(Xy -+ --- 4 Xy > 0) for
Pr(X; 4+ Xp = 0) and Pr(X; > 2) for Pr(X1 = x).

The proof is exactly the same as that of the lemma except for the replacement
of ‘greater than or equals’ by ‘greater than’ at the appropriate places.

We shall have occasion to use taboo probabilities (CHUNG [3]). Let H be a
given set of states in a homogeneous Markov chain {Yp;n=0,1,...} whose state
space may be taken to be the non-negative integers. The n-fold transition prob-
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ability of reaching state & from state j under the taboo H is defined as

Hp%):PI'(Y]¢H,..., Yn_1¢H, Yn———:k[Y()::)) (n:2,3,)

P = Dik

where p;z is the one-step transition probability for the chain.

3. Geometrie Ergodieity in the Random Walk with a Natural Reflecting
Barrier (Process A)

Let X1, X, ... be a sequence of independent, identically distributed, integer-
valued random variables with common probability distribution {cz; k =0,
4 1, 4+ 2, ...}. Throughout this paper we make the following assumptions about
the distribution {cx}.

A 1. The distribution {ck} ts strictly two-sided 4. e.

Pr(X; <0)>0, Pr(X;>0)>0. (3.1)

A 2. The set of values of k for which cx > 0 does not belong to the set of multiples
of a fixed integer greater than unity.

Let
Sp=X1+-++ X, (n=12,...) (3.2)

denote the partial sums of the sequence Xy, X, ... . Defining So = 0, we may
regard the process {S,; =0, 1,2, ...} as a free random walk on the one-dimen-
sional lattice of integers.

In this section we consider in detail, from the point of view of geometric
ergodicity, a new process {T'y; n =0, 1, ...} defined as follows

T():jgoz
Ty =max[0, Tp-1+ Xy] n=12,..),

where j is a given non-negative integer representing the point at which the process
starts. The process T, is a random walk on the non-negative integers in which the
origin acts as a reflecting barrier. The origin is a natural barrier in the sense that
movement off the barrier is governed essentially by the distribution {¢;} and not
by some other given boundary condition. For the sake of brevity we refer to the
process {7} as process A. Process A is clearly a Markov chain with transition
probabilities

Pio = 49— (7 =0,1,2,.. ) s (33)
Pik = C—j G=0,k=1),
where
3
qr = Z Ci. (3.4)
i=—00

The matrix of one step transition probabilities is thus of the form

do Cc1 Cy c3 ...
g-1 Co C1 Ca ...

P= g-2 C-1 Co [ I (35)
g3 €2 €1 Co ...
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a particular case of the more general form (1.3). The assumption A1 and A 2
ensure that the process is aperiodic and irreducible.

Let Fyo(s) denote the generating function of first return probabilities for the
origin, that is

Foole) = > Jisn, (3.6)
n=1
where
[ =Pr(T1 +0,....,Th1 %0, Tp=0|Tg=0). (3.7)

It may be observed that in terms of taboo probabilities, /& = o p{Z). It was shown

by KexparL [9] that an irreducible aperiodic Markov chain with a countable

number of states is geometrically ergodic if and only if the power series (3.6) has

radius of convergence greater than unity or alternatively if and only if the function

1—s

I —Foo(s)

is analytic for [s] <1 4 4, for some § > 0. Thus according to Kenparr’s first

condition mentioned above, the process {7, } is geometrically ergodic if and only if

F 00 (8) €.

Now it follows from a theorem due to Baxter (SprrzER [14], Theorem 3.1) that
Foo(s) has the following form:

Foo(s) =1 —exP{_z %Pr(sn§0)} (|s] <) (3.9)

n=1

(3.8)

where S, is the free partial sum defined at (3.2). In SPITZER’s statement of Bax-
ter’s theorem there is a condition on the first moment of the distribution {cx}.
However, by allowing the distributions in SPITZER’s proof to have total mass
possibly less than unity, this condition can be seen to be unnecessary. Thus we
can assume (3.9) to hold for a process governed by a quite arbitrary distribution
{cx}. Regarding the nature of process A we have the following result which may
also be deduced from a theorem of KempERMAN ([6], Theorem 15.2). However it
is more convenient for our purposes to give a proof based on (3.9). Process 4 is
() ergodic if and only of _
S Lpr(g,>0)<oo; (3.10)
n=1 "
(1) transient if and only if
> P8, =0)<oo; (3.11)
=1

(i) null-recurrent if and only if the above series (3.10) and (3.11) are both
divergent.

To prove this we let s = 1—in (3.9) and use Abel’s theorem and its converse
for power series with non-negative coefficients. If (3.11) holds then Fpo(l) << 1
which gives transience. If the series (3.11) is divergent then Fyo(1) = 1 and we
have that the process is recurrent. Since for all #, Pr(§, < 0) =1 — Pr (8, > 0)
and since

exp{~§f§}=1—s (|s] <1)

=1
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it follows that

Fmﬁyzl—%l—skmp{ZiITwn>04 (3.12)
=1
and hence that
1 — Foo(s) X sh
= s = exp {nzl o Pr (Sn > 0)} . (313)

Assuming that Foo(1) = 1, and letting s — 1— in (3.13) we have that the mean
recurrence time is given by

Foo(1) —ex Ly >o},
oo (1) p {nzl 7 (Su )
a result due to SpITZER ([14], p. 158). The results (i), (ii), and (iii) therefore follow.

It was shown by Serrzer ([13], Theorem 4.1) that a sufficient condition for
(3.10) to hold is that B (] X1]) < oo and E (X;) < 0. Using the definitions (2.2) and
{2.3) of infinite expectation, it follows from a simple truncation argument that a
slightly more general sufficient condition for (3.10) and hence for process A to be
ergodic is @ fortiors that

0>E(X1) = —oo. (3.14)
Similarly a sufficient condition for the transience of process A is that
0<B(X1)Zoo. (3.15)

We now turn to the question of geometric ergodicity. We need only deal with
the cases where process A is either ergodic or transient since a null-recurrent
Markov chain, not possessing finite moments of recurrence times, can clearly not
be geometrically ergodic. Note that in our terminology geometric ergodicity does
not imply that the chain is ergodic; it implies that the n-fold transition probabili-
ties converge geometrically fast to their limits. The limits will be zero in the case
of a transient chain.

We now prove the following result connecting geometric ergodicity with the
tails of the distribution {cz}.

(i) Necessary and sufficient conditions for process A to be ergodic and geometrically
ergodic are that —oo < E(X1) <0 and that ¢ < CA¥(k=1,2,...) for some
C > 0 and some A(0 << 1 << 1).

(i) Necessary and sufficient conditions for process A to be transient and geometri-
cally ergodic are that 0 << E(X1) < oo and that c_p < Duk(k = 1,2, ...) for some
D > Oand some u(0 < p < 1).

We may express this result alternatively as follows.

(i) Foo(s) e Z and Foo(1) = 1 if and only if

— o0 L H(X1) <0 and chzke@.

B>0
(ii) Foo(s)e and Foo(1) << 1 if and only if 0 < B (X1) < oo and zc_kzkeﬂ.
To prove (i) suppose first that for given ¢, 1(C > 0;0 < 1 < 1),k>O
—o = E(X) <0 (3.16)
k=CIF  (k=1,2,..). (3.17)

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 4 25
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It follows from (3.17) that for some constants B > 0 and 4 > 0
Pr(X:>2) < Be—n7 (3.18)

We then have from the Corollary to Lemma A that there exist constants 4 > 0
and ¢(0 < p < 1) such that
Pr(Sp > 0) < 4p7

In fact we may take A = 1 and ¢ = M (f¢) where ¢y > 0 is the unique value of { at
which the moment generating function,
(£) = > crekt, (3.19)
k=—00
assumes its minimum value. It follows that the series z (1/n)Pr (S, > 0) is con-
vergent and so the process is ergodic. Further, the power series > (s"/n) Pr (S, > 0)
has radius of convergence at least 1/ M (f5) and hence the function
l—s = &n
SR S - = 2
1 T =P { gl — Pr(Sy > 0)} (3.20)
isregularfor0 < |s| << 1/M (to). Geometric ergodicity now follows from KENDALL’s
condition (3.8). It follows also from (3.12) that the radius of convergence of Foq(s)
is at least 1/ M (tg).
Now suppose that process A is ergodic and also geometrically ergodic. Then the
function

1=
1 — Foo(s)
is analytic in the circle |s| = 1 4 4 for some ¢ > 0 and is, clearly, also free of
zeros in this circle. Hence the function
1—s .
log{l p— s)} = Z Pr(Sy > 0) (3.21)

is also regular for |s| < 1 4 ¢. Hence
Pr(S,>0) < dgn
for some 4 > 0 and ¢(0 < ¢ < 1). The conclusions that —co < E(X;) < 0 and
¢y = C2% now follow from the Corollary to Lemma A and the proof of (i) is
complete.
The proof of (ii) is similar: suppose that
0<E(X)) =0
and
ey = Duk (k=1,2,..)

for some D > 0 and some (0 << < 1). By applying Lemma A to the sequence
— X1, — X3, ... we find that

Pr(Sy < 0) = {M (to)} (3.22)
where 0 << M (tg) << 1 and #y << 0 is the unique value of ¢t at which M (¢ ( ), defined at
(3.19), assumes its minimum value. The convergence of the series Z 7)Pr(S, <0)

and hence the transience of the process now follow. From (3.9), Foo( s) is regular
for at least [s| << 1/M(t) and so we have geometric ergodicity. Further, the
radius of convergence of (3.6) is at least 1/ M (fo). This completes the proof of (ii).
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4. Some Further Results for Process A

The results of this section are required for the following section. As usual, let

Fir(s) = 2 [sn (G+=k; j,b=0,1,2,..) 4.1)
n=1
be the generating function of the first passage probabilities f;ﬁ) n=1,2,..))from
state j to stake k. Then for process A, the theorem of Baxter which gives the
expression (3.9) also gives the result
Fio(s) =1—exp{—> % Pr(S, < 0)} . (4.2)
n=1
Note that on the right hand side of (4.2) we have strict inequalities S, < 0,
whereas in (3.9) we have §, < 0.
We wish to prove some inequalities concerning the generating functions
Fu(s)(j = 1,2, ...). Suppose that, in the sense of (2.3),

—0o0 = Zlcck<0, (4.3)
k= —0c0
Doepke?,
k>0
so that process A is ergodic and geometrically ergodic. It then follows, as in
Section 2, that the moment generating function

M(t) = 3 cpekt (4.4)
k=—00
exists for 0 <t < 7. (14 =< oo) and is strictly decreasing for 0 <t < fy, where
to(=< 74) is the unique value of ¢ for which M () attains its minimum value.
Consider the equation

sM(t)=1 (1<s<{M@t)}l; 0=t<tp). (4.5)
This equation has a unique real root ¢ = ¢, (s) which satisfies
0t <t  (1=s<{ME)}Y (4.6)

and f1 (s) is a strictly increasing, continuous function of s with 1 (1) = 0.
We have the following result. Suppose that the distribution {cy} satisfies (4.3),
v.e. that process A s ergodic and geometrically ergodic. Then

Fpo(s) = eh® (1 =s < {M(i)}), (4.7a)
— 1M |
Fio(s) <s + "”‘f—_ﬁeﬂ 0=t <to;l <s< {M(H))). 4.7b)

Consider first the proof of the inequality (4.7a). We modify the free random
walk defined by (3.2) in such a way that it starts at § > 0 and that the states 0,
—1, —2, ... are all made absorbing states. If N is the time to absorption and if
Fy(s) is a generating function for process A, then

Fyo(s) = B(s™) (4.8)
An extension of the argument by MILLER [12] easily shows that Wald’s identity,
BUM By exp (5] =, (4.9)

25%
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holds for 0 < ¢t < tg. Here Sy (= 0) is the state reached at the time of absorption.
We now make the substitution
s={M@t)}! (0=t <o)
and obtain
E[s" exp {t1(s) Sy}] = "¢ A=ss<{Mit)}l). (4.10)

Since Sy < Qand t;(s) = 0 we have
E(s¥) = E[sNexp {t1(s)Sy}] = ¢"©® (1 <s<{M(te)}1) (4.11)

which, by virtue of (4.8}, gives the result (4.7a).

To prove (4.7b), let op{§’ (j, £ > 0) denote the taboo probabilities for process A.
These are clearly identical with the transition probabilities of the modified random
walk with absorbing states defined in the previous paragraph.

We clearly have that

Pr(N >n) = i opSy) (4.12)
k=
and also that '
Fjo(s):s—}—(s-l)is”Pr(N>n) (js] <1y. 4.13)

n=1

Now if {g; k=0, £1, +2,...} is the probability distribution of the unre-
stricted sum X; -+ -+ - X,, we must have that

opl < g, n=1,2,...;73,b6>0).
Hence

oo (o]
Pr(N>n)= 2 opit’ = 2.9¢";
k=1 k=1
oo
< Mg 1= 0)
k=1
o .
== @jt z B(k-‘j)tg};n,_)_]'
k=1

et > Mg = o3t (M (1)} (4.14)

k=—o0
In particular we may set t = o > 0 and obtain
Pr(N > n) < & {M (to)}, (4.15)

from which it follows that the series on the right hand side of (4.13) is convergent
for |s| < {M (to)} 2. This also follows from the results of VerE-Jongs [15]. Hence
by analytic continuation (4.13) holds for |s| < {M (to)}~! and in addition we have
from (4.14) and (4.15) the desired inequality (4.7b),

Fiols) £+ (s — Lot S sn {1 ()
n=1
(s — 1) M (1)

:erST:—S—M(—t)eit O<t<to;l<s<{ME}Y.
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‘We now turn to the case where process A is transient and geometrically ergodic.
In this case we have

0< >kep < oo
k=—oo (4.16)
De e
E>0
and the moment generating function (4.4) now exists for 7 < { < 0(1- = —o0)
and is strietly increasing for ty << ¢ < 0 where fo(= 7_) is again the unique value
of t for which M (t) attains its minimum value. We observe that fo is now negative.
We have the following result. Suppose that the distribution {cy} satisfies (4.16)
i.e. that process 4 is transient and geometrically ergodic. Then

sM@E) . . -
F@) =4 g @ G<t=0;0=s<{M@}Y. 17
To prove this we observe that
[ =Pr(Sn = —j) (7> 0),

where 5, is defined at (3.2). Hence

)
=29
k=-—o0

< ze(7+k)tg§cn) t=<0)

k=—0c0

< ot 3 ekt = et {M (t)}n .

k=—c0

On multiplying by s7 (0 < s << {M (t)}~) and summing over %, we obtain (4.17).

5. Geometrie Ergodicity of Random Walk with Tmposed
Boundary Conditions (Process B)

We now consider the question of geometric ergodicity in the more general
Markov chain with transition matrix (1.3). We assume that the p;y are such that
the process is irreducible. For the sake of brevity we call this Markov chain process
B.

Logically, it would be more appropriate to consider first the relation between
the ergodic properties of processes A and B. In this section we shall see that the
two processes are recurrent together or transient together. However, we postpone
until the next section the question of ergodicity and null-recurrence and show there
that we can relate the two processes provided we assume the existence of the first
moment of the distribution {cz}. Without such an assumption the problem appears
to be more delicate.

Regarding geometric ergodicity we show in this section that processes A and B
are transient and geometrically ergodic together and further that they are ergodic
and geometrically ergodic together provided that each of the distributions
{pok}, .-, {pPax}, which govern movement off the boundary, has a probability
generating function which belongs to the class 2. This again brings out the
connection between spatial and temporal geometric bounds.
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To distinguish from process A we use Greek letters for the transition prob-
abilities, etc., of process B. Thus #{p), ¢\, g’y denote respectively transition,
first passage and taboo probabilities for process B while

I (s) Z 71:(")3“ D (8) Z (pjk)s” wllx(s) Z H?Z(n)S”
n=1 n=1
denote the corresponding generating functions.

Throughout this section H will denote the set of states {0, 1, ..., «}. Our first
task is to obtain some relations between the generating functions of process A and
process B.

We have the following decomposition of the first passage probabilities g’
based on first returns to states in the set H. Forj = 0, 1,

i = Pro
<">—Hn}">+ > ZHn“‘) men (n=2,3,..). 6.1)
=1r=1
By taking generating functions we obtain the following set of equations
Doo (8) = mllpo(s) + ZHHOIC YDro(s), (|| =1) (5.2)

k=1
Djo(s) = ulljo(s +ZH1L;c ) Pro(s) G=1..0ls)=1) (53)

Consider the row sums of the coefficients g/l (s) on the right hand side of
(5.2) and (5.3). Forje H,

> allji(s) = ullin (s)
k=0 %)
= (pjo+ g1+ + pi)s + 5 > prnllia(s) (5.4)

i=a+1
Nowfori=o 1,0 +-2,...

Il (s) = (Do + pix + **+ + Dio)s + 8 0 mPix(s) (Pro + ++ + Pia) (5.5)
k=a+1
and the generating functions gPjr(s) on the right hand side are now those of
process A since they are based on transitions among the states o + 1,00 4+ 2, ...
only. Using (1.5) and (3.4) we obtain from (5.5) that

g (s) = quis + 5 D gPip(s)qet (i >0). (5.6)
E=o+1
The right hand side of (5.6) is easily seen to be the generating function Fy_o, o(s) of
process A. Hence it follows from (5.4) that

2> wllig(s) = (Pjo+ -+ pr)s + 8 > piiFiw,o(s) (eH). (5.7)
k=0 t=o+1
The relation (5.7) will be our main tool in relating the behavior of process B to

that of process A.
We have the following result. Process B is ergodic and geometrically ergodic if
and only if the following conditions hold:
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(1) the corresponding process A is ergodic and geometrically ergodic, i.e. (4.3)
holds;
(ii) the series

> poxdF, > pedb, ..., > pardk (5.8)
k=0 k=0 k=0

all belong to the class P.
To prove this result suppose first that (i) and (ii) hold. With a view to writing
(5.3) in matrix form we define the matrices

all11(s) gllia(s)

Il (s) = ,
allo1 () -+ gllya (s)

allio(s) [ D10(5)
7(s) = » o@ls) =

mlla0(s) Dyo(s)

Equations (5.3) then become

p(s) =m(s) + LI (s)pls), (5.9)

i.e. {L--1I(8)}p(s)=m(s), (5.10)

where I is the unit « X o matrix. It follows from the irreducibility of process B that
for0 <s=1
ullx(s) >0 (ke H) (5.11)

and so for 0 << s =< 1 all the elements of the matrices 7 (s) and /7 (s) are positive.
Since we are assuming process A to be ergodic we have that Fi0(1)=1(j=0,1,...).
It follows from (5.7) that

2oullr(1)=1  (jkeH) (5.12)

k=0

Hence the row sums of [7(1) are all strictly less than unity. Now the maximal
positive eigenvalue of a positive matrix does not exceed the maximal row sum of
the matrix (see, e.g., DEBREU and HErRsTEIN [4]). Thus I — [7(1) is non-singular
and, a fortiori,sois I — Il (s) (0 << s £ 1). Thus we may write (5.10) as

p)={I -1} as) = { iﬂ”(s)} 7 (s), 0<s=1). (513)
0

=
where I70(s) is defined to be 1.
Now (5.9) may also be written in the form

The matrix { "’1“)] a [”L)Olg(s)oJ Lpl(s)] : (5.14)
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is a stochastic matrix all of whose elements, apart from those in the first row, are
positive. It follows that the matrix (5.15) has a simple eigenvalue 1 corresponding
to which there is a column eigenvector all of whose elements are equal and this
eigenvector is unique up to a multiplicative constant. On setting s = 1 in (5.14)

we must have that
(D(l) .

ie. Ppl)=1 (=1,...,q. (5.16)

Thus if we set s = 1 in (5.2) and (5.7) it follows from positivity and (5.16) that
@oo(1) = 1. Hence process B is recurrent. To prove that process B is ergodic and
geometrically ergodic we observe that we can, by assumption, choose (0 <t < )
so that for allj e H

[

> pirekt < oo (5.17)
E=0
Now forj = 0,1, ..., Fjo(s) is regular in the circle |s| < {M (to)}~1. By applying
the inequality (4.7b) and taking the value of ¢ for which (5.17) holds we see that
the right hand side of (5.7) is regular for 1 < |s| < {M (t)}~! and a fortiori for
0 = |s| < {M(#)}1. Since the power series coefficients of all the functions in (5.7)
are non-negative it follows that each of the functions gxllix(s) (j, k € H) on the
left hand side of (5.7) is regular for 0 < |s| < {M ()}~1. Therefore each element
of the matrix I7(s) is regular for 0 < |s| < {M(#)}~1. Since I — II(s) is non-
singular for 0 =< s < 1 it follows by continuity that I — [I(s) is non-singular for
0<s <144, for some § > 0. Thus by (5.13) and non-negativity each element
of @(s) belongs to the class . Finally, by (5.2), @Poo(s) € # and so process B is
ergodic and geometrically ergodic.
Conversely, suppose process B is ergodic and geometrically ergodic. Then
@jo(l) =1forj=0,1,2,.... Hence from (5.2) and (5.3)

Sallp)=1  (icH), (5.18)
k=0
and so from (5.7)
pio+ -+ piw+ D ppFicao(l) =1 (jeH). (5.19)
f=a+t1
Since 0 < Fyp(1) =1 and Z pix = 1(j € H) it follows from the non-negativity of
E=0

the p;; that F;_q o(1) == 1 for all ¢ and § for which py; > 0 =« - 1, o + 2,...
..., j € H). That some such ¢ and j exist follows from the irreducibility of process B.
Thus process A is recurrent. Since process B is geometrically ergodic the left hand
side of (5.7) belongs to the class 2. Choose ¢ > « and j € H such that py; > 0. From
(5.7) it follows that F;—y o (s) € #. Now from (4.12) and (4.13) we have

Fp@E)=s+(e—1) is“(iop%)) G=0,1,2,..). (5.20)

n=1 k=1
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Since process A with zero as a taboo state has independent increments we have that

[o5)

Sop < Do (=12,..) (5.21)
k=1 E=1
Thus since Fi_y,0(s) € & for some ¢ > « it follows from (5.20) and (5.21) that
Foo(s) e 7. Hence process A is geometrically ergodic and since it is recurrent it is
also ergodic.

Further, from the inequality (4.7a), it follows that unless all the functions (5.8)
belong to the class &, the right hand side of (5.7) would, for some j € H, be diver-
gent for s > 1, contradicting the fact that the left hand side of (5.7) belongs to the
class 2. The proof of our result is now complete.

Next, we deal with the question of transience and geometric ergodicity and
we have the following result. Process B is transient and geometrically ergodic if and
only if process A4 is.

The proof of the previous result shows that process B is recurrent if and only if
process A is recurrent. Thus process B is transient if and only if process A is
transient.

Now suppose process A is transient and geometrically ergodic. We apply
inequality (4.17) to the right hand side of (5.7). Since for j = 0,1, ..., Fjo(s) is
regular in the circle |s| = {M (fo)}* and since ¢ < 0 in (4.17) it follows that the
right hand side of (5.7) belongs to #. So therefore does the left hand side and the
same argument used for the previous result shows that @ (s) € . Hence process
A is transient and geometrically ergodic.

Conversely, suppose that process B is transient and geometrically ergodic.
Then the left hand side of (5.7) belongs to & and so for some ¢ > o, F;_y,0(s) € 2.
For this 7, write & = i — «. Choose m 50 that ¢p{™ > 0. Now forn > m

19 = opfP 157,

from which it follows that F1(s) € #. Hence from (4.2) we have that

> i;Pr(sn<0)eg>,

n=1
and so from Lemma A and from the results of Section 3 it follows that process
A is transient and geometrically ergodic.

6. Null-recurrence and Ergodicity in Process B

We have seen in Section 5 that processes A and B are recurrent together or
transient together. However, the relation between these processes in respect of
ergodicity and null-recurrence is a more delicate question. If we assume that

S k| ek < oo (6.1)

k= —co

then it is possible to explore fully the relation between these processes. If however
we assume, say, that process A is ergodie with

E(X1) = §kck = —o0 (6.2)

k=00
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in the sense of (2.3), then it secems that the ergodicity of process B will depend on
that rates at which ¢x — 0 as k — —oo and pjz — 0 as kb —> oo for j € H. We shall
not explore any further the implication of (6.2) for ergodicity in process B in the
absence of further assumptions.

Suppose (6.1) holds. Then it is necessary and sufficient for the ergodicity of
process A that

B(X1)= > ke <0 (6.3)

This follows from the results of Section 3. We investigate now the ergodicity of
process B when (6.1) and (6.3) hold.

If (6.1) and (6.3) hold and if we let B (X;) = — f (§ > 0) then it follows from
a renewal-type theorem of CEOW and Ross1xs ([2], Theorem 2), that

4 ].

Fio(l) ~ 5 (i), (6.4)
Differentiating (5.7) and setting s = 1 we have
2 allp() =1+ > piFis01) (e (6.5)
beH i=atl
Thus provided that
Dipi<oo  (jeH), (6.6)
i=0
we have from (6.4) and (6.5) that
Dallp(l) <eo  (jeH), (6.7)
keH

while if for some j € H

o0

Z 1Py =00, (6.8)
i=0
then from some j € H
> all(1) =oo. (6.9)
keH
Hence if (6.6) holds for allj € H then forall j, ke H
Ty (1) < oo, (6.10)
while if (6.8) holds for some j € H, then for some j, k € H,
T (1) = oo (6.11)

Thus if we apply these results to (5.2) and (5.3) after differentiating and setting
s = 1, then we have that process B is ergodic if (6.6) holds for all § € H and null-
recurrent if (6.6) does not hold for all j € H.

Next suppose that (6.1) holds and that

E(Xy)= D key=0, (6.12)
80 that process A is null-recurrent. Then F]-'O(l) = oo forj =0, 1, .... It follows

from (6.5) that (6.11) is true for some §, ke H and again using (5.2) and (5.3) we
see that process B is null-recurrent.
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Again let (6.1) hold and suppose conversely that process B is ergodic. Then
process A must be ergodic and (6.6) must hold since the ergodicity of process B
precludes the transience or null-recurrence of process A. If (6.1) holds and process
B is null-recurrent then clearly either process A is ergodic and (6.8) holds for some
je H or process A is null-recurrent.

Summarizing, we have the following. If (6.1) holds then process B is ergodic if
and only if process A is ergodic and (6.6) holds for all j € H; process B is null-recur-
rent if process A is null recurrent or if process A is ergodic and (6.6) does not hold for
all je H.

7. An Example

We consider the imbedded Markov chain of the queueing system GI/M/m
(general, independent, identically distributed inter-arrival times, exponential
service times, m (> 1) servers, natural queue discipline). Let 4 (u) be the distribu-
tion function of inter-arrival times and let b be the mean service time. KENDALL
[7] showed that the number of persons ahead (waiting or being served) of a newly
arrived customer at the instant of his arrival forms a Markov chain with one-step
transition matrix of the form

p_ B Qz] ‘
@3 Qo
Here @)1 is an m X m matrix, and @4 is a matrix of the form
by b 0 0 O
by by by 0O O
bs ba b1 by O

Q=

Apart from the element in the lower left hand corner, @, is composed entirely of
zeros. From the point of view of geometric ergodicity only the form of @4 concerns
us. The non-zero elements of ¢)4 are given by

oc’ef(mu/b) u/bYyk
by — /——k(,m oY g4 ().
0
It follows from our results that the process is
(i) ergodic and geometrically ergodic if

—o0 = D (—k+ 1)bp <0,
k=0

ie. 1< D kby=oo;
k=0

(ii) transient and geometrically ergodic if

Zkbk <1 and Zb;czkeg’.
E=0 k=0

For 0 <z < 1 we have

B(z) = > bpzk — [emu=0b g4 (u) (7.1)
k=0 0
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Hence
oo

B Q) :lz—fudA(u) -1
0
where ¢ is the relative traffic intensity, and ¢ = 0 if J'udA (u) = co. Hence the
process is ergodic and geometrically ergodic if 0 < o << 1.
From the theory of moment generating functions the integral (7.1) defines a
regular function of z in at least the half-plane Rz < 1 (Luxacs, 1960, Chapter 7).
For B(z) to belong to # the integral (7.1) must converge for some z > 1,1.e. A(u)

must satisfy
1— A{u) < Cecu (7.2)

for some positive constants O, ¢. In other words, the process is transient and
geometrically ergodic if o > 1 and if (7.2) holds.

8. General Markov Chains

In the special class of Markov chains we have considered so far we have seen
that there is an inevitable connection between geometric ergodicity and some form
of geometric bound on the one-step transition probabilities. As part of the general
and as yet unsolved problem of determining conditions on the one-step transition
probabilities of a general Markov chain which will be necessary and sufficient for
geometric ergodicity it is natural to ask whether there is any similar connection in
a general Markov chain. That such a connection is not in general necessary is
shown by the following result.

A sufficient condition for an irreducible aperiodic Markov chain to be ergodic and
geomelrically ergodic ts that the elements in any one column of the one-step transition
malrix, apart from the diagonal element, be bounded away from zero.

To prove this we label the state corresponding to the given column as state 0
and assume that the state space is the set of non-negative integers. With the
usual notation for transition probabilities ete., we have the relation

(F60 + 163 + -+ 160) + (0p8) + opl + ) =1 (n=12,..). (81)
Now

Do =2 0B V(L —pr)  (=2,3,..).
r=1 E=1
By assumption there exists a number (0 < ¢ << 1) such that for k =1,2, ...,
Pro=1l—p le. 1—pro=p-

Hence

Zopo:c’<9 Zop%’z‘c D n=23,..)
k=

and from repeated applications of this inequality we have that

> opiy < on (n=2,3,...).
K=1
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Hence from (8.1),

and ergodicity and geometric ergodicity follow immediately.
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