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Abstract. We study the question of geometric ergodicity in a class of Markov chains on the 
state space of non-negative integers for which, apart from a finite number of boundary rows 
and columns, the elements p.~ of the one-step transition matrix are of the form c~_j where 
{ck} is a probability distribution on the set of integers. Such a process may be described as 
general random walk on the non-negative integers with boundary conditions affecting transi- 
tion probabilities into and out of a finite set of boundary states. The imbedded Markov chains 
of several non-Markovian queueing processes are special cases of this form. I t  is shown that 
there is an intimate connection between geometric ergodicity and geometric bounds on one of 
the tails of the distribution {c~ }. 

1. Introduction 

Consider a homogeneous,  irreducible, aperiodic Markov chain with a countable 
number  of  states identified by  the non-negat ive integers. We denote the t ransi t ion 
probabi l i ty  matr ix  by  P ~-(P3"~), where p~.~ (j, k = 0, 1, 2 . . . .  ) is the one-step 
transit ion probabil i ty f rom state ] to  state k. Let  p n  _= {p~.~)} be the matr ix  of  
n-fold transit ion probabilities. I t  is well known (see, eg., CHU•G [3]) t ha t  for each 

2", k the limit ]im pl.~ ) == ~ 
n----> o o  

exists; this limit is positive for all pairs ] and k if  the chain is ergodic and zero if the 
chain is null-recurrent or transient.  The chain is said to be geometrically ergodic 
(KENDALL [9]) if for each pail" of states ], k the rate  of approach of  p~) to its limit 
is geometrically fast. More precisely, the chain is geometrically ergodic when 
numbers  Mj.~ and @3"~ exist such tha t  

0 ~ M ~ k < c ~ ,  0 ~ @ i k < l ,  
(1.1) 

p(n) M ~ (n = 0, 1, 2, . .) 

for all pairs of  states ] and k. KENDALL showed tha t  the proper ty  of  geometric 
ergodicity is a class p roper ty  of  an irreducible set of  s tates in the sense t h a t  the 
geometric rate of  approach for one state implies t ha t  for all pairs of  states. More 
precisely again, an irreducible aperiodic Markov chain will be geometrically ergodic 

if and only if [ p(0~ ) - -  z0 ] < M @n 

for some finite non-negat ive M and some @ satisfying 0 ~ @ < 1. State 0 is here 
meant  to represent any  given state, the choice of 0 being a mat te r  of labelling only. 

VERE-Jo~ES [15] went  fur ther  and showed t h a t  the rate parameters  @j~ in (1.1) 
m a y  all be replaced by  a single parameter  @ (0 ~ @ < 1) uniform for all pairs of  
states. 

* This research was supported by the U.S. office of Naval Research Contract No. Nonr- 
-855(09), and carried out while the author w~s a visitor in the Statistics department, Uni- 
versity of North Carolina, Chapel IIi]l. 
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KENDALL [10] and VEnE-JoNEs [16] examine the question of  geometric 
ergodicity for some part icular  Markov chains, namely  the imbedded Markov chains 
of  certain queueing process. For  example, KENDALL considers the queing sys tem 
M/G/1. I n  this sys tem there is a single server; customers, arriving in a Poisson 
process of rate fi, are served in order of  arrival. The service times of  successive 
customers are independent,  identically distr ibuted r andom variables with distri- 
but ion funct ion S (.) which is assumed to have a finite non-zero mean, convenient ly 
taken  to be the uni t  of  time. I t  is fur ther  assumed tha t  S (0 + )  = 0. The Poisson 
rate fi is in fact  the traffic intensity,  i. e., the ratio of the mean service t ime to the 
mean  inter-arrival time. I f  we consider the number  of customers present (waiting 
or being served) immediate ly  after each successive depar ture  then this number  
forms a Markov chain for which the one-step t ransi t ion matr ix  has the form 

a . . .  a l  a 2  a 3  

]ao al  a2 a3 . . .  
P =  [ 0  ao al a2 . . . .  (1.2) 

0 0 a0 a l  �9 �9 �9 

where r an=je_~x(fiX,_dS(x)_~n ( n = 0 , 1 ~ 2  . . . .  ). 
n !  

0 

(For a full derivat ion of  this result see KENDALL [7]). 
All the imbedded Markov chains considered by  KENDALL and VE~E-Jo~Es have 

a proper ty  in common. They  m a y  all be described as being of  the r andom walk 
type,  by  which we mean t h a t  the transi t ion probabilities pjk are, apar t  f rom a 
finite number  of  boundary  rows and columns, functions of  k - -  ] only. Tha t  is, 
the pj.~ are, apar t  f rom a finite number  of  boundary  rows and columns, constant  
along any  one diagonal of P .  The matr ix  (1.2) in the above example clearly has this 
property.  I n  general these Markov chains are r andom walks on the non-negat ive 
integers subject to certain boundary  conditions. 

The aim of  the present paper  is to consider the geometric ergodicity of  a 
r andom walk on the non-negat ive integers whose increments are governed by  
general distr ibution {cj; j = 0, =~ l, •  . . . .  }. The walk is subject  to boundary  
conditions affecting one-step transit ion probabilities into and out  of  the finite set 
of  boundary  states (0, 1 . . . . .  ~). The one-step transit ion matr ix  is of  the f rom 

- ~ 0 0 0  P O 1  �9 �9 �9 P O ~  ' P O , ~ + I  P O ,  c~+2  . . . . . . . . .  

Plo P l : [ . . - .  Pl~ Pl,~+I Pl,~z+2 . . . . . . . . .  

P =- Pc~o P~I - . -  pc~ P~,:r P~,~+2 . . . . . . . . .  (1.3) 
) O o c + l , O  �9 �9 �9 ~ 9 ~ + 1 ,  o~ CO C l  C 2  �9 �9 . 

~ D ~ + 2 , 0  . . .  ~ 0 ~ + 2 ,  or C -  C O e l  . . .  

. . . . . . . . . . . . . . . . .  C - - 2  C - - 1  C O �9 . . 

Here Pj'k ----- c~-j for ?" > ~ and k > ~, while otherwise the pj~ are arbi trary,  bu t  
given, and are subject  of  course to the conditions 

oo  

P3"1c = 1 (j = O, 1 . . . . .  or (1.4) 
/ c = O  a - - Y  

pjo + pj~ + ' "  + pj~, = ~ c, (i > ~). (15) 
i =  - - o o  
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The imbedded Markov chains considered by  KENDALL and VEI~E-JoNES are 
part icular  cases of  the above form (1.3). I n  addition, the form (1.3) includes the 
imbedded Markov chain of  certain many-server  queueing processes discussed by  
KENDALL [8]. As an example we consider one such process in Section 7. 

As a start ing point  we discuss in Section 3 a part icular  case of  (1.3), namely  the 
r andom walk on the non-negat ive integers in which the origin acts as a natura l  
reflecting barrier. Here the one-step transi t ion matr ix  is of  the form (3.5) below. 
The main  result for a Markov chain represented by  (3.5) is roughly  tha t  geometric 
ergodicity occurs if  and only if there is some suitable kind of  spatial geometric rate 
of decrease i. e. a geometric bound  on one of the tails of  the distr ibution {cj}. This 
kind of  result, in which, roughly  speaking, spatial and temporal  geometric bounds 
imply  one another,  has been given for the case of  the strong law of  large numbers  by  
BAUM, KATZ and READ [1]. These authors  consider, amongst  other questions, the 
part ial  sums $1, $2, . . . ,  of  a sequence of  independent,  identically distr ibuted 
r andom variables with common distribution funct ion _F(x) and mean #. They  
show t h a t  for given e, the probabilities 

( I S ,  Sn+l p n = P r  ~ - - ~ t  d e ,  n _ k ~ - - / z  d e  . . . .  ) 

have a geometric upper  bound,  i. e. satisfy Pn =< A~  n for some A => 0, 0 ~ ~ a l l ,  
if and only if the tails of  the distr ibution funct ion 17 (x) are exponential ly bounded,  
i. e. if and only if  

F (--  x) ~- 1 - -  F (x) =< B e -ax (x > 0) 

for some B > 0 ,  2 > 0 .  
I n  Section 5 we examine the connection between spatial and temporal  geometric 

bounds for the more general process represented by  (1.3) and again we show tha t  
this connection is an int imate  one. The question also occurs as to whether  there is 
any  necessary such connection for general Markov chains. A simple sufficient con- 
dit ion for geometric ergodieity in a general Markov chain, given in Section 8, 
shows t h a t  the answer to this question is in the negative. 

2. Some Preliminary Definitions and l~esults 

Let  X be a one-dimensional real r andom variable. Define 

X+ = max  (0, X) ,  (2.1) 

X -  = rain (0, X) .  

Then X = X + -]- X - .  Clearly, if E ([ X ]) d 0% then E (X +) d oo and E (X-) > - -  oo. 
We say tha t  

E (X) = + ~ (2.2) 

if  E (X +) ---- -~ oo and E (X-) > - -  ~ ;  correspondingly we say tha t  

E(X) ---- - -  c~ (2.3) 

ff E (X-) = - -  co and E (X+) d oo. 
We now define a class ~ of  regular functions by  saying tha t  a regular/unction 

belongs to ~ i /and  only i/ its power series has non-negative coe/ficients and radius o/ 
convergence greater that unity. 
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We require the following lemma. This is a slightly more general version of  a 
result  of  HEAT~COTE ([5], Theorem 1) and is also related to  a proposit ion of  
BAud,  KATZ and READ ([1], Section 5). 

Lemma A. Let X1, X2 . . . .  be identically distributed, independent random variables 
satis/ying Pr  (X1 > 0) > 0, Pr  (X1 < 0) > 0. Then Pr  (X1 + ' - "  + Xn >= O) ~= A o~ n 
( n = 1,2,. . .)/or some constants A > 0 and ~ (0 < ~ < 1) if and only i / - -  co ~ E ( X1) < 0 
and Pr(X1 ~ x) ~ Be-vz  (x > O)/or some constants B > 0 and ~ ~ O. 

Proo/. Suppose first t ha t  for A > 0 and 0 < ~o < 1 

Pr(X~ +- . .  + X ,  _>_ 0) =< A e ~ (n = ~, 2~ . . . ) .  (2.4) 

For  any  real numbers  ]cl . . . .  , kn+l satisfying the condition kl + k2 + "'" + kn+l 
= 0, we have t h a t  

Pr (X1 + - "  + Xn+l ~ 0) ~ Pr (X1 ~ kl) Pr(X2 ~ k2)"'" P r (Xn+l  ~ kn+l) �9 

Choose )~ > 0 such t h a t  Pr (X1 ~ - -  ~) > ~ and take kl = n2, k2 . . . . .  kn+l 
= -- ~,. Then 

A ~n+l ~ Pr(XI + "" + Xn+l ~ O) ~ Pr(XI ~ n~) {Pr(XI ~ -- )0} n, 

and, defining the number U > 0 by 
{ @ }11). 

Pr(X1 ~ -- )0 ~- e-~, 
we have tha t  for n = 1, 2, . . .  

Pr (X1 ~ n 2 )  =<A~ P r ( X l ~ - ) 0  = A ~ e - ~ n z .  

Now for n2  =< x < (n + 1)2, 

P r  (X1 => x) =< Pr  (X1 => n 2) 

=< A ~ e-~ n~. 

= A ~o e~(~-~z)-~ x 

~= A ~o e~-~x 

since x - -  n~ ~ ~. Define B -~ A~ev~. and then we have independent ly  of n and 
for all x > 0, 

P r  (X 1 ~ z) _~ B e -~x . (2.5) 

I t  follows now t h a t  E(X~)  < co. We 
law of large numbers  this would violate 
according to a result  of  SPITZE~ ([13], 

1 p r ( X 1  

cannot  have E (X1) > 0 for by  the weak 
(2.4). Nor  can we have E (X1) = 0 for then, 
Theorem 4.1), the series 

+ " "  + Xn >=0) 

is divergent  and this also violates (2.4). Hence we must  have - -  c~ ~ E (X1) < 0, 
and the necessity par t  of  the lemma is therefore proved. 

To prove sufficiency part ,  suppose tha t  

- -  ~ =< E ( X 0  < 0 

and that for some constants B > O, ~; > O, 

Pr(X1 ~ x) ~ Be-vx  (x > 0). 

Let  H (x) be the distr ibution funct ion of  X1. Then the Laplace integral 
oo 
f etx dH  (x) 
0 
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exists for t < ~. Let  3+(~ ~ 3+ =<-c~) be the abcissa of  convergence of  this 
integral so tha t  the integral is convergent  for t < 3+ and divergent  for t > T+ 
(WIDDEI% [17]). Define 3 - ( ~  0) to be the abeissa of  convergence of  the integral 

0 
.[ e tx d H  (x) . 

- - c o  

I t  now follows tha t  the momen t  generating funct ion . 
o o  

M(t)  -~ ] e t x d H ( x )  (2.6) 
- - o o  

exists for 3 -  < t < 3+ and so do all its derivatives. We have tha t  
o o  

M "  (t) = S etx x2 dH (x) > 0 (3- < t < 3+) 
- - c o  

so tha t  M (t) is a str ict ly convex function of t. 
Since - -  co _< E (X1) < 0 it follows tha t  

- -  c~ =< ]im M '  (t) < 0 
t--+0+ 

and so M (t) is decreasing in an interval  immediate ly  to the r ight of  t =- 0. Hence 
by  convexi ty  there exists a number  to such tha t  

0 < to < 3+ 

0 < M ( t o )  < 1 

M (t) > M (to) (0 =<- t < ~:+, t .  to). 

Actually,  it is clear f rom convexi ty  tha t  to is the value of  t a t  which M (t) a t ta ins  
its unique minimum. Either M (t) is decreasing for 0 < t < to and increasing for 
to < t < 3+ or M (t) is str ict ly decreasing for 0 < t < 3+ < c~ and to = ~:+. 

Let  H(n) (x) be the distr ibution funct ion of  X1 -~- "'" + X n ,  so tha t  
o o  

{M(t)}n : ~[etxdH(n)(x) ( r -  < t < 3+; n : 1, 2 , . . . ) .  
- -  o o  

Then, since to > O, we have 
o o  

P r ( / 1  + . . .  + x n  >= O) = SdH(n)(x) 
0-- 

o o  

< j" cxp (to x) dH(n) (x) 
0-- 

< {M (to)} ~ . 

Since 0 < M (to) < 1, this completes the proof  of the lemma. 

Corollary. Lemma A remains true i / w e  substitute Pr  (X1 + "'" -~- X n  > O)/or 
Pr  (X1 + "'" + X n  >--_ O) and Pr  (X1 > x ) / o r  Pr  (X1 ~ x). 

The proof  is exact ly  the same as t ha t  of the lemma except  for the replacement  
of  'greater  than  or equals '  by  'greater  than '  a t  the appropriate  places. 

We shall have occasion to use taboo probabilities (C~IVNG [3]). Let  H be a 
given set of states in a homogeneous Markov chain ( Yn ; n = 0, 1, ...} whose state 
space m a y  be taken to be the non-negative integers. The n-fold transi t ion prob- 
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abi l i ty  of  reaching s ta te  ]c f rom s ta te  1' under  the  taboo  H is defined as 

~(~) P r ( Y ~ H ,  Y n - l ~ H ,  Yn k I Y o = ] )  ( n - - 2 , 3 ,  .) t ' ] k  ~ " ' ' ,  - -  . .  

/1.~( 1 ) 
~'jk -~- pjlc 

where PJk is the one-step t ransi t ion probabi l i ty  for the chain. 

3. Geometric Ergodieity in the Random Walk with a Natural Reflecting 
Barrier (Process A) 

Le t  X1, X2 . . . .  be a sequence of independent ,  identical ly distr ibuted,  integer- 
va lued  r a n d o m  variables  wi th  common  probabi l i ty  dis tr ibut ion {ok; k = 0, 

1, • 2, .. .}. Throughou t  this pape r  we make  the following assumpt ions  abou t  
the  dis t r ibut ion {ck}. 

A 1. The distribution {ce} is strictly two-sided i. e. 

P r ( X I < 0 ) > 0 ,  P r ( X I > 0 ) > 0 .  (3.1) 

A 2. The set o] values o] k/or which Ck > 0 does not belong to the set o/multiples 
o] a fixed integer greater than unity. 

Le t  
Sn = X I - k " "  -k Xn (n = 1 ,2 , . . . )  (3.2) 

denote  the  par t ia l  sums of the sequence X1, X2 . . . . .  Defining So = 0, we m a y  
regard the  process {Sn; n = 0, 1, 2 . . . .  } as a free r andom walk on the  one-dimen- 
sionaI lat t ice of  integers. 

I n  this section we consider in detail,  f rom the point  of view of  geometr ic  
ergodicity,  a new process {Tn; n = 0, 1 . . . .  } defined as follows 

T 0 = ] > 0 ,  

Tn ---- max[0 ,  Tn-1 ~- Xn] (n ~- 1, 2 . . . .  ), 

where ] is a given non-negat ive  integer represent ing the point  a t  which the process 
s tar ts .  The process Tn is a r a n d o m  walk on the  non-negat ive  integers in which the 
origin acts as a reflecting barrier.  The origin is a na tura l  barr ier  in the  sense t h a t  
m o v e m e n t  off the  barr ier  is governed essentially by  the  dis tr ibut ion {ck} and  not  
by  some other  given bounda ry  condition. For  the sake of b rev i ty  we refer to the 
process {Tn} as process A. Process A is clearly a Markov  chain with t ransi t ion 
probabil i t ies  

pjo = q-i (? = 0, 1, 2 , . . . ) ,  (3.3) 
Pjk = c~_j (] > 0, k > 1), 

where 
k 

q k  : ~ C i  �9 

i = - oo  

The mat r ix  of  one step t ransi t ion probabil i t ies  is thus  of the form 

q0 Cl C2 C3 �9 - - ]  

V--1 ~0 Cl C2 . . -  / 

e-1 eo . . .[ ,  

(3.4) 

(3.5) 
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a particular case of the more general form (1.3). The assumption A 1 and A 2 
ensure that  the process is aperiodic and irreducible. 

Let  F00 (s) denote the generating function of first return probabilities for the 
origin, that  is 

Foe(S) ~-- i / (o~o)~n, (3.6) 
n = l  

where 
/ ~ ) ~ - - P r ( T I * 0 , . . . , T n _ I  # 0 ,  Tn----O]To=O). (3.7) 

I t  may be observed that  in terms of taboo probabilities,/(0~ ) ---- 0P(o~ ). I t  was shown 
by KENDALL [9] that  an irreducible aperiodic Marker  chain with a countable 
number of states is geometrically ergodic if and only if the power series (3.6) has 
radius of convergence greater than unity or alternatively ff and only ff the function 

1 - - 8  

1 -- Fo0(s) (3.8) 

is analytic for Is] < 1 ~ 8, for some 5 > 0. Thus according to K~DALL'S first 
condition mentioned above, the process { Tn} is geometrically ergodic if and only if 
F00 (s) ~ ~ .  

Now it follows from a theorem due to Baxter  (S~ITZER [14], Theorem 3.1) that  
Fo0 (s) has the following form: 

ro0(s)= 1 - e x p I - Z  Pr(S  (]sl <1) (3.9) 
n=l n 

where Sn is the free partial sum defined at (3.2). In SPzTZWl~'S statement of Bax- 
ter's theorem there is ~ condition on the first moment of the distribution {ok}. 
However, by allowing the distributions in SPITZV,~'s proof to have total mass 

possibly less than unity, this condition can be seen to be unnecessary. Thus we 
can assume (3.9) to hold for a process governed by a quite arbitrary distribution 
{c~}. Regarding the natnre of process A we have the following result which may 
also be deduced from a theorem of K~PERMAZ~ ([O], Theorem 15.2). However it 

is more convenient for our purposes to give a proof based on (3.9). Process A is 

(i) ergodic i/and only if 
c o  

j -  Pr(Sn > 0) < oo ; (3.10) 
~= = 1  

(ii) transient i/and only i/ 
c o  1 

7 1  ~- Pr(Sn ~ 0) < oo ; (3.11) 

(fii) null-recurrent i[ and only i/ the above series (3.10) and (3.11) are both 
divergent. 

To prove this we let s --> 1- in (3.9) and use Abel's theorem and its converse 
for power series with non-negative coefficients. I f  (3.1]) holds then f00(1) < 1 
which gives transience. I f  the series (3.11) is divergent then Foe(l) ~ 1 and we 
have that  the process is recurrent. Since for all n, Pr (Sn ~ 0) = 1 -- Pr  (Sn > O) 
and since 

e x p { ~ - } = l - - S = l  ([s,<l), 
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it  follows t h a t  

8 n 
F00 (s) ~- 1 - -  (1 - -  s) exp ~ P r (Sn  > 0) (3.12) 

( n  = 1 

and hence t h a t  

Assuming tha t  Foo(1) = 1, and lett ing s ---> 1-  in (3.13) we have  t h a t  the  mean  
recurrence t ime is given b y  

Foo(1 ) = e x p  Pr (Sn  > 0 , 
n - - 1  

a result  due to SHTZER ([14], p. 158). The results (i), (ii), and (iii) therefore follow. 
I t  was shown by  SPITZE~ ([13], Theorem 4.1) t h a t  a sufficient condit ion for 

(3.10) to hold is t h a t  E (I X1 l) < c~ and E (X1) < 0. Using the definitions (2.2) and 
(2.3) of  infinite expectat ion,  i t  follows f rom a simple t runca t ion  a rgumen t  t h a t  a 
slightly more  general sufficient condition for (3.10) and  hence for process A to be 
ergodic is a/ortiori t ha t  

0 > E(X1) ~ - -co .  (3.14) 

Similarly a sufficient condition for the  transience of process A is t h a t  

0 < E(X1) g oo. (3.15) 

We  now tu rn  to the question of geometr ic  ergodicity. We need only deal with 
the  cases where process A is ei ther ergodic or t rans ient  since a nul l-recurrent  
Markov  chain, not  possessing finite momen t s  of recurrence t imes,  can clearly not  
be geometr ical ly  ergodic. Note  t h a t  in our te rminology geometr ic  ergodici ty does 
not  imp ly  t h a t  the  chain is ergodic; i t  implies t h a t  the  n-fold t ransi t ion probabili-  
ties converge geometr ical ly  fast  to their  limits. The limits will be zero in the  case 
of  a t rans ient  chain. 

We now prove  the  following result  connecting geometr ic  ergodici ty with the 
tails of  the dis tr ibut ion {c~}. 

(i) Necessary and su/ficient conditions/or process A to be ergodic and geometrically 
ergodic are that --oo <= E(XI )  < 0 and that ck ~ C),~(k ----1,2, . . .)  /or some 
C > O a n d s o m e ) ~ ( O < ~  < 1). 

(ii) Necessary and su/ficient conditions/or process A to be transient and geometri- 
cally ergodic are that 0 < E(X1) <= oo and that c_~ <= D/.t~(lc = 1, 2, . . . ) / o r  some 
D > Oandsome/t(O < tt < 1). 

We m a y  express this result  a l te rna t ive ly  as follows. 

(i) F00 (s) e ~ and Fo0 (1) = 1 i~ and only i/ 

- - ~ < = E ( X 1 ) < O  and ~ c k z k e ~ .  
k > 0  

(ii) t"oo (s) e ~ and F0o(1) < 1 i /and only i~ 0 < E (X1) ~ oo and ~ c_k z~ e ~ .  
k > O  

To prove  (i) suppose first t h a t  for g iven C, ~(C > 0; 0 < ~ < 1), 

--co G E(X~) < 0 (3.16) 

e~ ~ C2 ~ (k = 1, 2 . . . .  ) .  (3.17) 

Z. Wahrsche in l ichke i t s theor ie  verw.  Geb., Bd.  4 2 5  
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I t  follows from (3.17) tha t  for some constants B > 0 and ~ > 0 

Pr(X1 > x) <= Be-nx. (3.18) 

We then have from the Corollary to Lemma A tha t  there exist constants A > 0 
and Q(0 < ~ < 1)such tha t  

P r ( S n > 0 )  =<A~n 

In  fact we may  take A ---- 1 and 0 = M (to) where to > 0 is the unique value of t at  
which the moment  generating function, 

M (t) -= 2 c~ekt, (3.19) 
] $  ~ - -  r  

assumes its minimum value. I t  follows tha t  the series ~ ( l /n)Pr  (Sn > 0) is con- 
vergent and so the process is ergodic. Further,  the power series ~ (shin) Pr (Sn ~ O) 
has radius of convergence at least 1/M (to) and hence the function 

-1 -- Foo(s) - -  exp - -  ~ -  Pr(Sn > 0) (3.20) 
? g ~  1 

is regular for 0 =< I s I < 1/M (to). Geometric ergodicity now follows from K~ND~LL's 
condition (3.8). I t  follows also from (3.12) tha t  the radius of convergence ofF00 (s) 
is at  least 1/M (to). 

Now suppose tha t  process A is ergodic and also geometrically ergodic. Then the 
function 

1 - - s  

1 - -  F00(s)  

is analytic in the circle I sl ---- 1 -~ d for some d > 0 and is, clearly, also free of 
zeros in this circle. Hence the function 

1 - -  s = ~ -  Pr  (Sn > 0)  ( 3 . 2 1 )  
log 1 -F-0o(s) n= l  

is also regular for I sl < 1 @ d. Hence 

Pr  (Sn > O) < A ~n 

for some A > 0 and ~(0 < Q < 1). The conclusions tha t  --c~ g E(X1) < 0 and 
ck _--< C2 k now follow from the Corollary to Lemma A and the proof of (i) is 
complete. 

The proof of (ii) is similar: suppose tha t  

0 < E (X1) =< o o  

and 
c-~--< D#~ (k---- 1 , 2 , . . . )  

for some D > 0 and some ju(0 ~ ~ % 1). By applying Lemma A to the sequence 
- -  X1, - -  X2 . . . .  we find tha t  

Pr(Sn =< 0) =< {i(to)} n (3.22) 

where 0 < M (to) < 1 and to < 0 is the unique value of t at  which M (t), defined at  
(3.19), assumes its minimum value. The convergence of the series ~ (1/n) Pr  (Sn ~ O) 
and hence the transience of the process now follow. From (3.9), F00 (s) is regular 
for at least Is] < 1/M(to) and so we have geometric ergodicity. Further,  the 
radius of convergence of (3.6) is at  least 1/M (to). This completes the proof of (ii). 
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4. Some  Further  Resul t s  for Process  A 

The results of this section are required for the following section. As usual,  let 

~ I(n) An Fjk(S) = /jk ~ (?" ~ k; j, k = 0, 1, 2 . . . .  ) (4.1) 
~ 1  

be the  generat ing funct ion of the  first passage probabil i t ies ]~)(n  z I, 2 . . . .  ) f rom 
s ta te  ] to s take k. Then  for process A, the theorem of Bax te r  which gives the  
expression (3.9) also gives the result  

o o  8 ~ 

Note t h a t  on the r ight  hand  side of  (4.2) we have  str ict  inequalities Sn < O, 
whereas in (3.9) we have  Sn ~ O. 

We wish to prove  some inequalities concerning the generat ing functions 
F1o (s)(] = 1, 2, .. .). Suppose tha t ,  in the sense of (2.3), 

- -co  ~ ~ /cc~  < 0 ,  (4.3) 
k ~ - - o o  

~ Ck zk @ ~ ,  

k > 0  

so t h a t  process A is ergodic and geometr ical ly  ergodic. I t  then  follows, as in 
Section 2, t h a t  the  m o m e n t  generat ing funct ion 

oo 

M (t) = ~ cke~ (4.4) 
]r ~ -- oo 

exists for 0 ~ t ~ ~+(~+ ~ oo) and is s t r ict ly decreasing for 0 ~ t ~ to, where 
t 0 ( ~  T+) is the unique value of t for which M (t) a t ta ins  its m in imum value. 
Consider the equat ion 

sM(t)----1 ( l ~ s < ( M ( t o ) } - l ;  O g t < t o ) .  (4.5) 

This equat ion has a unique real root  t ---- tl (s) which satisfies 

0 ~ tl(s) ~ to (1 g s < {M(t0)} -1) (4.6) 

and  tz (s) is a s t r ict ly increasing, continuous funct ion o f s  with tl (1) = O. 
We have  the following result. Suppose that the distribution {ck} satisfies (4.3), 

i.e. that process A is ergodie and geometrically ergodie. Then 

Fyo(s ) ~= e ja(~) (1 ~ s < {M(t0)}- l ) ,  (4.7a) 

FIO(8 ) ~ s + s(s -- 1)M(t) -- 1 s i f t )  e# ( O ~ t < t o ; 1  g s < { M ( t ) } - l ) .  (4.7b) 

Consider first the proof  of  the inequal i ty  (4.7 a). We modi fy  the free r a n d o m  
walk defined b y  (3.2) in such a way  t h a t  i t  s tar t s  a t  ?" > 0 and t h a t  the  s ta tes  0, 
- -  1, - -  2, ... are all made  absorbing states.  I f  N is the t ime to absorpt ion and  if 
Fj0 (s) is a generat ing funct ion for process A, then  

Fj0 (s) = E ( J )  (4.S) 

An extension of the a rgumen t  b y  MrLL~,R [12] easily shows t h a t  Wald ' s  ident i ty,  

E [{M (t)} -2v exp (t S2v)] ~- e#, (4.9) 

25* 
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holds for 0 < t < to. Here  SN ( ~  0) is the  s ta te  reached a t  the t ime of absorption.  
We now make  the subst i tu t ion 

s - -  {M(t)}- i  (0 ~ t < to) 
and obtain  

E[sNexp{ t l ( s )SN}]  = e )~('~') (1 ~ s < {M(t0)}-l) .  (4.10) 

Since SN <= 0 and tl (8) >__-- 0 we have  

E(s  N) > E[sNexp{ t l ( S )SN}]  = e j'~(~) (1 < 8  < {M(to)} -z) (4.11) 

which, by  vir tue of (4.8), gives the  result  (4.7 a). 
To prove  (4.7 b), let 0p~ ) (j, k > 0) denote  the taboo probabil i t ies for process A. 

These are clearly identical  with the t ransi t ion probabil i t ies of the modified r andom 
walk with absorbing s tates  defined in the previous paragraph .  

We clearly have  t ha t  

P r ( N  > n) : 2 .vik~(n) (4.12) 
~: = 1 

and also t h a t  
o o  

Fjo(S) =~ ~ + (s - -  1) ~ s ' ~ P r ( N  > n) (Isl < 1). (4.13) 
q r  

Now if r k = O, • 1, • 2 .} is the probabi l i ty  dis tr ibut ion of the unre- ~ Y k  , ' " " 

str icted sum X1 + ""  + Xn ,  we mus t  have  t h a t  
~ ( n )  < ~ (n )  

OP,jk  = Y k -  ] 

I { e n e e  
cx) c o  

Pr  (N > n) = x" 0~(n) < ~ #n) / ,  ~'jk = /_,vk-j  
k = l  k = l  

(n = 1,2 . . . .  ; j,k > 0) .  

o o  

k = l  
(t => 0) 

o o  

"~2 e ( k -  j ) t  M n )  e ] t  / .  ~ k - j  

k = l  

= ~ .(~-i)t.(n) _ ejt {M (t)} n . (4.14) < eJ t  ~ v k - j  - -  

]~ = - -  o o  

In  par t icular  we m a y  set  t = to > 0 and obtain  

P r ( N  > n) ~ eJt~ (to)} n , (4.15) 

f rom which it follows t h a t  the series on the  r ight  hand  side of (4.13) is convergent  
for Is [ < ( M  (t0)} -1. This also follows f rom the results of  V E n ~ - J o ~ s  [15]. Hence 
by  analyt ic  cont inuat ion (4.13) holds for Is] < {M (t0)} -1 and in a d d i t i o n  we have  
f rom (4.14) and  (4.15) the  desired inequal i ty  (4.7 b), 

o o  

Fjo(8) ~ s -} - (s - -  1)eJ t ~ sn {M (t)} n 
n = l  

s(s --1) M (t) ej t (0 ~ t  < t0; 1 ~ s < { M ( t ) } - l ) .  
= s d -  1 - -~M( t )  
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We now turn to the case where process A is transient and geometrically ergodie. 
In  this case we have 

oo 

O <  ~ k c k  ~ c~ 
k= - ~  (4.16) 

~ c_kz ~ ~ 
k > 0  

and the moment generating function (4.4) now exists for 3- ~ t ~ 0(3_ ~ --co) 
and is strictly increasing for to ~ t ~ 0 where t0(~ 3-) is again the unique value 
of t for which M(t) attains its minimum value. We observe that  to is now negative. 

We have the following result. Suppose that the distribution {e~} satisfies (4.16) 
i. e. that process A is transient and geometrically ergodic. Then 

F ~ 0 ( s ) <  ~ . M ~ _  eat = = = 1--sM(t) ( t o < t < O ; O < s < { M ( t ) } - t ) ,  (4.17) 

To prove this we observe that  

/~) =< Pr (Sn ~ - j) (] > 0) ,  

where Sn is defined at (3.2). Hence 
_j. 

II~) __< Egl-)  

- j  
g ~, e(J+~)tg~ ') (t ~= O) 

o o  

_< eJ, ~ e~,g~ ~) = eJ' {M(t))~. 
k =  co  

On multiplying by s n (0 ~ s ~ (M(t)} -1) and summing over n, we obtain (4.17). 

5. Geometric Ergodicity of Random Walk with Imposed 
Boundary Conditions (Process B) 

We now consider the question of geometric ergodicity in the more general 
Markov chain with transition matrix (1.3). We assume that the pj~ are such that 
the process is irreducible. For the sake of brevity we call this Markov chain process 
B. 

Logically, it would be more appropriate to consider first the relation between 
the ergodic properties of processes A and B. In this section we shall see that the 
two processes are recurrent together or transient together. IIowever, we postpone 
until the next section the question of ergodicity and null-recurrence and show there 
that we can relate the two processes provided we assume the existence of the first 
moment of the distribution {c~}. Without such an assumption the problem appears 
to be more delicate. 

Regarding geometric ergodicity we show in this section that processes A and B 
are transient and geometrically ergodie together and further that they are ergodic 
and geometrically ergodic together provided that each of the distributions 
{P0k},-.-, {P~}, which govern movement off the boundary, has a probability 
generating function which belongs to the class ~. This again brings out the 
connection between spatial and temporal geometric bounds. 
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To distinguish f rom process A we use Greek letters for the t ransi t ion prob- 
abilities, etc.. of process ]3. Thus  7~(~ ), ~(n) ~ ~(n) denote  respect ively  transit ion,  �9 W]k , ~+~jk 
first passage and taboo  probabil i t ies for process B while 

Hj~( s )  = \ ' - ( ' ) s n  Cj~(s) = ~}~)s~, ztHjk(s) = v . g n ) s ~ '  
n=l n=l n=l 

denote the corresponding generating functions. 
Throughout this section H will denote the set of states {0, 1 .... , e}. Our first 

task is to obtain some relations between the generating functions of process A and 
process B. 

We have  the  following decomposi t ion of the first passage probabil i t ies  ~v~ ) 
based on first re turns  to states in the set H. For  ~' = 0, 1 . . . . .  

(p}~) = H~I.~) .+. ~ ~ '  _(r)~(n-r) (n =- 2, 3, .) 
/ _ ,  H ~ j k  tFkO �9 �9 �9 

k=l r=l 

By taking generating functions we obtain the following set of equations 

~oo(S) =/~5roo(8) + ~M/o~(~)~ko(s) ,  (Is] < ~) (5.2) 
k = l  

o~ 

~ j 0 ( s ) = . ~ j o ( ~ )  + y . ~ ; ~ ( s ) ~ o ( s )  ( j =  1 . . . .  ,~ ; Is l  < 1) (5.3) 
k = l  

Consider the  row sums of the  coefficients HHj~ (s) on the r ight  hand  side of  
(5.2) and (5.3). For  ] z H, 

c~ 

.H~.~ (s) = - G ' - ( s )  
k = O  oo 

= (PJo + j1 + "'" + pj~)s + s ~pJiHHtH(S) (5.4) 
i = ~ + 1  

Now for i = ~ + 1 ,~  + 2  . . . .  
oo 

Hl~iH(S) = (p~O @ pil + "" + p~c~)S + S ~,HP~(s)(p~o @ "" @ p~cO (5.5) 
k = ~ q - 1  

and the generat ing functions ~Pi~(s)  on the r ight  hand  side are now those of 
process A since t hey  are based on t ransi t ions among the s ta tes  ~ + 1, ~ q- 2, . . .  
only. Using (1.5) and (3.4) we obta in  f rom (5.5) t h a t  

r  

nH~H(S) = q~-~s + s ~ HP~(s)q~.-~ (i > ~.). (5.6) 
1~ = c~+1  

The r ight  hand  side of (5.6) is easily seen to be the generat ing funct ion Fi_a, 0(s) of  
process A. Hence  it  follows f rom (5.4) t h a t  

i H I I ~ ( s ) = ( p l o + . . . + p ~ ) s + s  ~p~Fl_~ ,o(s )  ( ]eH) .  (5.7) 
k = O  i = a + l  

The relat ion (5.7) will be our main  too] in relat ing the  behavior  of process B to 
t h a t  of  process A. 

We have  the  following result. Process B is ergodic and geometrically ergodic i[ 
and only i] the/ollowing conditions hold: 
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(i) the corresponding process A is ergodic and geometrically ergodic, i.e. (4.3) 
holds; 

(ii) the series 
o o  r  o o  

. . . . .  ( 5 . 8 )  
k ~ 0  k = 0  k = 0  

all belong to the class ~ .  
To prove this result suppose first tha t  (i) and (ii) hold. Wi th  a view to writing 

(5.3) in matr ix  form we define the matrices 

-~//11 (8) .. �9 . H I ~  (8) | 

H(8) = 1 
aH~i (8)"" n H ~  (8) 

HHIo (8) 

z~(8) = , q~(8) = . 

L HH~o (s) L :o (s) 
Equat ions  (5.3) then become 

(8) = ~ (s) + H(8) ~ (8), (5.9) 

i.e. { I  --H(s)}~(8) = ~(8), (5.]0) 

where I is the unit  ~ • ~ matrix.  I t  follows from the irreducibility of process B tha t  
f o r 0 < s ~ l  

~Hjk (~) > 0 (j, ~ e H) (5.1]) 

and so for 0 < s ~ 1 all the elements of the matrices ~(s) and H(s) are positive. 
Since we are assuming process A to be ergodic we have tha t  Fj0 (1) = 1 (] = 0, 1, ...). 
I t  follows front (5.7) t ha t  

HHj~(1) = 1 (i, k ~ H )  (5.12) 
k = 0  

Hence the row sums of H(1)  are all strictly less than  uni ty.  Now the maximal  
positive eigenvalue of  a positive matr ix does not  exceed the maximal  row sum of 
the matr ix  (see, e.g., DEBBEU and HEBST]~L~ [4]). Thus I - -  H(1)  is non-singular 
and, a ]ortiori, so is I -- H(8) (0 < s ~ 1). Thus we may  write (5.10) as 

9~(8) ---- { I  - -  H( s )} - I  ~(8) --  (s) ~(s) ,  (0 < 8 _--< 1). (5.13) 

where Ho (s) is defined to be I .  
Now (5.9) m a y  also be wri t ten in the form 

[L)] i L oo::o 
The matr ix  

o...o 1 
~; i i i~ Iz  ( i i j  (5.15) 
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is a s tochast ic  ma t r ix  all of  whose elements,  apa r t  f rom those in the first row, are 
positive. I t  follows t h a t  the  ma t r ix  (5.15) has a simple eigenvaluc 1 corresponding 
to which there is a column eigenvector  all of whose elements  are equal  and this 
eigenvector  is unique up to a mult ipl icat ive constant .  On set t ing s = 1 in (5.14) 
we mus t  have  t h a t  

~(1) 

1 

i .e .  r = 1 ( / =  1 , . . . , e ) .  (5.16) 

Thus if we set s = 1 in (5.2) and (5.7) it follows f rom posi t iv i ty  and (5.16) t h a t  
~00 (1) = 1. Hence  process B is recurrent .  To prove  t h a t  process B is ergodie and  
geometr ical ly  ergodic we observe t h a t  we can, by  assumpt ion,  choose t (0 < t < to) 
so t h a t  for all/ '  ~ H 

o o  

~pj~e~ < oo. (5.17) 
k = 0  

Now for j = 0, 1 . . . .  , Fj0 (s) is regular  in the circle Is I < {M (t0)} -1. B y  applying 
the inequal i ty  (4.7b) and  taking the value of t for which (5.17) holds we see t h a t  
the r ight  hand  side of  (5.7) is regular  for 1 ~ ]s [ < {M (t)} -1 and a [ortiori for 
0 _--< I s I < {M (t)} -1. Since the power  series coefficients of  all the functions in (5.7) 
are non-negat ive  it  follows t h a t  each of the functions gui le  (8) (j, ]2 E H) on the 
left hand  side of  (5.7)is  regular  for 0 =< ]s [ < {M(t)} -1" Therefore each element  
of the ma t r ix  H( s )  is regular  for 0 =< is ! < {M(t)} -1. Since I - - / / ( 8 )  is non- 
singular for 0 --< s --< 1 it follows by  cont inui ty  t h a t  I - -  H(s )  is non-singular for 
0 =< s < 1 + d, for some d > 0. Thus b y  (5.13) and non-nega t iv i ty  each e lement  
of ~o(s) belongs to the class ~ .  Finally,  by  (5.2), #00(s) e ~ and so process B is 
ergodic and geometr ical ly  ergodic. 

Conversely,  suppose process B is ergodic and  geometr ical ly  ergodic. Then  
~bj0(1) = l for ?" = 0, 1, 2 . . . . .  Hence  f rom (5.2) and (5.3) 

~ H j ~ (  ) =  1 ( je l l )  (5.18) 
k = 0  

and so f rom (5.7) 
o o  

P j o + ' " + P j ~ +  ~ p l /F i -e ,0(1)  : 1 ( ] e H ) .  (5.19) 
i = ~ + l  

Since 0 < F3"o (1) _< 1 and  ~ P3"~ = 1 (/" a H) it  follows f rom the non-negat iv i ty  of 
k = 0  

the pj~ t h a t  Yl-~,0(1) = 1 for all i and / '  for which P3'f > 0(i  = ~ + 1, ~ -~- 2 . . . .  
. . . .  /' e H). T h a t  some such i and ] exist follows f rom the irreducibil i ty of  process B. 
Thus process A is recurrent .  Since process B is geometr ical ly  ergodic the left hand  
side of  (5.7) belongs to the class ~ .  Choose i > a and/ '  a H such t h a t  Pii > 0. F r o m  
(5.7) it  follows tha t  Fi_~, 0 (s) e ~ .  Now f rom (4.12) and (4.13) we have  

( j  : o , 1 ,  2 ,  . . . )  . ( 5 . 2 0 )  
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Since process A with zero as a taboo  s ta te  has independent  increments  we have  t ha t  

cx) 

0P~ ) < ~ 0 ~(n) (i = 1, 2 , . . . )  (5.21) 
k = l  k = l  

Thus  since /vi_~,0(s) e ~ for some i > ~ it  follows f rom (5.20) and (5.21) t ha t  
F00 (s) e ~ .  Hence  process A is geometr ical ly  ergodic and since it  is recurrent  it is 
also ergodic. 

Fur ther ,  f rom the inequal i ty  (4.7a), it follows t h a t  unless all the functions (5.8) 
belong to the class .~, the  r ight  hand  side of (5.7) would, for some ] e H,  be diver- 
gent  for s > 1, contradict ing the fact  t ha t  the left hand side of (5.7) belongs to the 
class ~ .  The  proof  of  out" result  is now complete.  

Next ,  we deal with the question of transience and geometr ic  ergodici ty and 
we have  the following result. Process B is transient and geometrically ergodic i/ and 
only i/ process A is. 

The proof  of  the  previous result  shows t h a t  process B is recurrent  if  and only if 
process A is recurrent .  Thus  process B is t rans ient  if  and only if process A is 
t ransient .  

Now suppose process A is t rans ient  and geometr ical ly  ergodic. We app ly  
inequal i ty  (4.17) to the r ight  hand  side of  (5.7). Since for ?" = 0, 1 . . . .  , Fjo(s) is 
regular  in the circle Is ] = {M (to)} -1 and since t < 0 in (4.171 it  follows tha t  the  
r ight  hand  side of  (5.7) belongs to ~ .  So therefore does the left hand  side and  the  
same a rgumen t  used for the  previous result  shows t h a t  ~b00 (s) ~ ~ .  Hence  process 
A is t rans ient  and  geometr ical ly  ergodic. 

Conversely,  suppose t h a t  process B is t rans ient  and geometr ical ly  ergodic. 
Then  the left hand  side of (5.7) belongs to ~ and  so for some i > ~, F~_~, 0 (s) ~ .~. 
For  this i, write/c i ~. Choose m so t h a t  ^~(m) = - -  ul'kl > 0 - N o w f o r n > m  

= O P k l  / 1 0  

f rom which it follows t h a t  F10 (s) E .~. Hence  f rom (4.2) we have  t ha t  

oo  n 

Z @ P r ( S n < 0 )  c ~ '  

and so f rom L e m m a  A and f rom the results of  Section 3 it  follows t h a t  process 
A is t rans ient  and geometr ical ly  ergodic. 

6. Null-recurrence and Ergodicity in Process B 

We have  seen in Section 5 t h a t  processes A and B are recurrent  together  or 
t rans ient  together .  However ,  the  relat ion between these processes in respect  of 
ergodicity and  null-recurrence is a more  delicate question. I f  we assume tha t  

~ , ] k l e ~  < oo (6.1 / 
k ~  - - c o  

then  it is possible to explore fully the  relat ion between these processes. I f  however  
we assume,  say, t h a t  process A is ergodic with 

oo  

E(X1) = ~ k c ~  = - - c o  (6.2) 
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in the sense of  (2.3), then it seems tha t  the ergodicity of process B will depend on 
tha t  rates at  which ck -+ 0 as k -> --oo and pj'~ -+ 0 as k -+ oo for ~" ~ H. We shall 
not  explore any  fur ther  the implication of (6.2) for ergodicity in process B in the 
absence of  fur ther  assumptions. 

Suppose (6.1) holds. Then it is necessary and sufficient for the ergodicity of 
process A tha t  

E(X1)  ~ ~Icc~ < 0 (6.3) 
- - o o  

This follows from the results of  Section 3. We investigate now the ergodicity of 
process B when (6.1) and (6.3) hold. 

I f  (6.1) and (6.3) hold and if we let E (X1) = --/3 (/3 > 0) then it follows from 
a renewal-type theorem of CI~ow and Rom~INS ([2], Theorem 2), t ha t  

, 1 
Fio (1) N ~- (i -+ oo).  (6.4) 

Differentiating (5.7) and setting s = 1 we have 
co  t 

~H//i 'k(1) = 1 + ~pj~F~_~,0(1) ( ] e H )  (6.5) 
k e H  i = ~ §  

Thus provided tha t  

• i pji < co (j e H) , (6.6) 
i = 0  

we have from (6.4) and (6.5) t ha t  

~ U//i'~(1) < oo ( / ~ H ) ,  (6.7) 
k e H  

while if for some ] ~ H 

then from some ] e H 

• i p j ~  = o o  , ( 6 . 8 )  
i = 0  

HlI~k (1) -~ oo. (6.9) 
k e H  

Hence ff (6.6) holds for all 7" ~ H then for all 7",/c E H 

~17~(1) < oo, (6.10) 

while ff (6.8) holds for some ] ~ H, then for some ], k ~ H, 

H//~k(1) : oo. (6.11) 

Thus if we apply these results to (5.2) and (5.3) after differentiating and setting 
s ---- 1, then we have tha t  process B is ergodie if (6.6) holds for all j ~ H and null- 
recurrent  if (6.6) does not  hold for all ] E H.  

Nex t  suppose tha t  (6.1) holds and tha t  
oo 

E(X1)  ~- ~ k c k  = O, (6.12) 
- - o o  

so tha t  process A is null-recurrent. Then F~0(1 ) = co for ?" ~-- 0, 1, . . . .  I t  follows 
f rom (6.5) t ha t  (6.11) is t rue for some ], k~  H and again using (5.2) and (5.3) we 
see tha t  process ]3 is null-recurrent. 
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Again let (6.1) hold and suppose conversely that  process B is ergodic. Then 
process A must be ergodic and (6.6) must hold since the ergodieity of process B 
precludes the transience or null-recurrence of process A. I f  (6.1) holds and process 
B is null-recurrent then dearly either process A is ergodic and (6.8) holds for some 
] ~ H or process A is null-recurrent. 

Summarizing, we have the following. I / (6 .1)  holds then process B is ergodic i] 
and only i /process A is ergodic and (6.6) holds/or all j ~ H;  process B is null-recur- 
rent i] process A is null recurrent or i] process A is ergodic and (6.6) does not hold/or 
all ] c H. 

7. An Example 

We consider the imbedded Markov chain of the queueing system G 1 / M / m  
(general, independent, identically distributed inter-arrival times, exponential 
service times, m (>  1) servers, natural queue discipline). Let A (u) be the distribu- 
tion function of inter-arrival times and let b be the mean service time. KENDALL 
[7] showed that  the number of persons ahead (waiting or being served) of a newly 
arrived customer at the instant of his arrival forms a Markov chain with one-step 
transition matrix of the form 

Qs Qo 

Here Q1 is an m • m matrix, and Q4 is a matrix of the form 

bl bo 0 0 0 ... 

Q 4 -  b~ bl  b0 0 0 . . .  

ba b2 bl b0 0 ... 
o , .  

Apart from the element in the lower left hand corner, Q2 is composed entirely of 
zeros. From the point of view of geometric ergodicity only the form of Q4 concerns 
us. The non-zero elements of Q4 are given by 

bk ----- f e-(,~u/b)(mu/b)~ dA (u) 
j k~ 

o 

I t  follows from our results that  the process is 

(i) ergodic and geometrically ergodic if 

- - ~  ~ ~ ( - - k  + 1)b~ < O, 
k=O 

c o  

i .e .  1 < ~ k b ~  <=c~; 
k = 0  

(ii) transient and geometrically ergodie if 

kbk < 1 and ~ b ~ z  ~ ~ . ~  . 
k=O k=O 

F o r O G z < l w e h a v e  
r  o o  

B(z)  = Z b ~ z ~  = f e"~u(z-1)/b dA (u) . (7.1) 
k=O 0 
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H e n c e  
o o  

B ' ( 1 ) = T  n d A ( u ) = ~  
0 

where ~ is the relative traffic intensity, and e = 0 if ~ udA (n) = c~. Hence the 
process is" ergodic and geometrically ergodic i /0  <= ~ < 1. 

From the theory of moment  generating functions the integral (7.1) defines a 
regular function of z in at least the half-plane ~Itz < 1 (LuKA0S, 1960, Chapter 7). 
For B(z) to belong to .~ the integral (7.1) must  converge for some z > 1, i.e. A(u) 
must  satisfy 

1 - A (u) <= Ce-c~ (7.2) 

for some positive constants C, c. In  other words, the process is transient and 
geometrically ergodic i /~ > 1 and i] (7.2) holds. 

8. General Markov Chains 

In  the special class of Markov chains we have considered so far we have seen 
tha t  there is an inevitable connection between geometric ergodicity and some form 
of geometric bound on the one-step transition probabilities. As par t  of the general 
and as yet  unsolved problem of determining conditions on the one-step transition 
probabilities of a general Markov chain which will be necessary and sufficient for 
geometric ergodicity it is natural  to ask whether there is any similar connection in 
a general Markov chain. That  such a connection is not in general necessary is 
shown by  the following result. 

A su/ficient condition/or an irreducible aperiodic Markov chain to be ergodic and 
geometrically ergodic is that the elements in any one column o/the one-step transition 
matrix, apart/rom the diagonal element, be bounded away/tom zero. 

To prove this we label the state corresponding to the given column as state 0 
and assume that  the state space is the set of non-negative integers. With the 
usual notation for transition probabilities etc., we have the relation 

(~(1) ~(2) 
Joo + + " "  + 1~)) + (0p(0~) + 0 ~(~) s00 t'o2 + ' " ) = 1  ( n = l , 2 , . . . ) .  (8.1) 

Now 

• oP(o~ ) : ~ 0P(0~ -1) (1 - -  PkO) (n = 2, 3 . . . .  ). 
k = ]  k = l  

By assumption there exists a number p (0 < ~o < 1) such tha t  for/c = 1, 2 . . . . .  
P ~ 0 ~ I - - ~  i.e. 1 - - p g o g ~ .  
H e n c e  

~o ~ _(n-l) (n = 2, 3, . .) 0P~ ) = O ovo~ 
k ~ l  k = l  

and from repeated applications of this inequality we have tha t  

o o  

oP(o~) g ~n (n = 2, 3 . . . .  ) .  
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H e n c e  f r o m  (8.1), 

~ (r) > I (n 2, 3 . . . .  ) 
r = l  

a n d  e rgod i c i t y  and  g e o m e t r i c  e r g o d i e i t y  fo l low i m m e d i a t e l y .  
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