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Summary. Let E' be the dual of a nuclear Fr6chet space E (of which the 
Schwartz space 5~'(IR a) of tempered distributions is one). We give a simple 
sufficient condition for the strong continuity of a weakly continuous E'- 
valued stochastic process and as applications examine the Kolmogorov- 
Hahn-Delporte criteria. 

1. Introduction and Results 

Let 5P(P,3) be the nuclear space of all rapidly decreasing functions on IR d and 
5~'(IR d) the topological dual space of 5~(lRa). A. Martin-L6f [7] gave a class of 
strongly continuous 5P'(Na)-valued Gaussian processes and K. It6 I-5] proved 
the strong continuity of a weakly continuous Y'(lRd)-valued additive process. 
Let E' be the topological dual space of a nuclear Fr6chet space E. Then, 
motivated by [-5], the author proved the strong continuity of a weakly con- 
tinuous E'-valued Gaussian process [8] and proved the existence of a version 
which is right continuous with left limits in the strong topology for an E'- 
valued martingale associated with a right continuous and increasing family of 
or-fields [9]. 

The aim of this paper is to give a simple sufficient condition for the strong 
continuity of a weakly continuous E'-valued stochastic process and as appli- 
cations to examine the Kolmogorov-Hahn-Delporte criteria. 

Before stating results we give some notations. Let II " I[1 
< ][ �9 ll2<... < II.]lp<... be an increasing sequence of Hilbertian semi-norms 
defining the topology of E, Ep the completion of E by II'][p, E'p the topological 
dual space of Ep and [l'l[_p the dual norm of E'p. Let (x, ~5 be the canonical 
bilinear form on E ' x  E and (x, ~)p the canonical bilinear form on E'p x Ep. We 
assume all stochastic processes in this paper are defined on a complete proba- 
bility space, so if necessary we denote by (f2, ~,  P) the probability space. 

Theorem 1. Let E be a nuclear Frdchet space and X={Xt ; t~ [0 ,1 ]}  an E'- 
valued stochastic process. I f  for each ~ in E the real stochastic process X~ 
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={(X t ,  ~); te[0, 1]} has a continuous version and there exist positive number 
and a countable dense subset Q of [-0, 1] which are independent of ~ such that 

E[supl(Xt ,  ~)l ~] < oo, (1.1) 
t ~ Q  

where E[ . ]  is the mathematical expectation, then there exists a natural number p 
such that X has a II'll_p-continuous version. 

As applications of Theorem 1, we shall examine the criteria given by J. 
Delporte [-1] and M.G. Hahn/-3] as follows. 

Theorem 2. Let E be a nuclear Fr~chet space and X={Xt;  te[-0, 1]} an E'- 
valued stochastic process. Suppose that for each ~ in E the real process 
{(Xt ,  ~); t~[0, 1]} is stochastically continuous and there exist a number c~>0, a 
non-negative function ~r and a sequence of divisions {A,(~)} of [0, 1] such that 

Or is non-decreasing in h for sufficiently small h, 
(o~(h) ~ 0 as h ~ O, 

A.(~) = {t~; t~ = 0 < t ~  < . . .  <t~o = 1}, 

tn+l__ n for k=0,  1, 2", (1.2) 2 k  - -  t k  " ' "  

~) A.( 0 is a dense subset of [-0, 1], (1.3) 
n = O  

[-4r e[-supl(XtT,r  ,r o�9 (1.4) 
n=  0 A,~(O 

where 2r = min { 1, l/c@. 
I f  e = i n f  er then there exists a natural number p such that X has a 

I1' II _v-continuous version. 

Theorem 3. Let E be a nuclear Fr~chet space, X = { X d t e [ 0 ,  oo)} an E'-valued 
stochastic process and for each ~ in E let Vt(~ ) be a non-negative, non-decreasing 
and continuous function of t. Suppose that for each T>0 and each ~ in E there 
exist a number ~r and a non-negative function ~ , r  which is non-decreasing 
in a neighborhood of 0 such that 

EEl(Xt, r  - (X , ,  r =< ~r r(V~(r V~(r O<_s<_t<_T, (1.5) 

~ y - (1-4- 2r r) tPcr(y)~r oo, where ;~r r----min{1, 1/~zd, r}. (1.6) 
0 

I f  c~ r =inf  ~zr r > O, then X has a strongly continuous version. 
r 

As a corollary of Theorem 3 we have a generalized Kolmogorov's criterion. 

Corollary. Let X={Xt;  t~[O, oo)} be an ~cr stochastic process such 
that for each T> 0 and each cp in Sf(lRa), 

EEIX&o)-x,(~)I~o,~]<=v~,T(~(~o)-K(~)) ao,~§ O<_s<_t<_T, 
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where %,T, fi~o,T and 7q,,T are  positive numbers. I f  C~T=inf %,T>0,  then X has a 
strongly continuous version. 

An important application of the corollary is 

Example 4. (Theorem 4.1 of [5]). Let X = { X  d t~[0, oo)} be an~'(lRa)-valued 
Gaussian process with independent increments such that Xo=0 .  Let m(t,~o) 
and n(t, (o) be mean and variance of X~(cp). Suppose that re(t, ~o) and n(t, ~o) are 
continuous real functions of t. Then there always exists a strongly continuous 
curve m, in 5P'(IR a) such that mt(cp)= re(t, ~o). Set up Y~ = X~-  m~, then 

Eli  g(~o) - Ys(~O)?] = 3(n(t, ~o) - n(s, ~o)) ~. 

By the corollary, X has a strongly continuous version. 
The proofs of Theorems 1, 2 and 3 are given in Sect. 2. Section 3 is devoted 

to the special cases where E[[(Xe, ~ ) - ( X ~ ,  ~)[,T] <7~,r 7~r( t, s) for every ~ in 
E. 

2. Proofs 

Proof of Theorem 1. We first prove a variation of the Banach-Steinhaus 
theorem. 

Lemma 2.1. Under the condition (1.1) there exist a natural number q and a 
positive number K which are independent of ~ such that 

Proof. Set up 

E[supl(Xt,~)lO]~K)l~])6q for every ~ in E. (2.1) 
teQ 

v(r  = g [ s u p  I<X,, r 
tsQ 

By the argument similar to the proof of Lemma 1 of [8], V(~) is a lower semi- 

continuous function on E. Put E , = ( ~ e E ;  V(~)<n}. Since V({)<oo, 0 E,=E. 
n=l  

Each E, is a closed subset of E because V(~) is a lower semi-continuous 
function of ~. Since E is a complete metrizable space, by the Baire category 
theorem, (page 62 of [4]), there exist a natural number no, an element ~oeE, a 
positive number p and a natural number q such that 

~o + { ~ E E ;  II~rlq~p} CE.o. 

Hence if I I~Jlq<P,~o-~E,o.  Since V(~) is symmetric, so 
course Go + ~EE, o. 

On the other hand if 0 < ~ < 1, for every ~, t/~E we have 

- ~ o  + ~EE, o. Of 

v(r +,1) < v(~) + v(~). 
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Thus 

Therefore we obtain 

v(2 0 =2 a V(() 

= v ( -  r o + r + ({ o + ~)) 
_-<v(-r162 V(r162 
<2%. 

V(0<21-~no . 

Put K=21-~ no/p ~, then we have the desired inequality. 
If 8>1, V({) is a convex function of 3, so that the proof is completed 

similarly. 
Without loss of generality we may assume 8 < 1. Since Xr has a continuous 

version, by Lemma 2.1 we have 

sup E[}(X,, ~)1 a] <KII{JI~ for every ~ in E. (2.2) 
0=<3=<, 

Since E is a nuclear Fr6chet space, there exists an integer p > q such that 

II{jll~< co (2.3) 

for a C.O.N.S. (Complete Orthonormal System) {{j} of Ep (Theorem 3 o f  [6]). 
By (2.2) and Sazonov-Minlos' theorem (Theorem 3 of Chap. IV Of [2]), we have 

P(l[X, II_p<OO)=l for all 0 < t < l ,  (2.4) 

so that we can extend (2.1) to 

E[sup I(X,, r _<K [1r for every { in Ep 
teQ 

and also we have 

P (HX, I]2v = ~ (X.r teQ) = l -  
j = l  

It follows from (2.3), (2.5), (2.6) and 8 < 1 that 

(2.5) 

(2.6) 

Therefore 

and 

E[sup I[XtI[a_p] <- ~ E[sup KXt, ~.}y] 
t~O 1= 1 teO 

j = l  

sup IIX,[l_v < oo (a.s.P) 
teQ 

sup I(X, ,  ~j>v[2 < oo (a.s.P). 
j=  1 teQ 

(2.7) 

(2.8) 

(2.9) 
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For each { in E denote by X(t, ~, .) the continuous version of Xr Suppose that 
{eEp, t/,eE, n =  1, 2, ... and I]{-r/,llp--+0 as n--+ oo. Then by (2.8) there exists a 
subset A of f2 with probability one such that for any coEA, {X(t, tl,, co)} is a 
Cauchy sequence in C[0, 1] which is a Banach space of continuous real 
functions on [0, 1]. Set up 

Xp(t, ~, co)=the limit of {X(t, q,, co)} if coeA, 

=0  if coq~A. 

Then Xp(t, ~, .) is a continuous version of { ( X ,  {)p; to[0, 1]}. It follows from 
(2,9) that we can construct a I]'lF_p-continuous process {z,; to[0, 1]} as fol- 
lows: 

Z,(CO) = ~, Xp(t, ~j, co) ~i' 
j=l 

where {~j} is the biorthonormal basis of {~j} and the right hand limit means 
IP'll_p-COnvergence. What {Z~; t~[0, 1]} becomes a version of {X,; tel0, 1]} 
follows from (2.4). This completes the proof. 

Note. Although the above proof is similar with that in [8], we must mention 
that we need the inequality (2.3) for our purposes, which was remarked by 
Professor S. Koshi, to whom the author wishes to express his hearty thanks. 

Before going to the proof of Theorem 2, we give a slight modification of 
Theorem 5.2.2.C of J. Delporte [1]. 

Proposition 5. Let { X t ; t e [ 0  , 13} be a real stochastically continuous process. 
Suppose that there exist a number fi>0, a non-negative function 0 and a 
sequence of divisions {A,} of [0, 1] such that 

O(h) is non-decreasing in h for sufficiently small h, 
O(h)-eO as h~O,  

A,={t~; t ~ = 0 < t ] < . . . < t ~ , = l }  

Pz~*=t~, for k=O, 1, ...,2", (2.10) 

U A, is a dense subset of [0, 1], 
n=O 

(2.11) 

,=~o [~b(1/2" + z)] - 1EEsupa,, Ix,~ - x ,  7_ l lq  ;, < ~ , (2.12) 

where 2=min{1,  1/fi}. 
Then {Xt; to[0, 1]} has a continuous version. 

Proof Set up D =  ~) A , , A , = s u p r X , j - X t ~  I and h,=minlt~-t~_l].  Then by 
n =  1 d n " - A n  

(2.10) and (2.11) obviously h ,>0,  h,>h,+~ and lira h,=0.  Let m be a suf- 
n ~ o o  

ficiently large natural number such that ~b is non-decreasing over (0, 1/2re+z]. 
Then by (2.10), (2.12) and an estimation similar to the proof of the theorem of 
J. Delporte [1], for almost all coEf2 we have 
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IX,(c~)-X~(co)l<=d~(1/2~+Z)UA(co) for any s, teD, [s-tl  ~hm, 
where 

# = m a x { l ,  1/fi} and A(co)=3 ~ q~(1/2"+2)-UA,(co) eL'(f2, o~,P). 
\n=  0 

Therefore for almost all coeQ, Xt(co ) is uniformly continuous on a dense subset 
D of [0, 1], so that the proof is completed by the assumption of the stochastic 
continuity (see Theorem 2.1 of [31). 

Proof of Theorem 2. Let Q be a countable dense subset of [0, 1-]. Set up Yt = Xt 

- X  o, Q~= ~) A,(~), 6~=min{1, c~} and e=min{1,  ~}. Then by making use of 
n=O 

the inequalities (1.4), c~r > c~ and 

oo 

supl(Yt,4)[~_-< ~ supl (Yt~ ,~) - (Yt~_ , ,~) f  ~ (a.s.P), 
t~Q~ n= 0 An(~) 

we have 

E[sup I(Y. 4)lq~/~_< E[sup I(Y~., 4) - (Y~L , ~)l~qae "~ < o3, 

where #~=max{1, l/c@. (2.13) 

By the assumption of Theorem 1 and Proposition 5, {(Yt, 4); t~[0, 1]} has 
a continuous version for each 4 in E, so that we denote it by Y(t, 4, "). It 
follows from (1.3) that 

sup[<Yt(co), 4)l~=suplY(t, 4, co)[ ~= sup ]Y(t, 4, co)[ ~ (a.s.P), 
t~Qg tEQ~ O<-t < - 1 

so that by (2.13) we have 

E[sup I<Yt, ~>1 "] <_-E[ sup [Y(t, 4, co)[ ~] 
teQ 0 ~ t < t  

= E [ s u p l <  Y,, 4>1'3 < 0o. 
teQ~ 

Thus Theorem 2 is a corollary of Theorem 1. 

As an application of Theorem 2 we have 

Proposition 6. Let X ={Xt;  re[0, oo)} be an E'-valued stochastic process. Suppose 
that for each T> 0 and each ~ in E there exist a number C~,T > 0 ,  a non-negative 
function TiC, T, a non-negative function dPr and a sequence of divisions 
{A,((, T)} of [0, T] such that 

~,r(h)  ~ 0  as h-*O, 

E[I(Xt,~)-(X~,~)['~,T]<=~,T(Vt(4)-V~(~)), O<_s<_t<_T, (2.14) 

d~r r(h) iS non-decreasing in h for sufficiently small h, 



Cont inui ty  of  Stochast ic  Processes 277 

(ar r(h) --* 0 as h -* O, 

. . . .  . . .  " - T } ,  A.(~,r)={t~i , to-O<tnl  < < t 2 . -  

, + l _  , for k=0,  1, 2", t 2k  - -  t k . . . ,  (2.15) 

O A,(~, T) is a dense subset of [0, T], 
n=O 

(2.16) 

[qSr ~ ~,r(V,7(r (#)))&'T<oo, (2.17) 
n= 0 A~(~, T) 

where 2r r =min{1, 1/% r}. 
I f  ~ r = i n f  er  then X has a strongly continuous version. 

r 

Remark. If X is an U-valued Gaussian process with mean 0 there exists a 
number Cr r = C(% 7") > 0 such that 

Cr ~>-<Xs ,  g>l=] =~' ~/2 =<E[IfX. g>-<Xs ,  ~>1=~, ~], 

so that if % r < 1 ,  from the conditions (2.14) and (2.17) we can derive the 
conditions such that % r - - 2  and ~ , r  and ~br are changed for another ~'  

{,T 
and qS~, r in (2.14) and (2.17). In this case we may consider the condition of the 
conclusion of Proposition 6 is satisfied automatically. 

Proof By (2.14) and (2.17) we have 

[qS~, r(1/2 "+ 2)] - 1 E[ sup I<X,r ~> - <x,7_ ,, r ~]*~, 
n= 0 An({, T) 

< ~ [4r -a E[ 2 I<Xt 7, 4 5 - < X % , ,  {51=~,~]~, ~ 
n= 0 An(e, T) 

< ~, [q~r ~, ~,r(VtT(#)--V,%,(~)))&'T<o0. 
n= 0 An(#, T) 

By Theorem 2, for each T > 0  there exists a natural number Pr such that 
{Xt; t~[0, T]} has a [[. [] _p -continuous version, which completes the proof. 

Proof of  Theorem 3. Since ~,  r is non-decreasing in a neighborhood of 0, it 
follows from the integral condition (1.6) that 

(2,+ 1 ~ ,  r(1/2,))~, ~ < oo. (2.18) 
n = 0  

Set up Ut(~ ) = V,(~)+ t. Then U,(~) is a strictly monotone increasing function of 
t, so that if we define A,(~,T)={t~;t~ is the unique solution of the equation 
U,(~)=Uo(~)+j(Ur(~)-Uo(~))/2" }, (2.15) and (2.16) are satisfied. Since ~ , r  is 
non-decreasing in a neighborhood of 0, by (2.18) and a way similar to the 
proof of Theorem 2.3 of [3] there exists a non-negative, non-decreasing func- 
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tion ~br r on [0, 1] such that 4r T(h) --+ 0 as h + 0 and 

[q5r T(1/2 n+ 2)3 -~  ( '}-' ~ ,  r(V~7(~) - Vt7 - ~(~)))-~e,T < ~ .  
n= 0 An(~, T) 

Thus Theorem 3 is a corollary of Proposition 6. 

I. M i t o m a  

3. Examples 

For each T > 0  let a T be positive number and TT(t, s) a non-negative function 
of t,s~[O, o0) which are independent of ~ in E. For each T > 0  and each ~ in E 
let 7r T be a positive number. 

Proposition 7. Let X = {Xt; t~[O, oo)} be an E'-valued stochastic process. 

(I) For each T>O if 

E[ I (X , ,~) - - (Xs ,~) I~]N7r  O<_s<_t<_T for any ~ (3.1) 

in E, then for each T > 0  there exist a natural number PT and a positive number 
A r such that 

E[IIXt--XsI[=_~]<=AT~PT(t,s), O<_s<_t<Z. (3.2) 

(II) In addition to the assumption o f ( I ) / f  there exists a positive locally bounded 
function f ( t )  on [0, oe) such that 

sup 7r < ~ for any ~ in E, (3.3) 
O< T <  o~ 

then for each T>O there exist a natural number p which is independent of T 
and a positive number B T such that 

E[HXt--XsI[~_Tp]<~BT}FT(t,s), O<_s<_t<_T. (3.4) 

In the above cases the same type of criteria on a T and T T with those of real 
cases are applicable for the norm ( l l ' l l -w  or II'll-v) continuity of X. For 
example we have 

Example 8. Let X =  {X,; t~[0, oe)} be an E'-valued Gaussian process with mean 
0. If for each T > 0  there exists a positive number fiT such that the condition 
(3.1) with a T=2  and ~PT(t,s)=(t--s) BT is satisfied, then by (3.2) and 
Kolmogorov's criterion for continuity of real Gaussian processes (Theorem 
21.3 of [10]), {Xt;te[O, r ] }  has a ][ . [[ _p -continuous version for each r > 0 .  
Moreover if the condition (3.3) is satisfied, by making use of (3.4), X has a 
[I'll-p-continuous version, where p is a natural number which is independent of 
T and 3. Theorem 7 of [7] is the case where fir = 1. 

Before proving Proposit ion7 we give a lemma whose proof is similar to 
that of Lemma 2.1. 
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L e m m a  3.1. (i) Under the condition (3.1) for each T > 0  there exist a natural 
number qr and a positive number M r which are independent of ~ such that 

E[l(Xt,~)-(Xs,~)l~]<__Mrll~llq~kUr(t,s), O<_s<_t<_T. 

(ii) Under the conditions (3.1) and (3.3) for each T > 0  there exist a natural 
number q which is independent of T and ~ and a positive number N r which is 
independent of ~ such that 

Ef l (Xt ,~)-(Xs,~) l~]<Nrf(r) l l~[lqTT~r(t ,s) ,  O<s<_t<_T. 

Proof of Proposition 7. By (i) of  L e m m a  3.1, (3.2) fo l lows f rom the  e s t i m a t i o n  
s im i l a r  wi th  (2.7) if c~r__<2. I f  c~ r>2  we c h o o s e  a n  in t ege r  p r > q r  such  t h a t  

~ [ l~j l lqr<Oe for a C.O.N.S.  {~j} o f  Ep . Le t  m be  the  first  n a t u r a l  n u m b e r  

j=e  (--~1 )2~ such  t ha t  Ogr/2m+X~1. Pu t  A t =  (Mr]l{j][q~.) 1/2m , t hen  (3.2) fo l lows b y  a 
J 

s i m p l e  e s t ima t ion .  By (ii) of  L e m m a  3.1, (II) is p r o v e d  s imi la r ly .  
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