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Age-Dependent Birth and Death Processes 

R. A. DONEY 

1. Introduction 

The oldest mathematical model for the stochastic evolution of a population 
is the Galton-Watson process, whose study was first motivated by Galton's famous 
problem on the extinction of family names. This process is only concerned with 
the sizes of successive generations of the population, so it essentially treats a 
situation where objects live for a fixed time and are replaced on their death by a 
random number of children. In the age-dependent branching process the objects 
live for a random time, but again children are only born when an existing object 
dies. In the age-dependent birth and death process, which apparently was intro- 
duced by Kendall [5J, each object is replaced by a random number of children 
born at various random times throughout its life. The process, which we denote 
by Z(t), is specified by two quantities, the birth rate 2(x) and the death rate/~(x); 
an object of age x at time t has probability 2(x) dt of giving birth to a child in 
the time interval It, t+dt], and probability l~(x)dt of dying in this interval. 
If 2 and # are constants, Z(t) is Markovian, and is in fact the Yule-Furry process. 
Other wise Z(t) is non-Markovian, and there seems to be little known about it. 
It shares with age-dependent branching processes the property that the sizes of 
successive generations form a Galton-Watson process, and one might expect it to 
have similar properties. In this paper we establish many such similarities (e.g. 
extinction probability, asymptotic behaviour of first moment, convergence in 
mean square), but we also establish some interesting differences. In particular 
(Theorem 7.6) we show that in the supercritical case there is a necessary and 
sufficient condition for the convergence in distribution of Z(t)/E(Z(t)) to a non- 
degenerate distribution which is weaker than the corresponding condition for the 
associated Galton-Watson process. The key to aU these results is the integral 
equation satisfied by F(s, t)(=E{sZ")}), which is found in Theorem 3.3. This is 
rather more complicated than the corresponding equation for branching processes, 
but we show that it can be exploited in much the same way. 

2. The Basic Set-Up and the Generation Sizes 

Let J be the collection of all elements i, where each i is either zero or a finite 
sequence (il, i2, . . . , ik) of positive integers. Then by interpreting (0)  as the 
ancestor and (il ,  ..., ik) as the ik-th child of the ik_ 1-th child of . . .  of the ia-th child 
of the ancestor, we can use J to label all possible descendants of the ancestor. If 
we prescribe the time of birth and the length of life of each such descendant, then 
we can trace out the history of the family of the ancestor. This suggests 
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Definition 2.1. Let i0(=(0)) ,  ix, i 2, ... be some fixed enumeration of J; then 
by a family history oo we mean a sequence {1, bi~, Ill, bi2, Ii . . . . .  ) where each term 
of the sequence is a non-negative real number such that if i = (il,  ..., JR) with ik > 1 
then bi>bi,, i' = ( i l ,  i2, ..., ik_x, ik-- 1). 

If we interpret l i as the length of i's life and bi as the age of the parent of i when i 
is born, then each co defines a family in the following way; for i-- (il,  ..., ik) set 

v i (co) = max {jLbj <= li, where j = ( i l , . . .  , ik, j}}. (2.1) 

Then we can define inductively the generations, Io (co), 11(co), by setting Io(co)= {(0)}, 
/ k + I ( C O )  = {] = (il,  "",  ik, J)lieIk(co) and j <  vi} for k =0, 1, . . . .  The family I(co)-- 

oo 

U Ik (CO), consists of all descendants of the ancestor which are actually born (note 
k = 0  

that co contains information about objects which are never born). To define the 
population size Z(t, co) at time t>0,  assuming that Z(0, co)=l, set Z~(t, co)= 1 if 
i = (h , . . . ,  ik) elk(CO ) and 

(a) b<il> +b<i~,i2> +. . .+bi  <=t, 
(2.2) 

(b) b<h> +b<il, i2> + . . .+b i+l i> t ,  

Zi(t, co)=O otherwise, Zt(t, co)= ~, Zi(t, co ) for k > l ,  Zo(t, co)=l if l>t, =0 if 
i ~ l k  (w) 

l<t. Then Zk(t, CO) is the number of members of the k-th generation which are 

alive at time t, and so Z (t, co)= ~, Zk (t, co) is the population size. 
k = 0  

It is useful to note that we can write Z(t, co)= B(t, co)-D(t, co), where B(t, co) 
is the number of objects which are born in [0, t] (including the ancestor) and 
D(t, co) is the number which die in [0, t], so that for each fixed co B(t, co) and D(t, o~) 
are monotone increasing functions of t. To define these functions rigorously, for 
ielk(co ) put B~(t, co)= 1 or 0 according as (2.2a) holds or not, Di(t, co)= 1 if (2.2a) 
holds and (2.2 b)fails, = 0 otherwise, B k (t, co)= ~ Bi(t, co), D k (t, co)= ~ D i(t, co) 

ie I~( to)  i ~ l k  (co) 

for k >= 1, B0 (t, co) = 1, Do (t, co) = 1 or 0 according as l_< t or 1 > t, and 

B(t, co)= ~ Bk(t, co), D(t, co)= ~, Dk(t, co). 
k = 0  k = 0  

We now introduce a probability measure P on the space Q of all family histories 
co which expresses our underlying assumptions. These are that the ancestor is of 
age zero at time zero; all objects evolve independently of each other; each object 
is certain to die, and at age x has probability p(x)dt  of dying in It, t+dt] and 
probability 2(x)dt of giving birth to a child in [t, t+dt], these events also being 
independent. Thus each l~ is the waiting time till the first event in a Poisson process 

x 

of parameter D(x)= ~ p(y)dy, each bi is the waiting time till the ik-th event in a 
0 x 

Poisson process of parameter L(x)= ~ 2(y)dy, and we are lead to 
o 

Definition 2.2. The propability measure P on ~ is defined by the two assump- 
tions 
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A. The random variables I, li~, lj 2, ... are independent, identically distributed 
x 00 

and P {l__< x} = 1 - e -~ u~r) dy, where # is continuous, _-> 0, and S/~ (Y) dy = + 00. 
0 

B. The random variables bj are independent of the l~ and the sequences 
{b<i, 2> b<i, 2> . . . .  } are independent and have the same distribution as {bl, b2,...}, 
where 

x l  x 2  Xn 

P { b ~ < X l , ' " , b . < x , } = I  I " "  ~ 2(Yl). . .2(Y,)e-L('")dYt. . .dY, (2.3) 
0 Yl Yn-t 

x 

for x , > x , _ l  >... >>_xl >0, where L(x)= j" 2(y) dy, 2(x) is continuous and _->0. 
o 

Note. A and B together specify a consistent set of finite-dimensional distribu- 
tions, so Kolmogorov's theorem implies that there is a uniquely defined probability 

measure P on (O, F) where F is the Borel extension of the cylinder sets in O. From 
the definition of Z(t, co) it can be seen that Z(t, co) is measurable as a function of 
(t, o). 

Now let ~k(CO) be the number of objects in the k-th generation, Ik(o) ). We have, 
t 

-ol ~ (x) dx 
writing G (t) -- 1 - e 

Theorem 2.3. {~, (co), n > 0} is a Gahon- Watson process with generating function 
co 

h(s)= ~ e (~-1~ LtO dG(t). 
0 

Proof Clearly the random variables vl defined in (2.1) are independent, 
identically distributed and 

co 

P {v=k} = ~ P {k births occur in [0, t]} dG(t). 
0 

Now ~ skP{k births occur in [0, t]}=e ~s-I)L~O, so it follows that each v i has 
k=O 

generating function h (s), and since ~1 (co)= v (co), we have E (s r176 = h (s). Also 

E{S~2(r ~ -~ ~E{sr  ~E{s~<'>+~<'>+'"+O~>}p{~=kI=h(h(s)). 
k = O  k = O  

In the same way one can check that E (s r (~))= h (E (s r (~ and this property is 
characteristic of the Galton-Watson process. 

Remarks. (1) It is well known that P {,-~ ~olim ~, (co)}=q, where q is the smallest root 

in [0, 1] of h(s)=s. Clearly l im~,(co)=O~limZ(t,  co)=O; we show later in fact 
P{:imZ(t ,  co)=O}=q. ,~oo , ~  

(2) Note that P {i is alive at time t I i elk (CO)} is not the same for all members of 
I k (co); this means that, in contrast to the situation for the age-dependent branching 
process, we cannot construct the process {Z(t, co), t > 0} from {~, (co), n > 0}. This 
suggests that properties of ~ (co) might not be too reliable as a guide to properties 
of Z(t, co). 
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If we now set m = E {~1 (co)} = h' (1)< o% then it is clear that  E {~, (co)} = m"< oe 
for all n, provided m < o e .  However, even in the case m = o e ,  we still have 
E{Z(t,  co)}<oe for all t > 0 ,  , as we can see from 

Lemma 2.4. Under the basic assumptions, 

m(t)=E{Z(t ,  co)} = e - D ( ~  ~ I~'"~ e-/~('-~'-x~ . . . . . .  ~) 
k = l  {O<xl+...+Xk<=t} 

k 

�9 1]'~(xJ) e -D(~) d X l . . ,  dxk .  
)=1 

Proof. We use the decomposit ion Z (t, co)= B (t, co) -D (t, co), and note that  
oo oo 

E(B(t, co))= 1 +2E(Bk( t ,  co))= 1 +2f lk ,  
1 1 

say. Now, by assumption (A) 

flk = ~P{i~Ik(CO ) and i is born in [0, t]} 
i ~ J  

= ~ " "  ~ P{b<i,><l;b<il, i2><-li," "b<il, <l �9 - -  , " ' ,  . . . .  i k ) =  ( i l  . . . . .  ik t ) ,  

h = l  i k= l  

b<r +...+b<i ...... Ck>_-<t} (2.4) 

i 1=1  i k = l  y i = O  y k = 0  

k 

�9 [I  #(YJ) e-D(Y~)dyl.., dyk. 
1 

From assumption (B) it follows that  b<i, ..... C j> has probabili ty density function 
2(x) e -L(x) {L(x)} i~- 1/(ij- 1)! and since the b's are independent the probabili ty on 
the R.H.S. of (2.4) is equal to 

k 

f'" "~ [ l  {2(xj) e - L(xj) {L(xj)}'s-~/(is- 1)!} dXl.., dx k. 
O < x  < O < x  < { = 1=yl . . . . . .  k=Yk~ j=l 

( xl+.. .+xk<=t J 

Putting this into (2.4) we see that  we can interchange the order of integration and 
perform the yj integrations to get 

ilk = ~' , '"~ S'"~ [I{e-D(~"2(xj)e-L(xJ){L(xj)}q-1/(ij--1) [} dxl""dxk 
i 1=1  i k = l  {O<=xl+'..+xk <=t} j = l  

(2.5) 
= ~...~ [Ie-D(x~)2(xj)dxl.. .dxk. 

{0 <Xl + ' " + X k ~ t }  j = l  

If we argue in the same way for D(t, co), we find that  

E(D(t, co))=l_e-D(t)+ ~. ~...~ ( l_e-D(t- :q-  . . . . . .  )) 
k = l  {O<--xl+...+xk<=t} 

k 

�9 I~ 2(x j) e -D(~j) dXl..,  dXk, 
j = l  

which, together with (2.5), proves the lemma. 
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From this follow several useful facts, which we collect together in 

Lemma 2.5. (i) P {Z (t, co) < m for all t > 0} = 1; 

(ii) m(t) is continuous on (0, oo); 
(iii) F(s, t)=E(s z(t' ~o)) is continuous on [0, oe) for fixed s, ]sl < 1; 

(iv) For each n~O P{Z( t )=n}  is continuous on [0, oo). 

Proof (i) This will follow from P {B (t, co)< ov for all t > 0} = 1, and since B (t, co) 
is monotone  in t for fixed co this will follow if we can show that  E(B(t, co))< ov for 
all t>0 .  Now 2(x) is continuous, so C~= sup 2(x)<  0% and from (2.5) we see that  

xe[0 ,  t] 

E(B(t, co))<=l+ ~. Ckt f I  dxl . . .dXk=exp(tCt)<oo.  
k = l  {O<-xl+.. .+x~:<=t} 

(ii) As above, we see that  

l i m l m ( t ) - m ( t - h ) [ <  ~ C~lim I ' "~  dx~. . .dxk=O. 
h~0 k = l  hJ, O { t _ h < X l W . . . W x k < t  } 

Similarly lim I m (t + h) - m (t) l = 0. 
h+0 

(iii) The elementary inequality I sa-  sbl < la-bl for any I sl < 1, real a and b, 
gives IF(s, q ) -  F(s, tz)J <= E {IZ ( q ) -  Z (t2)I}. 

Suppose t 1 > t2; then since B(tl, co)> B(tz, co), D(tl, co)__>D(t2, co) we have 

E {IX (tl, co) - -  Z (t2, co) I} < g {B (tl, co)-  B (t2, co)} + E {D (tl, co) - -  D (t2, co)} --~ 0 

as tt ~ t2 by the argument  in (ii). 

(iv) By (iii) we know that  Z(t) o >Z(to) as t -* t  o ( D , means convergence in 
distribution) and by (i) we know that the distribution of Z(t) is concentrated on 
the non-negative integers, so this is immediate. [] 

3. The Equation for F(s, t) 

We start by formulating mathematical ly the idea that, for t>0 ,  Z(t,  co) can be 
considered as the sum of all the living descendants of the children of the ancestor. 
If co=(/, bi, , Ill , ...) let cok=(/(k>; b<k,i,>; l(k, il>; ...) denote, for k >  1, the family of 
the k-th child of the ancestor, and let coo = (1, b(l>, b<2), ...). Then each co is equiv- 
alent to a sequence (coo, col, co2 . . . .  ), al though if k>v(co) none of the family cok 
ever exist. Write b<k ~ = bk; then we have 

Theorem 3.1. For t > 0 set v (t, co) = max {k: b k < t, k__< v (co)}, A t = {co: l(co) > t} 
and let IA~ (co) be the indicator function of At. Then 

v (t, o)) 

Z(t,  co)= ~ Z(t--bk,  cok)+Iat(co), (3.1) 
k = l  

v (t, ~)  

S(t, co)---- ~, B( t -bk ,  COk)+!, (3.2) 
k = l  

~, (t, co) 

D(t, co)= 2 D(t -bk ,  cok)+ 1--IAt(co). (3.3) 
k = l  



74 R.A. Doney: 

Proof It is easy to check that when k<v(t,o)),  B<k,i>(t, co)=Bi(t--bk, (-ok); 
summing over all i e J  and k<v( t ,  o~) yields (3.2), if we remember that Bo(t, ~ ) =  1. 
A similar argument yields (3.3), and subtracting these two results gives (3.1). []  

Now writing co=(COo, ~ol, ~o2, ...), O j=  {all c@ we have f ~ = f i  Oj, and in the 
a oe ~ 0 

same way we can write (f2, F, P) = I-I (ol, Fi, Pi). Also, for i > i the spaces (O,, Fi, Pi) 
0 

will be replicas of the basic space (f~, F, P). Since the random variables v (t, co), 

b,(co) and IA~(co ) are F o measurable for fixed t, it is clear that for Isl < 1, 

Ok) + / A t  (CO) ~ I A  (0 )  e { s  ~ z(t-bk(o~), Fo}= F(s,t-bk(O)) {s ~ }. 

It follows therefore, from (3.1), that Isl _-< 1, 

( v  (t, co) 

F(s,t)=E ~ k~_ I F(s,t--bk(O))).[sIA,(~o)+IL(o~)]}, (3.4) 

where i[  t = f 2 -  At = {l_  t}. 
Let N(u, o))=sup{n: b,(e))__<u}; then i f / ( co )= /and  z-=min {l, t} we see that, 

for ue[0,  r], N(u,o~) is a step function which increases by one at the points 
ba, ...,  by(t, o~1. Now F(s, t) is a continuous function of t (Lemma 2.5) so it follows 
that 

E~k~_l F(s, t --bk(e))) l l (o)=l = E  exP~ologF(s , t -u )dN(u ,m ) . (3.5) 

We calculate the R.H.S. of (3.5) in 

Lemma 3.2. I f  (~(u) is any piecewise continuous, complex-valued function and 
O(u) = e ~(u) we have 

E exp q~(u)dg(u,o)) =exp  {0 (u ) - l }2 (u )du .  (3.6) 
0 

Proof. If we set N~(co)=N((r+l)3,  e ) ) -N(r3 ,  ~o) for r=0 ,  1 . . . . .  n - l ,  where 
(5 = t/n, then outside of a set  of probability zero (on which 3 a common point of 
discontinuity of ~b(u) and N(u, ~o)) we have 

Also 

t n - - I  

I~)(u)dN(u, co)= lim ~ ~(rb)N~(o)). 
0 n ~ o o  r = O  

(N(t,  co) =k} = U A.(q ,  r 2 . . . .  , rk)+ Ek., 
0 ~ t l  < r 2 <  ,., < r k < n  

where 

A,(q, r2, . . . ,  rk) = {N,~(~o) = 1 for r = r j , j =  1, 2 . . . .  , k; N,~ (co) = 0 for r #rj}, 
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and 0 E, k ~ E, = {at least one of N,' (co) > 1 }. Now N(u, co) is a Poisson Process, so 
k=O n--1 k 

l imP{E,} =0, and since ~ qS(rfi)N[(co) = ~ ~b(rj ~) when co~A,(rl, ..., rk)we have 
n~ao r = l  j = l  

E exp u)dN(u, co =P{N(t ,  co)=O} 
k (3.7) 

+ l im  ~ • I]~(r j6)P{A,(r l  . . . . .  rk)}. 
n~oo k = l  O_-<rl<. .-<rk<n j = l  

Clearly P {N(t, co) = O} = P {b 1 > t} = e-  ~.(t) and 

P { A,(q,  ..., rk) } = P  {bj~(rj(5, (0+ 1) 6 ) , j=  1, 2, ..., k, bk+ 1 > t} 
k 

=e -L(') I]62(06)+o(1) ,  
j=l 

where o(1) denotes a term which tends to 0 uniformly in k as n--~ ~ .  Putting this 
into (3.7), we see that 

E eXP~oC~(u)dN(u, co )J=e-L(t)lim._~m 1+ k=Ik. , (3.8) 

k 

where k_  I . - -  Z 1~ 6 O (0 6) )'(rJ c~) �9 
0 < r l < . . - < r k < n j = l  

Now I k is a Riemann sum approximating 

Ik= ~"'I [I  O(uj)).(uj)duj= O(u)2(u)du k!, 
O<-ul<'"<u= = k = < t j = l  

so (3.6) will follow if we can justify letting n-* oo in (3.8). However, for some 
0 < M < o o  we have IO(u)2(u)[NM for u~[0, t], so that Ilkl<=(Mt)k/k!, and the 
result follows by dominated convergence. []  

This leads us immediately to the basic 

Theorem 3.3. I f  Is] =< 1, then for t >=O F(s, t) satisfies 
u 

r(s, t) = i exp ~ (F(s, t -  v ) -  1) 2 (v) d v dG (u) + s (1 - G (t)) 
0 0 

Moreover, if 0 < s < 1, there is only one solution of(3.9) with 0 <-_ F(s, t)<= 1 for t > O. 

Proof. From (3.4) and (3.5) it follows that 

F(s , t )=SE exp logF(s , t -u)dN(u ,  co) dG(u) 
i j  

+ E  exp logF(s , t -u)dN(u ,  co) dG(u). 

Taking s and t fixed and writing ~p(u)=F(s, t -u ) ,  we see that (3.9) follows from 
(3.10), using Lemma 3.2. 
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To establish the uniqueness result,we define a sequence of functions Fk (s, t) as 
follows. Let T{F(s, t)}  denote the R.H.S. of (3.9); put Fo(s, t)-O, Fk+l(s,t)= 
T{Fk(s, t)} for k=0,  1, . . . .  Then we can see by induction that the Fk(S, t) are power 
series in s with non-negative coefficients, and that O<Fl(s, t)<F2(s, t )< . . .  < 
Fk(S , t )=  1 for 0<s_< 1 for every k. It follows that Fk(S , t)TF*(s, t), where F*(s, t) is 
a solution of (3.9) with 0 < F* (s, t)_-<l for 0_< s_< 1. For any fixed s e (0, 1] let F(s, t) 
be a solution of (3.9) with O<<_F(s, t)< 1. Then it is easy to see that F(s, t)>Fk(s, t) 
for each k and hence f ( t ) =  F(s, t ) - F *  (s, t)> O. If we use the elementary inequality 
] e - ~ ' - e - ~ 2 ] < l x l - x 2 [  for x l > 0 ,  x2>0,  we see from (3.9) that 

t u t 

f ( t )  <_ ~ Sf ( t  -- v) ), (u) dv e-  D(,) It (u) du + s e-  D(t) ~f(t  - u) ), (u) d u. 
O 0  0 

Integrating the first term on the R.H.S. by parts we have 
t t 

f ( t )  <= S f ( t  - u) 2 (u) e-  D(u) du + (s - 1) e- "(t) ~f( t  - u) 2 (u) du 
o o (3.11) 

< ~f ( t  - u) 2 (u) e-  D(u) du. 
0 

K 

Clearly 3 0 < K < oo with ~ 2 (u) e- D (,) < 1; it follows from (3.11) that if 0 < ml = 
0 

sup f ( t )  then m 1 <rex; thus m a =0, i.e. f ( t ) = 0  for ts[0,  K]. Similarly, if 0<m2 = 
t~[0, KI 

K 

sup f (t), (3.11) yields m2 =< ~ m2 2 (u) e- D (,) d u < me, so m2 = 0. Proceeding in this 
t~[K, 2 K ]  0 

waywe see thatf(t)----0, i.e. F(s, t)= F*(s, t). [] 

Clearly we can use Theorem 3.1 and Lemma 3.2 to find equations which are 
satisfied by FB (s, t) = E (S  B (t, co)) and FD (s, t)---- E (s ~ ~' ,o)); the results are given in 

Theorem 3.4. For t >O, Isl < 1, F~(s, t) and FD(s, t) satisfy (3.12) and (3.13) respec- 
tively. t u 

FB(s, t)= ~ exp ~ [{FB(s, t - -v) - -1}  2(0 - -# (0 ]  dv It(u)du 
o o (3.12) 

t 

+exp ~ [{FB(s, t - -u)- -  1} 2 (u) - It (u)] du, 
0 

t u 

Fo(s, t )=s  ~ exp ~ [ {Fo(s, t - v ) -  1} 2@)-It(v)] dv #(u) du 
o o (3.13) 

t 

+exp ~ [{FD(s, t--u)--1} 2(u)--It(u)] du. 
0 

Another use of Lemma 3.1 is in investigating the joint distribution of Z ( q ,  co), 
Z(t2, co), ..., Z(tk,  co). The most important case is k =2, when we have 

Theorem 3.5. F2(sl, s2, tl, t 2 ) =  E { s z (tl" ~) s z (h +t2' o)} satisfies, for  q >=0, t 2 >=0, 

I s d< l ,  Is21<l, 

F2 (st, s2, q,  t2) = I a(s l ,  s2, tx, t2, u) It(u) d u + s  I G(Sl, s2, tx, t2, tO 
o (3.14) 

t l + t 2  

H (S2, t l ,  t2 ,  u) It(U) d u - t - s  t s 2 G ( s l ,  s 2, t l ,  t 2, tl) H ( s 2 ,  t 1, t2 ,  t 1 + t2),  
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where 
u 

G(sx, s 2, tl, t2, u)= exp ~ [{F 2 (s~, s2, tl - v ,  t2 ) -1}  2(v)-#(v)]  dv 
0 

for u~[0, q], 
u 

U(s, tl, t2, u)=exp ~ [{F(s, t 1 + t 2 - u ) -  1} 2(v)-#(v)]  dv 
t l  

for u ~ [t 1, t 1 q- t2]. 

Proof If we write 
t~(11, tO) 0 (/1 q- t2, to) 

Y= Y(sl,s2,q,t2,co) --= 1-[ F2(sl, s2,t,-bk(co),t2) [I F(s2,tl +t2-bk(co)) 
k = l  k=v(t, oa)+l 

then, from Theorem 3.1 we can deduce that 

F2 (Sl, S2, t l ,  t2) = EAo (Y) + sl EA~(Y) + sl s2 EA2 (Y), (3.15) 

where Ao={l<tl}, Al={q<l<q+t:} ,  and A2={l>fi+tz}. If we write 0 (u )=  
F2(Sl, s2, t l -u ,  t2) for ue[0,  fi], O(u)=F(s2, q+t2-u)  for ue(q, t~ +t2],  then 
0 (u) is piecewise continuous and 

( min(v.t,+t2) dN(u, co)),) 
E{Yll(co)=v}=E lexp o~ logO(u) 

so an application of Lemma 3.2 to (3.15) yields (3.14). []  

4. The Extinction Probability 

As our first application of Theorem 3.3, we show that the extinction probability 
for Z (t, co) is the same as for ~, (co). 

Theorem 4.1. Let q(t)=P{Z(t, co)--0} and q=P {!im~n(co)=O}, (so that q is 

the smallest root in [0, 1] of h(s)=s). Then if q=O, q(t)---0; if q > 0  then q(t)T q 
as t-+ c~. 

Proof Since q(t)=F(0, t) it follows from Theorem 3.3 that 

t u 

q(t)= ~ exp ~ [{q(t--v)- 1} 2 (v) -- # (v)] dv #(u) du. 
0 0 

(4.1) 

Since Z(t, co)=0 ~ Z(t', co)=0 for t '>  t, q(t)Tqo____ 1 as t ~ oe. By the monotone 
convergence theorem, we can let t -+ oo in (4.1) to get 

oo 

qo = ~ exp(qo-  1) L(u) dG(u)=h(qo). 
0 

Thus qo>=q; to show that qo<=q, let to=SUp{t: q(t)<q} and assume that t o is 
finite. Now by Lemma 2.5, q(t) is continuous, so q(to)= q. However, from (4.1) 
we have 

to 

q(to)< ~ exp(q-- 1) L(u) dG(u), 
0 
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and we know that  
rio 

q = h ( q ) =  ~ e x p ( q -  1) L(u) dG(u), 
0 

so it follows that  G(to)= 1. This contradicts  our  basic assumption that  #(u) is 
cont inuous for ue  [0, oo), so we must  have t o = + oo. Thus qo = q  as asserted. [ ]  

Corollary 1. I f  A = {~, (c~) > 0 for all n}, B = {Z (t, oo) > 0 all t > 0} and P(A) > 0 
then P {BIA} = 1. 

Corollary2. Let  m=E{~l (c~)}=h ' (1)<oo.  Then if  r e<l ,  P { Z ( t , ~ ) = O  for 
large enough t} = 1; if m > 1 P {Z  (t, ~o) > 0 all t} = 1 - q > O. 

5. The Moments of Z ( t ,  o~) 

We know from L e m m a 2 . 4  that  m ( t ) = E ( Z ( t ,  co)) is bounded  on each finite 
interval, so we can differentiate (3.9) w. r.t. s and let sq" 1 to get 

re( t )= ~ m ( t - v ) 2 ( v ) d v e - D ( " )  l~(u)du+e-D(') 1 +  m ( t - u ) 2 ( u ) d u  . (5.1) 
0 0 0 

If we integrate the first integral by parts we find that  

t 

m(t) = S r e ( t - u )  2(u) e -D~") du + e -D(t). (5.2) 
0 

oo 

Suppose now 3 e s.t. e - ' "  2(u)e  -at") =v(u), where S v ( u ) d u =  1, then it is easy to 
see that  m*( t )=e  -~' re(t) satisfies o 

m* (t) = i m* (t - u) v (u) du + e-  ~t e -  D(,}, (5.3) 
0 

which is the integral equat ion of renewal theory.  Now if 

oo 

l < m =  ~ 2(u)e- ' ( " )  d u <  oo, 
0 

then clearly ~ exists and is positive; also if m <  1, ~ may exist and if it does it is 
negative, finally if m = + oo then a may  or may not  exist; if it does it is positive. We 
can therefore employ s tandard methods  to prove 

Theorem 5.1. (i) I f  l < m < o o  or m= oo  and c~ exists then m( t )%ae  ~' as t ~ oo, 

where a=  ~ e -~' e-D(t) dt  tv(t)  dt is finite. 
0 

(ii) I f  0 < m < l  then m( t )~O as t---,oo; if ~ exists then m ( t ) % a e  ~' as t ~ o o  
provided that e - ~ .  e -D(~) is Directly Riemann integrable over [0, oo] 

a=O if Stv(t)dt=+oo. 
0 
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oo 

(iii) I f  m= 1 then a=0 ,  and if ~ e -D{t) dt < ~ ,  lim m(t)=a, where again a = 0 / f  
t ~  O0 oo oo 0 co 

tv(t) d t= + c~. I f  5 e -D{t) d t= + oo and ~ tv ( t )d t< oo, thenm(t)-+ + oo ast---~oo. 
0 0 0 

Proof. All of these statements follow from Theorem 2, p. 349 of [2-t, except 
for the last part of (iii). To see this, note that if mT (t) is the solution of 

t 

mT(t)=e-D(t)+ ~mT(t--u)v(u)du , t<=T, 
0 

t 

roT(t) = ~ mT(t--U ) V(U) du, t> T, 
0 

T / i  
thenm(t)>mT(t).ButmT(t)--*~e-D(t)dt tv(t)dt,  s o m ( t ) - * + ~ .  [] 

0 

It we differentiate Eq. (3.54) w. r. t. s~ and s2, then let sa Yl and s2 I"1 we find that 
M(t, ~)=E(Z(t,  a~) Z(t  + z, co)) satisfies 

t 

M(t , z )=~M( t -u , z )2 (u )e -D(" )du+f ( t , r ) ,  for t > 0 ,  z=>0 (5.4) 
0 

where 
t t 

f (t, z) = e -D(t + o + e-mr) ~ m(t + z -  u) 2(u) du + e -D(t + ~) ~ m ( t -  u) 2 (u) du 
0 0 

+ ~e-D(%~(u m ( t + ~ - u ) ~ m ( t - v ) 2 ( v ) d v + m ( t - u ) I m ( t + r - v ) 2 ( v ) d v  du 
0 0 0 ( ,  + 5+ ~m( t -u )2 (u )du  e-D(")2(u)m(t+z--u)du. 

0 

6. The Supercritical Case; Mean Square Convergence 
In this section we assume 1 <m < ~ ,  and investigate the mean square conver- 

gence of W(t)= Z(t)/a e ~t. To do this, we need to know the asymptotic behaviour 
oo 

of M(t, z); if we write M(t, z)=e -2~t-~ M(t, z), ~ = ~ e -2~" A(u) e -m"l du, -~(u) = 
0 

e-2~"2(u) e-D~")/~, ~(t)=e-~tm(t)  and f(t, z )=e-2~t -~ f ( t ,  z), then (5.4) may be 
written as 

t 

~4(t, z)=f( t ,  ~) + ~ ~ M(t - u ,  ~) V(u) du. (6.1) 
0 

For  fixed z, this is a renewal equation; to deduce the asymptotic behaviour of 
M(t, ~) we need the preliminary 

Lemma 6.1. I f  1 < m <  oo and E(~(co)) < oo then lim f( t ,  z ) = a  2 K uniformly in 
t ~ O 0  O0 U 

r>O, where K =2  ~ e . . . .  D(u) 2(u) ~ e -~v 2(v) dv du. 
0 0 
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Proof Since N(t) is cont inuous and converges to a as t--*oo, 3 A < o o  s.t. 
Yz(t)<=A for all t > 0 .  Using (5.2), we see that  

t t + ~  

e -D(t) ~ m ( t + z - - u )  2(u) d u n  ~ m ( t + z - u )  2(u) e -D(u) du<=m(t+z)<=A e a(t+r), 
0 0 

t t 

e -D(t+~) ~ m ( t - u )  2(u) du< ~. m ( t - u )  e -D(") 2(u) du<=A e ~t, 
0 0 

and 

Also 

so that  

e - ' ( " )  2(u) m(t + z - u ) < m ( t + z ) < A  e ~('+~ 
t 

o~ 

e-m.)  2 (u) L(u) du = E (~  (co)(~ (co)- 1))< 0% 
0 

t t + z  

e -~tat+*) ~ re ( t -u )  2(u) du ~ m ( t + z - u )  e -D(") 2(u) du 
0 t 

t t + z  

<A2 ~2(u) d u ~ e-D(~) 2(u)du 
0 t 

t + z  

<=A 2 ~ e-D(") 2(u)L(u)du 
t 

00 

<=A2~e-D(")2(u)L(u)du--*O as t---~oo. 
t 

Thus { / ( t ,  z )=  I e-"(")-~" ~ ( t + ~ - - u )  I ~( t - -v)  e - ~  2(v) dv 
0 0 

+ N ( t - u ) ~ N ( t + z - v ) e - ~ V 2 ( v ) d v  2(u)du+o(1) ,  
o 

where o(1) denotes a term which tends to 0 uniformly for �9 > 0  as t ~ oo. Also for 
u 

fixed u the bracketed term in the integral tends to 2a  2 ~ e -~v 2(v)dv uniformly in 
0 

% and is dominated  by 2 A 2 L(u). Thus, uniformly in z >  0, lira f(t ,  ~) = a 2 K < oo. [] 
z ~ o o  

Applying a s tandard renewal theory result (see [3], p. 163), we have the 
immediate  

a 2 K e e(2t+ ~) 
Corollary. M(t, ~)% as t---~oo, uniformly in z>O. (Note that  

necessarily 0 < N < 1.) 1 - 

This leads us to 

Theorem 6.2. I f  1 < m <  Go and E(~f(co))< o% then W(t) converges in mean 
square (and hence in distribution) as t--*oo to some random variable W, where 
E ( W ) =  1, Var (W) = {K/(1 - N ) }  - 1 >0 ,  and ~b(p) = E(e -pw) satisfies, for p >0 

oo u 

~b(p) = I exp j" {(~b (p e -~v) - 1) 2 (v ) -# (v )}  dv #(u) du. (6.2) 
0 0 
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Proof It follows from the above corollary that E {W~+~-Wt}2--40 uniformly 
in z as t--->c~, so ~ W such that E(Wt-  W)2~0 ;  clearly E ( W ) = I  and E(W2)= 
K/(1-  YO. To see that Vat (W)> 0 we must check that K > 1. Writing 

u 

A(u)= ~ e -~v 2(v) du, 
0 

we have 

K = 2  ; e  -m") A(u)A'(u)du=2 ;A(u)A'(u) ; e -~ #(v)dv 
0 0 v = u  

= ~ e -v(€ #(v){A(v)} 2 dr> A(v)dG(v) 
0 

by Schwartz's inequality. But a simple calculation gives 

oo oo 

A(v) dG(v)= ~ e -~v 2(v) e -D(~) dv = 1. 
0 0 

To establish (6.2) we merely feed into (3.9) the fact that E(e-pWt)=F(e -p/"e~t, t) 
q~(p) as t - - ,  m .  [ ]  

Just as in the case of the age-dependent branching process, it is possible to 
show that under the assumptions of Theorem 6.2 W(t) converges a.s. to W. The 
proof consists of three steps; firstly, recalling the decomposition Z(t)=B (t)-  D(t) 
it is necessary to prove theorems analogous to Theorem 6.2 for the variables 
W+(t)=B(t)/ae ~t, W-(t)=D(t)/ae~t; in view of (3.12), (3.13) and analogoes to 
(3.14), this is straight forward. Secondly, the method used by Harris {[3], p. 147} to 
deduce the a.s. convergence of his W, to his W from the corresponding mean 

oo 

square result under the assumption that ~ E(W~-W) z d r<  c~, must be applied 
0 oo 

to our case. Finally we must show that in fact ~ E(W t -  W) 2 dt< oo, this also can 
0 

be done in the same way that Jaegers [4] did it for the branching process. Thus, 

Theorem 6.3. Under the assumptions of Theorem6.2, W t . . . .  > Was t--~ ~.  

7. Convergence in Distribution of Wt for the Supercritical Case 

Throughout this section we assume that either 1 < m < ~ ,  in which case ~ ~ > 0 
such that v(u)=e -~u 2(u)e -D(u) is a probability density function, or m=oo and 
3 ~ > 0 such that v (u) is a probability density function. In either case we know from 
Theorem 5.1 that E(W~)=m(t)/ae~t--~ 1 as t-->~, and from Theorem 3.3 we see 
that if Wt ~ W then E (e-PW)= 4)(p) satisfies 

~o it 

(o(p)= ~expS {~o(pe-~V)-l} 2(v)e-O(") l~(u)du, p>O. 
0 0 

(7.1) 

Our first step is to find when (7.1) has a non-trivial solution (clearly q~(p)=l is 
always a solution) and in this the following is useful. 
6 Z. W a h r s c h e i n l i c h k e i t s t h e o r i e  verw.  Geb . ,  Bd.  22  
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Lemma 7.1. Let f be any real-valued, measurable function and Y a random 
variable with P{Y<=t}=l -e  -toO. Then if Z denotes a random variable with 

t 

P {Z <_t}= ~ v(u) du we have 
0 

Proof. 

E f ( x ) e - ~ 2 ( x ) d x  =~ ~f(x)e-~X2(x)dxe-D(Y~p(y) 
) 0 0 

= ~ ~ e - D ( y ) # ( y ) f ( x ) e - ~ x 2 ( x ) d x  
o y = x  

co  

= ~f(x)  v(x) dx 
0 

=E{f(Z)} .  [] 

We use this to show that (7.1) cannot have 2 solutions corresponding to different 
non-degenerate distributions with mean one. 

Theorem 7.2. Suppose that (ol, 4)2 are continuous solutions of (7.1) which satisfy 

(a) 0 < (o (p) =< l, p>0,  

(b) (O(O)= 1, (7.2) 
1 - r  

(c) lira - 1. 
v~o p 

Then (Ol =- (o2. 

Proof. Let (o*(p)=I(ol(p)-(o2(p)I/p for p>0 ;  then using the inequality 
[e . . . .  e-X21<lXx-X2l (which holds for x l > 0 ,  x2>0) we see from (7.1) that for 
p > 0  u 

(o* (p)--< ~ S (o* (p e-~)  e-a~ 2(v) dv e- ~'"~ #(u), 
0 0 

=E {(o*(pe-~Z)}, 

by Lemma 7.1. Iterating this we see that qS*(p)< lim E {(o*(p e-~S~)}, where S~ is 
n ~ c o  

the sum of n independent copies of Z. Now clearly E (Z) > 0, so that, by the Strong 
Law, e -~s . . . .  ~0, and we get (o* (p) < (O* (0 + ) by the dominated convergence 
theorem. However it follows from (7.2c) that (o*(0+)=0, so (o~(p)=(o2(P) for 
p>0.  [] 

The key to our neccessary and sufficient condition for the existence of a solu- 
tion to (7.1) lies in the following simple lemma, which is due to Athreya [1]. 

Lemma 7.3. Let X be any non-negative random variable with E(X) = 1. Then for 
6 

all 6 > 0 ~  {E(e-UX)-e-"}/u 2 du <oe iff E(X log [X])< oe. 
0 
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x 

Corollary. Let Y be as in Lemma 7.1, A(x)= ~ e -~ '  2(y) dy (so that E(A(Y))= 1 
0 

by Lemma 7.1) and 0 ( p ) =  1 E{e-PA(Y)--(1 --p)} for p > 0 .  7hen the following are 
equivalent; P 

~O(p)/pdp<oo forall ~ > 0 ,  (7.3) 
0 

co 

~ 0 ( 3 r " ) < o o  forall ~ > 0 ,  0 < r < l ,  (7.4) 
0 

E(A(Y) log IA(Y)I ) < or. (7.5) 
6 

Proof. Since ~ {e-V-(1-p)}/p 2 dp<oo for all ~5>0, the equivalence of (7.3) 
0 

and (7.5) follows from L e m m a  7.3. To see that (7.3) and (7.4) are equivalent, note 
that 0 (P) > 0 and 0 (P) increases as p increases, so that  

log 1 ~, 0(6r,_1) = ~ 0(6r"-1)  ~ - ~  dp 
r n = l  n = l  6 r  n P 

> i O(P) dp 
o P 

~1 r n - 1 

->__ 0(3r") ~ dp 
n = l  6 r  n p 

=1o8 L y 0tar~ 
r n = l  

Theorem 7.4. There exists a continuous solution of (7.1) satisfying (7.2) iff 

E {A(Y) log IA(Y)I } < ~ .  (7.5) 

Proof Suppose (7.5) holds and set q50 (p) = 1 - p for p e [0, �89 q~o (P) = �89 for p > �89 
and qS,(p)= r {qS,_l(p) } for n = 1, 2 , . . . ,  where r {~b(p)} denotes R .H.S .  of (7.1). 
Clearly 0 < q~, (p)__< 1 for each n. For  p > 0 set 0 ,  (P) = I ~b, (p) - qS, _ 1 (P) I/P for n = 1, 
2 . . . . .  Then we see from (7.1) that for p > 0  

Now for pc(0, �89 

O<=O,+l(p)<E{fO,(pe-~V)e-~V2(v)dv } 

= E {0 .  (t9 e -  ~z)} =< E {01 (P e -  ~s.)}. 

T{q~0(p)}= o~ exp - p  e-~2(v) dv e-O(") #(u)du=E{e-pa(rl}, 

(7.6) 

and 
0(p) 
0* (19) = 0 (P) when p ~ (0, �89 
6* 

hence 01(p)=lE(e-Pa(r))--(1--p)l/p={E(e-PA(Y))--(1--p)}/p=O(p); since 
is an increasing function it also follows that if 0 * ( p ) =  sup 01(u) then 

O < u ~ p  
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Let 7~(p)= ~ k , ( p ) ;  then we show that ~ (p )<oo  for 
n = l  

0 < E (e - z) < 1, so we can choose 7 > 0 with e ~ E {e- z} < 1; then 

all p>0 .  Clearly 

or) 

~ P{S<=n?}= ~ P{e-S">=e -"~} 
n = l  n = l  

f < ~e"rE{e-S,}= {e~e(e-Z)}"<oo. 
n ~ l  tl=]_ 

(7.7) 

Let N(p) denote the smallest integer n with pe-"'~<�89 then writing So=0  it 
follows from (7.6), (7.7) and (7.4) that 

~(P)<= ~ E{q~(Pe-'S")} 
n = 0  

<O*(P) ~ e{s,<=n?}+ ~" q/*(pe-"~')P{S,>n?} 
n=O n = 0  

<O*(P) ~ P{S.<=ny}+N(PlO*(P)+ ~ 0 ( P e - " ' r ) <  oo. 
n=O n=N(p) 

(7.8) 

This means that limqS,(p)=~b(p) exists and satisfies ~b= T~b, i.e. (7.1). Clearly 4) 
n ~ c o  

satisfies (7.2a) and (7.2b); to check (7.2c) note that, since ~k(p)$0 and N(p)$0 as 
p$0, it follows from (7.8) that tP(0+)=0.  Since [~(p)-(ao(p)l/p= lim r  ~(p) 

n---r oo 

for p >0, and qSo(p)= 1 - p  for p~(0,1], this means that lim ~ ~ qS(P)- (1-P)-~=0,  ~ 
as required, p~o ( p ) 

To see that (7.5) is a necessary condition, let us assume that E(A(Y) log IA(Y)I) 
= + ~ and that q~(p) is a continuous solution of (7.1) which satisfies (7.2). Let 
g(p)={1-49(p)}/p for p > 0 ;  then g(p)>0 and g ( 0 + ) = 0 .  Let gl(p)=supg(u),  

[o, pl 

g2(p)= infg(u); then 3 6 > 0  such that �89 for p~[0, fi]. For u > 0  
[o, p] 

write A(u)=e-"+u-1; then A(u)>O and A(u) increases as u increases. Since 

~' (P) = 1 E {A(A(Y))} we see from (7.1) that for p E (0, 6] 
P 

g(p) = 1_ E {1-e -pr~ 
P 

=E {[g(pe-'U)e-~U2(u)du}-lE {A {pig(pe-~")e-'"2(u)du}} 

< E {g(p e-~Z)} -- �89 0 (�89 p). (7.9) 

Since v(u)=e-'U2(u)e -'(") is continuous, 
follows from (7.9) that for p ~ [0, 5], 

To 

3To>O with Sv(u)du=�89 it then 
0 

g~(p)<�89 e-~ro)+�89162189 
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and hence g, (P) < g~ (p e- a to) _ ~ (�89 p). Iterating this gives 

gl(Pe-n=T~176 - ~ ~(�89176 
r = 0  

oo  

Since �89 a- for pc(0, 6], this implies that ~ (�89 e -"'r~ < 0% which contra- 
dicts (7.4). [] ,=o 

If (7.5) holds, our next aim is to show that W, o , W, where E(e-pW)=(a(P) 
is the unique solution of (7.1). We need the preliminary 

Lemma 7.5. I f  (7.5) holds, then lira sup ]H(p, t)[ =0, where 
p,L0 t > O  

H(P, t)= l~E{A(Pp IV,,)} = l  E{e-VW'+p Wt-1}.  

Proof Since 1 A(p)> 0 and decreases to zero as p ~ 0, the same is true of H(p, t) 
P 

for each fixed t. Thus [H(P, t)[ =rn(t)/ae~t-(1-G(p, t))/p, where G(p, t)=E(e -vw') 
=F(e-P/"e't,t), so that for fixed p,H(p,t) is continuous in t, from Lemma2.5. 
This means that if Hr(p)= sup ]H(p, t)[ then for some to(p)e[0, T] we have 

O<=t<=T 

Hr(P)=H(p, to(P)) , so lim Hr(P)=0 for each fixed T. 
pJ.o 

Recalling (3.9) and (5.2) we see that p > 0 

t 1 t 

u(p, t)= 5 H(p e -% t -  u) v (u) du + - -  l A {O,(p, u)) e-D~.~# (u) du 
o P o (7.10) 

+ 1  e_Dm {A {Gt(P, t)} + A(p/a e at) e -~'tv'O +p/a e =t {1 - e-OttP'~ 
P 

where, for O < u < t, G, (P, u)= ~{1 - G (p e -% t -v)}  2 (v) dv . 
0 

To estimate the R.H.S. of (7.10) note that from H(p,t)=>0 it follows that 
1 - G(p, t) < p m (t)/a e ~' < p c,, for some 0 < Cl < oo, for all p and t, since m (t)/a e at--, 1 
and is continuous. Thus 

u 

G,(p, u)<c,p 5 e-'V 2(v) d v = q  p A(u). 
0 

Also {1 } 
1 _mOA(pA(t))< A(pA(u))e_O(,)#(u)du<E A(A(Y)) =$(p) ,  - - e  

P 

so if we use the elementary inequality A(p)<=p2/2 and recall that A(t)e -m') -->0 
as t ~ oo (proof of Theorem 6.2) it follows from (7.10) that for some O<c 2 < co, 

O< H(~, t)< i U(p e-% t-u) v(u) du+q ~(qp)+cgp, 
0 
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and hence 
T 

0 < Hr(p) < ~ Hr(p e -~") v(u) du+ ct O(qP)+ c2 p. (7.11) 
0 

Now for fixed T, Hr(P) is monotone in p, so 

T 

Hr( p e -~") v(u) duN �89 Hr(p e-~r~ + �89 Hr(p) 
0 

recall To>0 is such that 5 v(u)du=�89 and (7.11) gives 
0 

Hr(p) < Hr(P e-=r~ + 2 q tp (cl p) + 2 c2 p. 

Iterating this and remembering that Hr(p)~ 0 as p--~ 0 we see that 

HT(P)<2q ~ O(qpe-"~T~ 2c2p/(1--e-'r~ 
n = 0  

and as the R.H.S. is independent of T and is finite by Lemma 7.3, we can let 
T---~ oe and then p+0 to get 

oo 

lim sup IH(p, t) l ~ 2 cl lim ~ ~O (q  p e-"" To) = 0, 
p+0 t > 0  p~O 1 

since ~9(p)$0 as p+0. []  

Theorem 7.6. I f  (7.5) holds then lim G(p, t)=4)(p), where c~(p) is the unique 
t--* oO 

continuous solution of (7.1) satisfying (7.2). 

Proof. For p > 0  set K(p,t)={G(p,t)-(o(p)}/p, Kr(p)=sup]K(p,  t)l, and 
K(p) = lrim K T (p). Then since t > T 

Ig (p, t ) -  H (p, t)1 < Im(t)/a e "~- i I + ](1 - ~b(p))/p- 11, 

it follows from Theorem 5.1, (7.2), and Lemma 7.5 that K ( 0 + ) = 0 .  If we write 
u 

g(p, u)= ~ {1-~b(p e-~V)} 2@)dv and use (3.10) and (7.1) then we can check that 
0 

K(p, 2 t) = p (I + J), where 

I = i { e-a~'(p'")- e-g(P'")} e-~ du, 
0 

2t 
J =  ~ e - G 2 t ( p ' u ) - o ( u )  p ( u )  d u + e  -p / "e~ t  e -D(2 t )  e -G2t (p '2 t )  

t 

+ 5 e-,(v,,)-D(,) #(U) du. 
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23 
Clearly O<a<= ~ e -D(") I~(u) du+e  -D(20 + e - m ' ) < 2 e - D m ;  also 

t 

t 

[I[ < ~ ]Gzt(P, u ) -g(p ,  u)[ e -Dr") #(u) du 
O 

t u 

<= y ~ IG(P e -~v, 2 t - v ) -  dp(p e-=V)l 2@) dv e -D(") #(u) du 
0 0 

t 

= 5 [G(p e - %  2 t - u ) - 4 ~ ( P  e-=")l 2(u) e -~(") du 
0 

t 

- e -Din  S IG(p e - %  2 t - u ) -  ~b(p e-=")l 2(u) du 
0 

t 

<p ~ K(p e -~", 2 t -  u) v(u) du. 
0 

It follows, therefore, that 
oo 

g2r(P) < ~ K r ( p e  -~") v(u) du+ 2e -D(r) 
0 

and, letting T--roe this gives K(p)<E{K(pe-~Z)} .  Since K ( 0 + ) = 0 ,  it follows 
by the usual argument that K(p)---0, which proves the theorem. [] 

If Wt D , W, and W is non-degenerate, then clearly 4)(p)=E(e-pW) will be 
a continuous solution of (7.1) satisfying (7.2), so (7.5) is a N.A.S.C. for this to 
happen. Now it is known that a N.A.S.C. for ~,/m" to have a non-degenerate 
limit distribution (assuming 1 < m  < oe, of course) is that E {it log ~a} < oe, and 
when ~ has the distribution exhibited in Theorem 2.1, it is easy to check that this 
is equivalent to 

E {L(Y) log IL(Y)I} < Oe. (7.12) 

Also, if (7.12) fails (i.e. E{~l lOg~l}= +oe)  it is known that ~,/rn" 1" ,0. Now 
clearly (7.12) implies (7.5), and in the example ~(x)= 2 > 1, 

(x) = c ( 1 + log (1 + x))/(1 + x) 

for suitable c, we have 1 < m < Oe, (7.5) true and (7.12) false. It is therefore possible 
for ~,/m" P , 0 and W, D ~ W (where W is a non-degenerate random variable) 
to hold simultaneously; this cannot happen for the age-dependent branching 
process (see [-1]). As yet it is undecided whether or not Wt P , 0 when (7.5) fails. 
It is also known that when ~,/m" has a non-degenerate limit distribution, this 
distribution is absolutely continuous, except for an atom of size q (the extinction 
probability) at zero. In the remainder of this section we prove an analogous 
result for the distribution of W; 

Theorem 7.7. I f  (7.5) holds so that W, D ~ W, then P { W = 0 }  = q  and 3 a con- 
tinuous co (x) >= 0 such that 

X2 

P { x I < W ~ x 2 } =  I o ) ( x ) d x  fo r  O < x l < x 2 < o e .  
XI 



88 R.A. Doney: 

Proof According to Lemma 3 of [1], this result will follow if we can establish 

that P{W=0} =q, ~imlf(O)-ql=O, and S If'(0)l dO< oo, where f(O)=E(d~ 
o 

4~ ( -  i 0). We do this in a sequence of lemmas. 

Lemma 7.8. P{W=0} =q  < 1, and the distribution of W is not concentrated at 
one point. 

Proof If q*=P{W=O} then q*=lim~b(p), so from (7.1) it follows that 
p--* 

q*=h(q*). This means that q*=q or q * = l ;  but q * = l  contradicts E ( W ) = I ,  
which follows from (7.2 c). 

If P{W=x}=I, then again because of E ( W ) = I ,  we must have x = l ,  so 
f(O)=e i~ Now since (3.10) holds for Isl _-< 1, and W ~  W, we see that f(O) satisfies 

f(O)=E {expi(f(Oe-=r)-l)2(y)dy } 

for all real 0. But if we put f(O) = e i~ in this we see that 

(7.13) 

l=lf(O)l<E exp {cos(Oe-'r)-l} 2(y)dy <1,  

for 0 < 0 < n/2, since Y is not concentrated at zero. [] 

Lemma 7.9. lim sup I/(0)1 < 1. 
0--, oo 

Proof Since W is not concentrated at one point, 3 8 > 0  such that I f (0) [<l  
~r 1 forO<O=&Nowfors>OletA~={e- _<(1+8)- };thenP(A~)>0for8 sufficiently 

small, and if 0<0__(1 +8)6 it follows from (7.13) that 

]f(O)l<=Ea, exp R(f(Oe-'r)-l)2(y)dy + I - P { A ~ } < I .  

Repeating this argument we see that [ f(0)[ < 1 whenever 0 < 0 < (1 + t)" 6 for some n, 
so that [f(0)[ < 1 for all 0 >0. Now assume lira sup If(0)[ = 1; then since [f(0)[ is 

0---~ oo 

continuous and [f(0)[=l ,  for all sufficiently small p > 0  9 0<01<02<oo with 
If(O1)[=lf(O2)[=l-p, and [f(O)[<l-p for 0e(0x,02). If we put 8=02/0a-1 ,  
then on A~ we know that R(f(Oz e - ' r ) ) <  1 - p ,  so from (7.13) 

(l-p)=lf(O2)l<EA~ exp R{f(O2e-~')-l} 2(y)dy + I - P ( A ~ )  

l l o g ( l + e )  

< f e-oL~')e--D~')#(y)dy + ; e-D~')#(y)dy 
0 1 l o g o  + ~) 

l l o g ( l + e )  

= 1 + 5 (e-P L(y)_ 1) dG (y). 
0 
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Rearranging, this is Rearranging, this is 
l log (1 + e) 

So { 1--e-PL(Y) P }dG(y)<l.  

Now as p$0, eToo, and (1-e-PL(Y))/pTL(y); thus by monotone convergence, the 
L. H. S. tends to E(L(Y)) as p~,0. However, by interchanging orders of integration 

oo 

we can see immediately that E {L(Y)} = S 2(x)e -D(y) d x = m > 1; this co ntradic- 
o 

tion means that we must have lim sup I f(0)l < l. []  
0 ~ o o  

Lemma 7.10. lim sup If(0)] <q.  
0 ~ o o  

Proof Set a , - -sup ]f(0)], a =  l ima  t. From (7.13) we have, for e>0,  
O>=t t ~ m  

so that 
at<E{exp~, t -1)  A(Y)}+P{e-~Y <e}=h(a~O+P{e-~Y <g}. 

Now let t -~ o% then e ~ 0, to get a =< h (a). Since ~ < 1 (Lemma 7.9), it follows that 
~<q .  []  

oo 

Lemma 7.11. S If'(0)l dO< ~.  
o 

Proof Since f(O)=E(e i~ where E ( W ) =  1, we know that f'(O) exists and is 
continuous and bounded for all real 0. Since E{A(Y)} = 1, we may differentiate 
(7.13) and interchange the order of integration to get 

oo y y 

if(O)-- ~ ~ e-'Xf'(O e -'x) 2(x) dx. exp ~ {f(O e -~z) - 1} 2(z) dz. e -my) #(y) dy 
o o o (7.14) 
oo 

= ~ e-~Xf'(O e -~x) 2(x) F(O, x) dx, 
0 

oo y 

where F(O, x)=  ~ exp S {f(O e -az) - 1} 2(z) dz. e -D(y) #(y) dy. 
x O 

Now by Lemma 7.10, given any e > 0 3 fl such that for 0 > fl, I f(0)[ < q + e, so 

that if Yo (0) = 1 log O/fl, we have 

expi{ f (Oe-X~)- l}2(z )dz  <exp(q+e-1)L(y)  for y<yo(O) 
t )  

<exp(q+e-1)L(yo(O)) for y>yo(O). 
Also, if q + e < 1 then 

oo oo 

2(x) 5 exp {(q + e -  1) L(y)} e -D(y) #(y) dy dx 
O x 

= S L(y) exp {(q + ~ -  1) L(y)} e -my) #(y) dy = h'(q + e). 
y = O  
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Now h'(s) is continuous, and h'(q)< 1, so for a suitably chosen e we have 

2(x)lF(O,x)l<Tu(x), for 0>/~, where 0 < 7 < 1  and u(x)>=O with Su(x)dx=l. 
x 0 

If U is a random variable with P{U<x} = ~ u(y)dy, then we see from (7.14) that 
for O> fl o 

I f'(O)l < T E {e -~v I f'(O e-~V)l }. (7.15) 

o # 

Now define M(O) = ~ I f'(x)l d x for 0 > fl, M(O) = 0 for 0 < fi, and K = ~ I f'(x)l d x < co. 
Then, from (7.15), r o 

0 
M(O)<T E {e-~VJ e-'V lf'(xe-~V)l dx } 

f Oe-r u 

dx} <_ ~ {E {M(O + K}. <TE~e~, If'(x)l e-~V)} 

Iterating this and applying the strong law gives M(O)<K(1-7) -1 for all 0>0,  
and the result follows. [] 

L e m m a  7.12. lira I f ( 0 ) -  q l = 0. 
0-~o0 

Proof Since sup If(Oe)-f(01)l< ~ If'(x)[ dx--*O as 0--,o% it follows that 
0 2 > 0 1 ~  0 0 

lira f(0) exists, =q* say. Since 0 < l f ( 0 ) l < l  we can let 0 ~  in (7.13) to find 

q*=h(q*). By Lemma 7.10, we have Iq*l<q, so the result will follow if we can 
show that the equation z=h(z) has only one root in Izl <q. Now for s t [0 ,  1] h'(s) 
is monotone increasing, so 3 unique qo~[0, 1] with h '(qo)=l;  clearly q < q o < l .  
Thus if [z[<q, Ih'(z)[<h'(Iz])<h'(q)< 1, so the equation l=h'(z)  has no roots in 
[zl-<_q, and the result follows. 

Lemmas 7.8, 7.9, 7.10, 7.11 and 7.12 together establish Theorem 7.7. 

Added in Proof. It has been brought to my notice that certain of the results in this paper are con- 
tained in Crump, K., and Mode, C.J.: A general age-dependent branching process, I and II. J. Math. 
Anal. AppL 24, 494-508 (1968), and 25, 8-17 (1969). 
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