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1. Introduction 

Consider a non-singular diffusion on an interval (ro, rt) and let r 0 < a < b < r~. Set 
zab to be the first time the diffusion hits b, starting at a, with moment generating 
function (m.g.f.) ~,b,b(2)=E{exp(2Zab)}. Since we shall be concerned with the 
behaviour of 4)(2) for positive 2, it is more convenient to work with m.g.f.s than 
with Laplace transforms. We shall show that all such diffusion hitting times are 
generalized convolutions of mixtures of exponential distributions (g.c.m.e.d.s). 

If r o is not a natural boundary, more can be said; then tab can be written as 
an infinite convolution of elementary mixtures of exponential distributions. The 
parameters are given by the eigenvalues of associated Sturm-Liouville expan- 
sions. 

Furthermore, normalizing z,b to have mass 1 and letting aJ, r o leads to an 
infinite convolution of exponential densities. 

Sections 2 and 3 summarize the necessary information needed about 
g.c.m.e.d.s and diffusion theory, respectively. The expansion for zab when r o is 
not natural is derived in Sects. 4 and 5. A related series expansion for the density 
of Z,b is discussed in Sect. 6, and Sect. 7 gives the general result which holds for 
all diffusion hitting times. An example based on the Bessel diffusion process is 
analyzed in Sect. 8. Some simple formulae for the first two moments are given in 
Sect. 9. 

2. Some Classes of Infinitely Divisible Distributions 

By a theorem of Goldie (1967) and Steutel (1967) all mixtures of exponential 
distributions (m.e.d.s) are infinitely divisible. The simplest such mixture assigns 
probability p l > 0  to a point mass at the origin and probability p 2 >0  to an 
exponential density of parameter 2o~(0, oo), where pl +P2 = 1. It has m.g.f. 

4(2) = p l  +p2(1 - 2/20)-  1 

= (1 - ),/21)/(1 - 2/20) (2.1) 
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where 2 o < 2 i = 2 o / p l .  We shall call (2.1) the m.g.f, of an elementary m.e.d. 
Allowing defective distributions, we can also include as limiting cases the m.g.f.s 
q%(2)-e -~ where c~>0. 

The function a o  

r -- e -  ~ H {(1 - A/2'k)/(1 - 2/2k) } 

is a non-degenerate m.g.f, of an infinite convolution of elementary m.e.d.s. 
provided 0<2k<2~, and ~2~-~< oo. These m.g.f.s appear as diffusion hitting 
times; see Sect. 5. 

It is also of interest to consider 

r  = I ] ( 1  - 2 / & ) -  1, (2.2) 

which represents the m.g.f, of a convolution of exponential densities. We allow 
the product to be finite or infinite, but an infinite product represents a non- 
degenerate distribution if and only if ~ 2s oo. These functions represent the 
m.g.f.s of all PoIyd frequency densities with support (0, oo) (Karlin, 1968, p. 345). 
Further, such densities are strongly unimodal (Kielson, 1971). 

The class of infinitely divisible distributions consisting of all weak limits of 
distributions represented in (2.1) has been termed by Bondesson (1978) the class 
of generalized convolutions of mixtures of exponential distributions (g.c.m.e.d.s ). 
An important subclass of the g.c.m.e.d.s is the class of generalized gamma 
convolutions (g.g.c.s), which includes as a special case the distributions with 
m.g.f.s (2.2). Further, the m.g.f. (2.1) represents a g.g.c, if and only if {2~} c {2k}, in 
which case (2.1) can be reduced to the form (2.2). 

3. Diffusion Theory 

A non-singular diffusion on an interval [%, rl], - oo < r o < r 1 < oo can be de- 
scribed by three Borel measures, which can be most conveniently represented by 
non-decreasing functions on (r o,t"1) (Ito and McKean, 1965, and Mandl, 1968): 
the speed measure m(x), natural scale s(x), and killing measure k(x). The underly- 
ing diffusion is unaltered if the three measures are rescaled, 

m(dx) --* cm(dx), s(dx) ~ c-  1 s(dx), k(dx) ~ ck(dx), (3.1) 

where c>0 .  Further, associated with each non-decreasing function is an arbi- 
trary additive constant which can be chosen at our convenience. 

We shall use Mandl's terminology for the boundaries: regular, entrance, exit, 
and natural. For regular boundaries there is a further subclassification. The 
boundary r i is called absorbing regular if the diffusing particle dies when it 
reaches r i. Otherwise the boundary is called reflecting regular and the de- 
scription of the diffusion must be augmented by assigning speed measure and 
killing measure to r i, 0<m{rl}, k{r;}<oo. A reflecting boundary is called 
instantaneously reflecting if m {ri} = k {rl} = 0. 

Associated with the diffusion is a generalized second order linear differential 
operator A, and boundary conditions at each endpoint. The relevant boundary 
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Table 1. In i t ia l  and  b o u n d a r y  condi t ions  for the in i t ia l  p rob l em 
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Bounda ry  behav iou r  a t  r o B o u n d a r y  condi t ion  In i t ia l  cond i t ion  

A b s o r b i n g  regular  u(ro) = 0 u + (ro) = 1 

Reflect ing regular  u + (ro) = [k{ro} - ) .m {%}] U(ro) U(ro) = 1 

Ent rance  u + (%) = 0 u (ro) = 1 
Exi t  u(ro) = 0 u + (ro) = 1 
N a t u r a l  u (ro) = 0 - 

condition at r 0 for each type of boundary is given in Table 1. In this table u(x) is 
a continuous function on (%, rl) for which the right-hand derivative with respect 
to natural scale, 

u + (x) = lim {u(x + e) - u(x)}/{s(x + e) - s(x)}, (3.2) 
~$0 

exists, and we set u(rO = lim u(x), u + (ri)= lira u+(x), when these limits exist. 

Let r o < a < b <  q and consider %b, the first time the diffusion hits b, starting 
at a, with m.g.f. ~b~b(2 ). For fixed 2, let v(x) denote the solution of 

A v +  2v=O (3.3) 

together with the relevant boundary condition at r o, given in Table 1. This 
solution is unique up to a multiplicative constant and can be used to find the 
m.g.f, of %r namely 

~.b(2) = v(a)/v(b) (3.4) 

(Ito and McKean, 1965, pp. 128-130). 

4. An Initial Value Problem 

Unfortunately, the above approach does not give us sufficient information about 
the dependence of ~bab(2 ) on 2 for our purposes. Therefore, we consider the 
solution of (3.3) which also satisfies the initial condition of Table 1. 

Theorem 4.1. Suppose r o is not a natural boundary and let u(x,)O denote the 
(unique) solution of (3.3) which satisfies the relevant boundary condition and 
initial condition of Table 1. 

Then 
(a) u is jointly continuous in x and ,)~ for xe[ro,  rl) and 2~C, and u is an entire 

function of )o; 
(b) u(x, O) is a strictly positive non-decreasing function for x~(ro, rl); 
(c) for f ixed x~(r o, q), the zeros of u(x, ") are simple and positive and form a 

sequence 
0 < 2 1 , x < 2 2 , x < . . . ;  

(d) for x < y, )ok,~> 2k, y; 
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(e) for x~(ro, rl), .~ 2k. ~ < oo and u(x, 2) can be written as the canonical product 

oo 

u(x, 2)= u(x, O) FI (1 -2/2k.x); 
k= l  

(f) for allfixed x~(ro,rl) and e>O, lu(x, 2)l +lu+(x, 2)l=O(e ~1~1) as [2l ~ oo. 

Remark on the Proof For fixed a consider the boundary value problem 

Av(x)+2v(x)=O, ro<x<a, 
such that 

and 
B(v) =0 

v(a)=0, 

where B(.) is the boundary condition at r o given in Table 1. This problem has a 
solution if and only if 2=2k, ~ for some k. Thus the numbers {2k, a}k~ I can be 
considered as eigenvalues in a Sturm-Liouville expansion. Such expansions are 
discussed in McKean (1956) and McKean and Ray (1962). 

For a classical differential operator with regular boundary, u(x, 2) can, be 
constructed using the method of Titchmarsh (1962), pp. 6-7. In this case u(x, 2) is 
an entire function of 2 of order �89 so the product formula holds by Hadamard's 
factorization theorem (Titchmarsh, 19394 p. 250). 

For a general diffusion with regular boundary, a similar construction can be 
used, and with some care, the argument can be extended to cover the entrance 
and exit cases also. Full details are given in Kent (1979b). [] 

Note that for an absorbing regular or exit boundary, u(x, 2) is unique only 
up to the scaling of the natural scale described in (3.1). 

If a mild regularity condition is satisfied, then it can be shown that the 
eigenvalues increase at rate ck 2, as k~o�9 (McKean and Ray, 1962). More 
specifically, suppose there exists a positive function, q~(x) monotone in a 
neighborhood of r o, such that for xe(r o, rl), 

q~(w)m(dw)<~ and ~ ~(w)-ls(dw)<oo. (4.1) 
(to, x) (to. x) 

Let D2(x)=m(dx)/s(dx) denote the Radon-Nikodym derivative of the absolutely 
continuous part of the speed measure with respect to the natural scale. If (4.1) 
holds, then 

~i,m)~k,x/k2:{7~-l!O(w),(dw)} -2. (4.2) 

: c ,  say. 

Note that (4.1) implies c>0,  and if D(x)~=O then c<oo.  Also, if r o is regular, 
then (4.1) always holds with ~(x)= 1. 

5. Expansions for Diffusion Hitting Times 

Using Theorem 4.1 in (3.4) gives the following expression, which is the main 
result of this paper. 
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Theorem 5.1. Suppose r o is not a natural boundary and let r o < a < b < r 1. Then Tab 
has m . g f  qbab(2 ) given by 

u(a, 0) ~ (1 --2/2k.a) 
I I (1 - ;/2k, b) 

Remarks.  (1) Note  that  P(Gb < oo)=u(a,  O)/u(b, 0)=  1 by par t  (b) of Theorem 4.1. 
If the killing measure vanishes and if r o is reflecting regular or extrance, then 
u(a, O) = u(b, O) = 1. 

(2) ~b,b(2 ) is the m.g.f, of an infinite convolut ion of elementary m.e.d.s; see 
Sect. 2. 

(3) Note  that  for a + r  o, qS,b(2 ) is not in general a g.g.c, because {2k,,}k~ 1 is 
not  in general a subset of {2k, b}k~ 1" 

(4) An analogue of Theorem 5.1 for bir th-death processes is given in 
Rosenlund (1977). With state space the non-negative integers and with 0 a 
reflecting boundary,  qb,m(2 ), O < n < m ,  can be written as the m.g.f, of  a con- 
volut ion of n elementary m.e.d.s together  with m - n  exponential  distributions. 
The case n = 0  was first given in Kielson (1971). 

(5) Lett ing a--, r o leads to the m.g.f, of an infinite convolut ion of exponential  
densities. If r 0 is exit or absorbing regular, then %b must  first be normal ized to 
be finite with probabil i ty 1, so we express the result in this form. 

Corollary 5.1. I f  r o is not a natural boundary, then 

oo 

u(b, 0) lim {~ab(2)/u(a, 0)} = l - [  (1 - 2/2k, b)-~ 
a ~ r o  k =  1 

Proof  Using the initial and boundary  conditions of Table 1, we see that  
u(a, 2)/u(a, 0) ~ 1 as a ~ 0, provided r 0 is not  natural.  

6. Series Expansions for Diffusion Hitting Time Densities 

For  fixed x e ( r  o, rl), write 2k, ~ = ' ~ ' k  and let 
09 

h(2) = u(x, O) 1 u(x, )3 = ~ (1 - 2/2k). 
k = l  

Formally,  we can write h(2) 1 in a partial  fraction expansion 

(6.1) 

h ( j ~ ) -  1 = ~ {h,(2k) } -  1/(3~_ Zk)" (6.2) 
k = l  

Note  that  ' 1 {h (2k) } , the residue of h(2)- 1 at 2 = 2 k, alternates in sign as k varies. 
Invert ing this m.g.f, term-by-term we get 

where 

co 

h(2)- 1 = ~eXtf( t)dt ,  2 < 0  (6.3) 
0 

f ( t )  = - ~ {h'()ok) }- 1 e -  ~k~, t > 0 (6.4) 
k = l  

is the probabil i ty density with m.g.f, h(2)-1. 
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Unfortunately, (6.2) does not converge in general. However, subject to the 
following mild regularity condition, we can show that (6.4) does converge and 
that (6.3) is valid. 

Condition A. Suppose that for all x~(ro, rl) and e>O, 

{u'(x, 2k, x)} - 1 = O(exp {82k, x}) as k ~ oo, 

where the prime denotes differentiation with respect to 2. 

The following lemmas give sufficient conditions for Condition A to hold 
at r o. 

Lemma 6.1. I f  r o is entrance, choose the additive constant of re(x) so that m(ro) 
=0  and set pl (x )=  ~ m(w)s(dw). Note that s ( r o ) = - o o .  Then each of the 

(to, x] 

following conditions is sufficient for Condition A to hold. 

(a) lira p l (x) log { - s(x)} --- 0; 
x ~ r  o 

(b) for some c>0 ,  p l ( x )=O({ - s ( x ) } - c )  as X ~ro;  
(c) for some c>0 ,  m(x)=O({ - s (x ) }  -~- 1) as x-*ro; 
(d) m(dx) is absolutely continuous with respect to natural scale and for some 

C>0, 
m(dx)/s(dx)=O({-s(x)}  -c-2) as x--+r 0. 

Lemma 6.2. I f  r o is exit, choose the additive constant of s(x) so that S(ro)= 0 and 
set pz(x)= J" s(w)m(dw). Then each of the following conditions is sufficient for 

(ro, x] 
Condition A to hold. 

(a) lira pz(X) log{1/s(x)} =0;  
X ~ r  o 

(b) for some c>0 ,  p2(x)=O(s(x) ~) as x ~ ro ;  
(c) for some c>0 ,  and Xo~(r o, rl), {m(xo)-m(x)} =O(s(x) C- 1) as x ~ ro :  
(d) m(dx) is absolutely continuous with respect to natural scale and for some 

c>0 ,  
m(dx)/s(dx) = 0 (s(x) ~- 2) a s  x ---). r 0 . 

Lemma 6.3. I f  r o is regular then Condition A is always satisfied. 

Proofs. First, note that in Lemma 6.1 and Lemma 6.2 we may without loss of 
generality take 0 < c < 1. Then clearly ( d ) ~  ( c ) ~  ( b ) ~  (a) in each lemma. Also, 
in Lemma 6.1, s(x) is defined only up to an additive constant. In Lemma 6.2(c) 
we have explicitly taken account of the additive constant in re(x) because m(dx) 
might be integrable at r 0 (in which case the lemma always holds). 

The proofs are based on a result which follows from the fundamental 
formula in Sturm's comparison theorem (Titchmarsh, 1962, pp. 107-8). If 
u(xl,AO=O, ro <Xl <q ,  then 

~ U ( X  1 , "~1)/(~/~ = { j" U2( W, 21) m(dw)}/u+(xl, 21). 
[ro,x~] 
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Thus, in view of Theorem 4.1 (f) applied to u + (x 1, 21), we see that the verification 
of Condi t ion A can be reformulated in terms of the 'size' of u(x, 4). In the 
presence of the above regularity conditions, it is relatively straightforward to 
show that  u(x, 4) is 'not  too small '  near  x = r o for 2 large and positive, and from 
this bound  Condi t ion A can be established. Full details can be found in Kent  
(1979b). [ ]  

We can now use Condi t ion A to derive series expansions for diffusion hitting 
t ime densities. The analogous theory for bir th-death processes is discussed in 
Rosenlund  (1977). 

Theorem 6.1. Fix  r o < a < b < r  I where r o is not a natural boundary, and suppose 
Condition A is satisfied. Then qS~b(2 ) is the m.g.f, o f  the density 

f ( t ) =  - -~dkexp(-- )Ok,  bt), t > 0  (6.5) 

where 

d k =- u(a, 2k, b)/U'(b, 2k, b), (6.6) 

and the prime denotes differentiation with respect to 4. For all t 0>0 ,  (6.5) 
converges uniformly for  t > t o. 

Proof. Write ~b,b(2 ) = ~b()o) and set 

.2. u(a, 0) IN] (1 - 2/2 k ~) 

dk, N ~ea~fu(t)d t 
k=12--2k,  b 0 

u(a, 0) ~ (1 - 2k, b/2., a) 1 < k < N,  
4 . N :  - 2k, b(1 --  1_11 (1 --  

= 0 ,  k > N  ,*k 
and u 

f ( t ) = -  ~ dk, Nexp(- -2k ,  bt ). 
k = l  

The partial fraction expansion is valid here because N is finite. For  N > k, 

(1 - 2k. b/2N..) > 1 
dk, N / d k ,  N - -  1 - -  

(1 - 2k, b/2N, b) 

since O<;%.b<2N.b<2S,a.  Thus, ]dk.NlTIdk] as gTcc .  
Given t 0 > 0  choose e< �89  o. Then from Theorem 4.1(0 and Condi t ion A, 

there exists a constant  C such that for t > t o, 

[~ dk, N exp (-- 2k, b t)[ < ~ IdJ exp ( - 2k, b to) 

= ~  {]u(a, 2k.b)l/lu'(b , 2k, b)]} exp(- -  2k, btO) 

< C ~ e x p { - - 2 k ,  b(to--2e)} < OO 

where 
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since ~ 2~, 1 < o9. Thus for all t o > 0, 

fN(t)~ f(t) uniformly for t> t  o, (6.7) 

by dominated convergence. Let FN(t ) denote the distribution function of fu(t). 
Since q~N(2)-+ ~b(2) we see that F N ~ F, for some distribution function F. Further, 
by (6.7), F has the density f(t) for t>0 .  Finally, note that F has no mass at 0 
because for any diffusion hitting time P(%b=O)=O. (However, F may have some 
mass at oe.) 

Remarks. (1) The density f(t) in (6.5) can be integrated term-by-term to give 

P(t <'c,b < ~ -- ~ (d~j2k, b) exp(--2k, bt), t > 0 .  
k = l  

(2) In the limiting case a~ro ,  (6.5) still holds; the proof is in fact slightly 
oo 

simpler here. For  the m.g.f, h(2)-~= [[ (1-- 2/2k, b) -1 of Corollary 5.1 and of 
k = l  

(6.1), the coefficients {rig} take the form given in (6.4); namely 

h' -1 = , 1 dk={ (2k, b)} --2k b [I(1--2k, b/2,,b) - 
n = l  
n ~ : k  

7. General Diffusion Hitting Times 

If r 0 is a natural boundary then the above eigenvalue expansion does not hold. 
However, any diffusion hitting time may be approximated by a hitting time for a 
diffusion with a regular boundary. Since the class of g.c.m.e.d.s is closed under 
weak limits, it follows that all diffusion hitting times are g.c.m.e.d.s. 

It was noted by Bondesson (1979) that for diffusion processes of sufficient 
regularity, this result may be deduced by weak convergence from the cor- 
responding result for birth-death processes. (See also Kielson, 1971, p. 396.) 

For  a general diffusion hitting time, there is a very close connection between 
the canonical measure of the hitting time and the spectral measure of the 
differential generator of the diffusion. Details are given in Kent (1979c). 

8. Example: the Bessel Process 

Consider the Bessel diffusion on (0, oo) with generator 

A =�89 2 + {(2v + 1) x -  1} d/dx], 

where v is a real-valued parameter. 
If q =2v  + 2 is a positive integer, then this process represents the radial part 

of standard Brownian motion in R q. The speed measure and natural scale are 
given by 

m(dx)=2(�89 s(dx)=(�89 2v-ldx.  
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v B o u n d a r y  b e h a v i o u r  a t  0 I n i t i a l  v a l u e  s o l u t i o n  u(x, 2} 

v > 0 e n t r a n c e  u~(x,  2) 
- 1 < v < 0 i n s t a n t a n e o u s l y  r e f l e c t i n g  u t (x, 2) 
- 1 < v < 0 a b s o r b i n g  r e g u l a r  u~(x,  2) 
v <  - 1 ex i t  u2(x , 2) 

The boundary behaviour at r o-- 0 for differing values of v is given in Table 2. 
For  simplicity suppose that when 0 is a reflecting regular boundary, it is made 
instantaneously reflecting. 

Let Jr(x)  denote the usual Bessel function. Then the initial value solutions 
u(x ,  2) of Theorem 4.1 for differing boundary conditions are listed in Table 2. 
Here 

u 1 (x, 2) = F ( v  + 1) [�89 x {2 2} ~] - ~J~(x {2 2}~), 

u2(x, ,~) = r ( -  v)[l x/{2,z}q-~J ~(x {2,~}~). 

Some of these results are included in Kent (1978, 1979a), in terms of Laplace 
transforms rather than m.g.f.s. 

Let v,k}k=l {j oo denote the positive zeros of d,(-) for v > - 1. Then from Table 2, 

2k, x =j2v,k/(2X2 ) (8.1) 

for --1 < v < 0 (instantaneously reflecting) and v > 0 (entrance); and 

2k, x =j2_ v,k/(2X2 ) (8.2) 

for - 1 < v < 0 (absorbing regular) and v < - 1 (exit). 
Setting x = 2  -~ in the product formula for ul(x, 2), v > - l ,  yields the 

standard product formula for J~(2 ~) (Watson, 1944, p. 498). 
It is easily checked that for all boundary conditions the regularity condition 

(4.1) holds with ~b(x)-1; hence (4.2) holds, thus verifying the standard formula 

l i m j ~ , k / k = r c ,  v> --1 (8.3) 
k+o9 

(Watson, 1944, p. 506). In particular, we see that for all boundary conditions, 
u(x,  2) is an entire function of 2 of order �89 

When constructing the series expansion of Sect. 6, it is easily checked that 
Condition A is always satisfied, so that Theorem 6.1 is valid. Formula (6.6) for 
the coefficients can be simplified by noting 

U,I(X,)Lk, x) = _ F ( v + I ) x 2 J ~ +  �9 1 .  ~+1 l{J~,k)/{2(2J~,k) }, 

U~ (X, 2k, x) = -- 2 F( -- v) x2 - 2~ (2j ~, k) v -  1 j _ ~  +1 (J ~, k)" 

It is interesting to look at the convergence properties of the partial fraction 
expansion (6.2), with h(2)=u~(x , .~) ,  i=1 ,2 .  Using (8.3) and the asymptotic 
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Table 3. Convergence  behav iour  of  the part ial  fract ion expans ion  (6.2) for the Bessel process 

v B o u n d a r y  behav iour  at  0 Convergence  behav iour  

v > 1 en t rance  divergence 
- ~-__< ~ < ~ en t rance  or i n s t an t aneous ly  reflecting condi t ional  convergence  
- 1 < v < - �89 in s t an t aneous ly  reflecting absolu te  convergence  
- � 8 9  v < 0  absorb ing  regular  condi t ional  convergence  
v __< - � 8 9  absorb ing  regular  or  exit divergence 

formula 
"Jr+ 1(Jr, k )=(-  1) k+ 1 {2/Ozik)}} {1 + O ( k -  1)} as k--+ oo 

for v > - 1  (Watson, 1944, pp. 199, 506), we find that the series (6.2) has the 
convergence behaviour listed in Table 3. However, note that the series (6.4) 
always converges. 

For v = - �89 the Bessel process is just 1-dimensional Brownian motion either 
reflected or absorbed at the origin and the initial value solutions become 

Ul(X,  ~) = COS(,~�89 U2(X, 2) = 2 - ~  sin(A+x). 

Formula (6.4) for the absorbing process is given in Feller (1966, p. 330). 
Some of the above results for Ul(X, 2) are included in Ismail and Kelker 

(1979) and Ismail and Ping (1979), but they mistakenly assert the convergence of 
the partial fraction expansion (6.2) of ul(x ,  2)-1 for all v > - 1 .  

9. Moments  

The moments of a diffusion hitting time can be found by differentiating the 
m.g.f, at the origin. For  the hitting times of Theorem 5.1, these moments can 
also be expressed using the corresponding eigenvalues. 

It is easily checked that the elementary m.e.d, with m.g.f. ( 1 -  2/21)/(1-2/20) 
has mean and variance 

2 2 
2t- )~~ and 2 l - 2 ~  

21,~o ,~1222 ' 

respectively. Since the hitting time of Theorem 5.1, conditioned to be finite with 

probability 1, is an infinite convolution of elementary m.e.d.'s with m.g.f. 1:] {(1 
- 2 / 2 k . ~ ) / ( 1 -  2/2k, b)}, it has mean and variance k= 1 

2 
2k, a - -  2k,b a n d  2k, a - -  2k, b 

2k,~2k, b k=l 2k~2kb 2 2 " 
. , k = l  

Further, the mean and variance for the m.g.f, of Corollary 5.1 can be 
obtained by letting 2k. ~ --+ ~ ,  k = 1, 2 . . . . .  and are given by 

2- -1  2 - - 2  k.V and Y', k.b" 

Similar calculations can be carried out to express the higher moments. 



Eigenvalue Expansions for Diffusion Hitting Times 319 

For example, consider either Brownian motion with an absorbing boundary 
at 0 or the radial part of Brownian motion in R a. (These are the Bessel processes 
of parameters v=  -T�89 In both cases the m.g.f, of Corollary 5.1 (taking b=~)  is 
~b(2) = 2~/sin(2+rc) with eigenvalues 2k, . = k 2, k = 1, 2 . . . . .  The two methods given 
here for calculating the mean and variance lead to the well-known formulae 

~2 oo ~4 co 

-6~=k__~lk - 2  and  ~ = k 2 1  k - 4 =  

Acknowledgment. Many of the ideas in this paper were formulated in conversations with Lennart 
Bondesson during a visit to the University of Lund, Sweden. 
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