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Summary. For a strictly stationary random sequence (Xi)i> 0 we find suf- 
ficient conditions such that the distribution of the last exit time t e 
= max {i: X~ >/3 i} (fi > O) tends weakly to a nondegenerate limit distribution 
as/3 ~,0. 

1. Introduction and Result 

Let (X01> = o be a sequence of identically distributed random variables. Define the 
last exit time by te=te(X)=max{i>O: Xi>fii}, if such an i exists, and re=0 
else, f l>0.  In [2] we proved that its limit distribution for fi,[0 is highly 
connected with the limit distribution of the maximum Z n = max X i. In this paper 

i<n 
we derive limit distributions of t e for strictly stationary sequences of not 
necessarily independent random variables. We give sufficient conditions in order 
that the limit of P{fl te(X ) <aex + be} is the same as the limit of P {fi re(X* ) <=aex 
+be}, where X* is a sequence of independent, identically distributed random 

X* variables ( i )i~ 0 with the same marginal distribution as Xi: 

P { X I < x } = P { X * < x } = F ( x  ) for all i>O, 

and ap and bp are norming values, depending on F and fl (see [2]). According to 
the mentioned connection with extremal theory, we use some ideas from 
Leadbetter [4]. 

We assume that the sequence X is strictly stationary, which means that the 
finite-dimensional distributions 

Fi ...... i~(x1,  " " ,  xn)= P {Xil  ~ x 1  . . . .  ' X i ~ X n }  

fulfill the condition 

~ ,  +, ..... ,o + , (x l ,  . . . ,  x , ) =  ~ . . . . . .  ~o ( x l  . . . .  , x ,)  

for all l>=O, ij>=O, n=> 1 and xjalR. Therefore we have Fi(x)=F(x ) for all i=>O. 
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We also assume EX + < oo(V i>0),  which implies that t B a.s. Thus ta is well- 
defined. 

In the following we set F (x )=  1 - F ( x ) ,  Xo=SU p {x: F(x)< 1} < oo and H(x) 
XO 

= ~ F(y)dy.  The integral exists since EX + < oo. 
x 

We prove the theorem under the conditions (A) and (B). Condition (A) 
restricts the dependence of events which are widely separated in time; it is some 
kind of a mixing condition. Condition (B) considers the dependence of events 
which are close in time. Condition (A) and (B) are fulfilled by a stationary 
Gaussian sequence with correlation function r(n) where r(n)logn~0 as n--, oo. 
This verification is given in [3]. The result in this case which was proved in [1], 
is in a way the best possible, since if r(n) logn-~y>O as n~oo ,  the limit 
distribution of t~ is no more equal to exp ( - e - 0 ,  which is the limit distribution 
of ta for independent normal variables. 

We formulate Condition (A) and (B) for any sequence u u which will be later 
of the form al/NX-f-bl/N (N~oo). 

Condition (A). Let for n, K, m ~ N  with m < K  and N=nK:  

{ ' K + '  t At,,= X t ~ + i < u N + ~ - - ,  i = l , . . . , K - m  , I>0, 

P(k= A A k ' " ) - P ( ' ~ ' A k ' " ) P ( A t ' " )  \ 0  / \ k -O / ~ . . . .  K,I" 

TheFt we assume 

~ O~n,m,K,l ~ O0 
/ = 1  

where m~:/K~O as K ~  oo. 

and lira lim ~ ~,,mK,~,~ = 0, 
K ~ c o  n ~ l ~ l  

m K ~  

Condition (B). Let n, K, m, N be as in Condition (A)  and 

IK+i  IK+j]  , 

l ~ i < j ~ K - m  

Then we assume lira lim ~ * = 0 for all sufficiently large m, O~ n, m, K, l 
K ~  n ~ c o  l = 0  

lnstead of Condition (B) we could assume Condition (B') 

NH(uN) = O(1) and 

l i r a  l i r a  ~ Z X i  > UN -~ X j  > u N - -  
K ~ o o  n ~  l = O  l<=i<j<:K-m N ' 

/ l K + i \  
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For 

2 2 Y  l J 
/ = 0  l<~i<j<-K--m 

/ = 0  i =  

Because of the monotony of the integrand 

( I K ) / I K + K ,  u~'+~/N- 1 
u ~ + N  - H  ~ u ~ + ~ ) < _  ~ F(y)dy<__-F(uN), 

UN n 

the above sum is smaller than 

as n---, oo and K ~  o% for any m. 
To simplify our formulation of the theorem we define 

Condition (C). We assume that F(x) is such that as fi~O P{f l tp(X*)<apx+bp} 
tends weakly to a nondegenerate limit distribution 4)(x), where X* is a sequence of 
independent, identically distributed random variables with distribution F(x) and 
where a~ > 0 and b~ are norming values. 

For the discussion of these limit distributions see [2]. 

Theorem. Let (Xi)i>=o be a stationary random sequence with E X [  < o~ and the 
marginal distribution F(x), such that the conditions (A ), (B) and (C) are fulfilled 
with u. = a 1/. x + b 1/., where all . and b 1/. are the values of Condition (C), V x ~ IR. 
Then 

lira P {fl tp <= u~1/~1} = 4) (x) 

for all points of continuity x of 4). 

The proof of the theorem is given in the next section by the following steps: 

1) we may restrict our calculation to sequences fin= n-1, 
2) the probability of the event {tl/n<nun} is asymptotically equal to 

co A , 
P(z~o 1,,) Al,n as in C~176 (A), 

3) P \ o / ( t C  "~A~'") is asymptotically equal to the product I~ P(Az.n), 
t ~ 0  

4) the last product tends to 4)(x). 
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2. Proof  of  the Theorem 

As mentioned we give the proof by showing the four steps. 

L e m m a l .  If u ,~x o and limP{h/,<nu,}=O>O, then with u*(fl)=u, for 
n<=l/fl<n+l ,~oo 

lira P {fl tp < u* (fl)} = 0. 
pio 

Proof Since P{flta<u*(fl)}=P{Xi<fii, i>f l - 'u*( f i )}  we have 

P{flra <u*(fl)} <=P {Xi<=u*(fl)+ fli, i>= 1} 

>P{Xi<_u*(fiJ+fi(i-- 1), i=> 1} 

by using the stationarity of (Xi) and the monotony of the boundary. The 
difference between the two approximations tends to zero, since with the Bonfer- 
roni inequality 

O< P {X, <=u*(fi)+ fli, i>= 1} - P  {Xi <u*(fi)+ fi(i- 1), i>  1} 

<= ~ P {u*(fi)+ fi(i- 1)<Xi<=u*(fi)+fli } 
i = 1  

=~{F(u*(fl)+fl(i-1))-F(u*(fi)+fli)}=F(u*(fl))--+O as fi~0. 
i=, 

Let n be such that n <= 1/fi < n + 1. With the same argument we estimate 

P {Xi <=U*(fl)+ fli, i>= l } < P {X~ <un+i,' > l}=P {tl/n<=nun} +o(l) 

and conversely 

{ i } 
P{Xi<=u*(fl)+fli, i>=l}>P Xi<=u,,+~+l,i>=l 

>P X,<U,+n,i>_l 
- 3 ~=* ( n + l  - 

= P {t,/,, < n u,} + o(1) 

since the sum is equal to 

XO )CO 

--<_(n+ 1) 5 F(y) d y - n  5 F(y) ay  + f ( u , )  
un Un 

=H(u,J+P(u,)=o(1) as n--+oo. 

Remark. For u*(fi) we may obviously use any measurable function which is 
bounded by u,+ 1 and u, on [-(n+ 1 ) - l , n -* ] .  
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Lemma 2. Let NH(uN)---~O>O as N--.oo, At," and n, m, K, N be as in Condition 
( A ). Then 

PtXt<UN+N,i>l}-P(t~_oAt, . )=o(1) as n~oo, K ~ .  

( lK+i . ] 
Proof. Define A*t,,--lXtl~+t<uN+--N , t '= / ~ - m  + 1, . ..,Kj~, l>0.= Thus 

Therefore we have to bound the difference 

( ~ o )  (~o, ,) i n At, n - n  At,,c~A~, , < P(AI.n~At*~) 
t l / = 0  

< P(A~f,)< 2 f f l u N + ~ - - )  < mff Us+ 
/ = O  / = 0  i = K - - m + l  / = 0  

by using the monotony of 
XO 

<mF(uN)+mn ~ ff(y) dy=o(1)+mnH(uN) 
UN 

0+o(1) 
= o ( 1 ) + m  =o(1) as n~oo ,  K ~ o o .  

K 

Lemma 3. Assume Condition (A), then as n~oo, K~oo, m ~ o o  with mi(/K~O 

(6o)~ P At,. - P(AI..)=o(1 ). 
t / = O  

Proof. Let L be a positive integer. Then by adding and subtracting we derive 

L L L - I  

, (,~o~,~)-Ho~,- - , (~0o~,~t-, (~0oA,,~)"~,~ 
L--I L--2 

+ P l~=oAt,,, P(Aa,,)P(Aa,,)'" P(AL, n)-I~=oP(Az,n) 

< ~ Ar,, - P  Ar.,)P(AI,,) 
l = 1  l '  l '  

L ce 

< Eo~ ..... K,, < E ~  . . . .  K, t=o(1)  
/ = 1  l = l  

by assumption for any L. 
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Lemma 4. Assume Condition (B) and NH(u~)~O >0. Then 

oo 

lim lim I~P(Al,,)=e-~ 
K ~ o o  n~oo / = 0  

oo 

Proof First we approximate ~ (1-P(AI,,)). 
/ = 0  

1-P(AI,,)=P 3 i : X i>uN+- ~-w i th  l <_i<_K--m 

< ~1/7(u N I K + i \  ~/" 

/ t + l \ )  

by using again the monotony of F. Therefore 

(1 - P(A~,,)) 
/ = 0  

_-<NZ,=o H uN+ - H i  N , /j=NH(uN)-,0 as ,-~oo. 

With the inequality of Bonferroni we approximate conversely 

1 - P (&,.) 
~-" [ lK+i\  f 1K+i 1K+j) 

i=  1 l < i < j ~ K - - m  

Hence by assumption 

oo 

~(1-P(Al,,))>NH(uu)+o(1 ) as n-~oo 
/ = 0  

since 

~ (m+l) f f  UN qt- <o(l)+(m+l)nH(uN)=o(1) 
l = 0  

as n ~ ,  K ~ .  

Finally we need to know that each term P(A~,,)~ 1. This is established by using 
the monotony of the boundary 

1-P(Az,,)<I-P(Ao,,) < ~ ff us+- N <=(K-m)ff(uu)=o(1). 
i = 1  

This implies now that 

l~P(A~,,)=exp - (1  +o(1)) (1-P(Az,,)) ~e -~ 
l = O  / = 0  

a s  r / - - ~ o o ,  g - - r  o o .  
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Proof  o f  the Theorem. Let 0 = - l o g 0 ( x ) > 0  for a point of continuity x of ~b, 
Condition C implies nH(u , )~a-~-*O (see [2]). By Lemma 1 it is sufficient to 
show that 

P{t l / , ,<=nu,}~e -~ as n~oo .  

{ i }  
L e m m a 2 ,  3 and 4 imply that P X i < u N + ~ , i > _ _ l  ~ e  -~ as n ~ ,  K ~ o o  and 

m K ~  with mK/K~O,  N = n K .  By the argument of the proof  of Lemma 1 it 
follows that also P { t l / N < N u N } ~ e  -~ Therefore the proof is complete if we 
show that 

i 

with r K < n < r K + K, K any positive integer, r ~  ~ .  We estimate this difference 
with the argument of the proof  of Lemma  1. The difference is bounded by the 
sum of 

and 
i i 

The first term is bounded with the Bonferroni inequality by 

~1 i i F u.+~ - f  
i= P u " + n < X i < u " + - -  ~=~ 

<= n H(u,)  - r K H(u,)  + F(u,) = o (1), 

since n H ( u , ) ~ O  and rK/n--*l .  For  the second term we have to consider the two 
cases: u~K<u . and u ,K>u .. In the first case the term is bounded again with the 
same argument by 

E P f, i=1 ~. r K  j < = r K H ( U r K ) - r K H ( u n ) + F ( u " ) = ~  

Similar in the second case, the term is bounded by 

r K  H(u,)  - r K  H(UrK ) + F(U,K ) = O(1). 

This finishes the proof  of the Theorem. 

Remark. As mentioned in [2] there is no essential restriction in considering the 
linear function as boundary instead of more general boundary functions f ( y )  in 
the definition of the last exit time. 
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