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Summary. Two generalisations of Brownian motion to several-dimensional 
time are considered and the topology of their level sets is analysed. It is 
shown that for these maps non-trivial contours are quite rare - their union 
has Lebesgue measure zero. The boundedness of all contours is established 
for the generalisation due to L6vy. For  the other, the Brownian sheet, a 
partial result concerning the behaviour of the zero contour near the bound- 
ary is established. 

Introduction 

Contours are frequently used in everyday life to indicate the shape and nature of 
a surface or a function. This paper is devoted to investigating the nature of the 
contours of two random maps, the Brownian sheet W and L6vy's multitime 
generalisation X of Brownian motion. The work was begun to answer a 
question asked by Pyke in [11] about the topological or dimensional properties 
of the level sets of W. Adler, in [1], has investigated the Hausdorff  dimension of 
the level sets of W. However although the answers obtained there make it clear 
that the level sets are most irregular they throw little light on the topology of the 
level sets. In this paper the connected components of the level sets - the true 
contours - are considered both for W and for X. 

A level set of one of these processes is a closed subset of IR N, being the set of 
points on which the process attains a certain value. Given a particular point we 
consider the connected component  of the level set passing through this point. 
The connected component  containing the point in question we call the contour 
of the process at this point. A contour which is a one-point set is called trivial. 

The questions to be considered are 
how likely is a given contour to be trivial? 
are there any unbounded contours, and, in the case of W, 

what is the behaviour of the contours at the boundary? 
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The rather curious answer to the first question is that in both cases the 
contour at a specified point is almost surely trivial. Nevertheless by a topologi- 
cal argument it can be shown that non-trivial contours must exist. (This 
argument is sketched out after the proof of Corollary 1.3 in the paper. 7 

Although the second question is an easy corollary of the first in the case of 
X, in the case of W the lack of symmetry makes it very hard. Only a partial 
answer has been obtained for W, and that only in dimension 2. Nevertheless the 
answer (given in the theorem at (1.47) provides some insight into the nature of 
the trajectory of a 2-time Brownian sheet. 

Section 1 deals with the Brownian sheet and Sect. 2 with L6vy's generali- 
sation. The results of Sect. 2 can be obtained as corollaries to the results of Pitt 
and Tran in [10] concerning rather more general processes. However the results 
are derived in Sect. 2 by means of simple geometrical arguments exploiting 
symmetry and a white noise representation due to Centsov [3]. 

1. The Brownian Sheet 

Let 21" = {t = (q , . . . ,  tu) elRN: t l , . . . ,  t u > 0} and let ~I1" = {tell': at least one of 
the t i is zero}. Then the N-parameter Brownian sheet (or Wiener sheet) W is a 
Gaussian process {W(t): t ~ }  of continuous trajectories and of covariance 
structure given by 

N 

EW( t )=0  and EW(t).  W(s)= l-I (stoAt,,) 
m = l  

for s=(s  I . . . . .  Su) and t = ( q , . . . , t u )  i n F .  

In [2] 12entsov remarked that W could be represented by a white noise r/, a 
representation that aids the exposition of the following work considerably. In 
fact we can write 

W(t)= ~/{s in ~ :  sm<t m for all m} 

where ~/is a Gaussian random measure on I1" with 

Et/(G)=0 and Erl(G).rl(F)=m(Gc~F) 

for any Borel sets F, G ~ 2F and for m Lebesgue measure on ]I'. 
If L(t)= {se2r: W(s)= W(t)} and if C(t) is the connected component of L(t) 

containing t then we consider the questions 
for a fixed t in (0, oo) u is C(t) trivial? 
what can be said about C(0)? (Apart from the obvious fact that it contains 

0~I') 
The first question can be answered completely. By scaling symmetries it 

suffices to take t = l = ( 1 , . . . ,  17 and consider the contour C(I). The following 
0 -  1 law will be useful in the discussion of C(1); 

if ~ = a { W ( s ) -  W(1) for s in ~ such 

that max{[s,~-1]} < 1/n} 
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then the germ a-field (~ ~ satisfies a 0 - 1  law. This is a straightforward 
n = l  

consequence of the 0 - 1  law of Orey and Pruitt [8 p 140]. 
The following rather surprising result answers the first question. 

(1.1) Theorem, 
P{ c ( 1 ) =  {1}} = 1 

so that the contour at 1 is almost surely trivial. 

Proof. The event {C(1)= {1}} contains the event 

lim ~ {W(1 + hs) < W(1) for all s with max{Isr~l} = 1} 
H-~O h < H  

because if the second event holds then 1 is surrounded by an infinite number of 
arbitrarily small boxes on the surface of which W is smaller than W(1). Since the 
second event is in the germ ~-field mentioned above an application of Fatou's 
lemma will complete the proof if it can be shown that the event 

{W(I + h s ) <  W(1) for all s with max{lsml } = 1} 

has positive probability bounded away from zero for all suitably small h. 
To prove this we exploit the white noise representation of W. We can 

decompose the Brownian sheet by 

N 

W(u) = W((1 - h) 1) + ~, Bk(u k -- 1 + h) 
k = l  

N 

+ ~ ~ VVj ...... j ~ ( u j l - l + h  .. . .  , u ) , , - l + h )  
m = 2  J t  . . . . .  Jm 

where the third sum is taken over the distinct m-tuples j l  . . . . .  Jm with 
1 =<Jl <J2 < ... <Jm~ N and the N processes B k are Brownian motions while the 

(m N)  processes Wj ...... jR are m-parameter Brownian sheets. The processes are 

defined in terms of t /by  

Bk{r)=t l {V~:  vk <=r + l - -h ,  Vk> l - - h  and vq<: l - h  for all q=t=k} 

and 

Wj ...... jm(rl,. . . . . . .  r~) 
= t / { v ~ :  v jk~rk+l - -h  , v~k>l--h for all k = l  . . . . .  m 

and Vq< 1 - h  for all q#J l  . . . .  ,J,~}. 

Because the sets used to define different processes are always disjoint, the 
processes in the decomposition are all independent. 

When h is small the contributions of the Brownish sheet terms may be 
ignored, at least with a positive probability. For by sealing properties and 
continuity there is an M > 0  and a p ' > 0  such that for any j l  . . . .  ,Jm and any h > 0  
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P { I  I/V] . . . . . .  Jrn ( r l '  "" ~ rm)[ ~ M" h H'I/~ 
> , when r k ~ [0, 2 h] for all k} = p.  

Consequently by the independence of the sheets the probability of 

W (u ) -  W((1 - h) l ) -  B~(u k -  1 + h) < h m/2. M 
k = l  2 

u in ~ with u 1 . . . .  , uN in [0, 2hi} for all 

is greater than (p,)2~-N-1. Moreover this event is independent of the Brownian 
motions B1, ..., B N. 

By the "Forgery Theorem" of LSvy (proved in I-4, p 30, 1.3 Thm. 381) and the 
scaling property of Brownian motion there is a p " > 0  such that, for any h >0, 

P{Bk(r)<h ~ for r in [0,2h] 

Bk(O ) and Bk(2h)= h-/4 

Bk(h ) > (1 - 1/(4N))h ~} 

equals p" for k = 1 . . . . .  N. By the independence of the B k this means 

{k~= 1 < ( N -  3/4)h 2 Bk(rk) if all of r k are in [0, 2hi 
~d 

and precisely one of Jr~] equals h; ~ Bk(h)>(N-  1/4)h~} 
k = l  ) 

has probability greater than (p,,)N. 
Combining these two independent events we see that with positive probabili- 

ty bounded away from zero the absolute error in the approximation 

N 

W(u) -  W((1 - h ) l ) ~  ~ Bk(uk--1 +h) 
k = l  

h ~) - 1 - N.  h ~] = o(h ~) while is less than M [ ( I +  ~ u 

N 

a ~  Y~ Bk(uk-- 1 + h) 
k = l  

is less than (N-3 /4 )h  ~ on the box of side 2h and centre 1 but also greater than 
( N - 1 / 4 ) h  ~ when u =  1. Consequently there is a positive probability that 

W ( l + h s ) < W ( 1 )  for all s with max{lsml}=l 

for sufficiently small h. Moreover, for h smaller than a certain amount this 
probability will be bounded away from zero. [] 

(1.2) Corollary. The union of the non-trivial contours of W is a Lebesgue null-set 
of~r. 
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Proof. The function t~--+P{C(t)+ {t}} is zero everywhere in (0, oo) N. Therefore 

E ~ l[c(t),(t}ldm(t)=0. [] 

(1.3) Corollary. With probability 1 the set of local maxima of the N-parameter 
Brownian sheet is dense. 

Proof. Clearly if W(t + hs)< W(t) for all s with max {I s,,] } = 1 then there is a local 

maximum of W within I / N .  tl of t. The proof of the result above shows that this 
occurs for arbitrarily small h with probability 1. Hence with probability 1 every 
t with rational coordinates is an accumulation point for the set of local maxima 
of W. The proof is easily completed. [] 

This last result was proved for the case N = 2 by Tran in [12] in the course 
of an analysis of the local maxima of the 2-time Brownian sheet. 

The first corollary raises the question of whether there are any non-trivial 
contours apart from C(0). If there were none then a level set such as L(1) would 
be totally disconnected and hence of dimension 0. Such a set is incapable of 
disconnecting ~ff when N > 2 (see [5] Theorem IV 4 p 48). But 

]I '\L(1) = {t: W(t)< W(1)} u {t: W(t)> W(1)} 

is disconnected with probability 1. Therefore non-trivial contours must exist. 
An extension of this argument shows that the Lebesgue null-set of non- 

trivial contours is nonetheless dense in I1". 
We turn to the second question about contours, concerning the nature of 

C(0); namely if 

0g  = { t ~ :  at least one of the coordinates is zero} 

then does C(0) equal aIF? We shall only be able to establish a partial answer to 
this question, and that only for the case N = 2 .  The argument works in 
dimension 2 because of the topology of the plane. 

Two basic properties of Brownian sheets will be invoked repeatedly. One is 
the inversion symmetry; that the process 

tN)~__~fO if t~=0, 
t = ( t  1 

�9 W(1/tl ,  t2,..., tN) otherwise 

is itself a Brownian sheet. This and further symmetries obtained by inverting 
other coordinates enable the behaviour of the zero-contours at infinity to be 
deduced from their behaviour at the origin. 

The other property is the Cameron-Martin formula for the Brownian sheet. 
This has been obtained by a number of workers. For  our purposes we refer to 
[9] and state an easy extension; if g~L2(~) then the law of the process 

t l  tN 

t = (tl, ..., tN)~ w(t) + ~... S g(x) dxN...dxl 
0 0 
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is mutually absolutely continuous to the law of W with a density with respect to 
the latter process of 

exp(~ g d W -  �89 ~ g2). 

(1.4) Theorem. For a f ixed T<oo let C*(0) be the connected component 
containing 0 of C(0)c~ [0, T] 2. 77wn 

C * ( 0 )  = ~'IF u] [-0, T ]  2. 

Proof By scaling symmetries we may take T = 1. 
The first stage in the proof is to note that the topological nature of ]1" 

= [-0, oo) 2 restricts the possible behaviour of connected regions on which W is of 
a constant sign. We state an interior lemma; 

(1.5) Lemma. Almost surely there is no continuous 

f :  1R~((0, S ] x  (0, S-1])  u([S,  oo) x [S -~, ~)) 

satisfying the three conditions following: 

(i) W(f(u)) is positive for all u; 
(ii) lira inf max {fl (u), f2 (u)} = O; 

u~oo 

(iii) lira sup rain{f1 ( -  u ) , f2 ( -  u)} = oo. 
u~oo 

7hus no connected region of positivity of W can adhere to both (0,0) and (oo, oo). 

Proof of Lemma. Suppose that there is a positive probability of existence for 
such f. We derive a contradiction. 

By the O -  1 law of Orey and Pruitt referred to above there is a O -  1 law for 
(~ a{W(s, t): s<=S or t>=S-1}. Using the inversion symmetry, this O - 1  law, and 

S>O 
the fact that - W has the same law as W we may infer that with probability 1 for 
some $1 > 0  there will exist a continuous 

f ' :  IR~([S1 l, oo) • (O,S;~])w((O,S[ 1] x IS? ~, oo)) 

with W(f'(u)) negative for every u and with 

lira inf max { 1/f;(u),f~(u)} = O, 
u~oo 

lira sup rain { 1If 1' ( - u), f~( - u)} = ~ .  
u~oo 

The image of f will separate points sufficiently close to (0, 00) from points 
sufficiently close to (0% 0), while the curve f '  will connect some points from both 
of these regions. Consequently it is impossible for such an f and such an f '  to 
coexist. This gives the desired contradiction. []  

We return to the proof of the theorem. Once more we use the method of 
contradiction. Suppose C* (0) :# O~ c~ [0,1] 2. Then in the set [0,1] 2 there is a 
connected region of positivity for the translated process (s, t)~-~ W(s, t )+st  with 
closure intersecting the boundary ~1"~ [0, 1] 2. By the Cameron-Martin formula 
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this last event will have probability zero if almost surely there is no continuous 
f :  [0, oo) ~ (0, 1)2 with W ( f  (u)) positive for all u and lira inf rain { f l  (u), f2 (u)} = 0. 

u ~ o o  

If there is a positive probability of such an f then the probability is still 
positive under the further restriction that f ( 0 ) = l .  (For some t in (0,1] 2 and 
some M > 0  we may take f ( 0 ) = t  and W > - M  over the segment from t to 1. 
The Cameron-Martin formula with g = l [o , t , ]  x [0,t2]" M/(tl t2)  shows we may take 
t = l . )  

Given 5, with probability 1 there is a sequence x , ~ 0  such that W(s,x,)>O 
for all s in [5,1] for all n. This follows from a 0 - 1  law for 0 a{W(s,t); 

h > 0  

s< 1, t<h} obtained by applying the Orey-Pruitt 0 - 1  law. Consequently we 
may further restrict f by requiring lira inf sup{fl(u), fz(U)} =0. 

u ~ o o  

Finally the independence of WIEI,~)2 and Wlto,112 given W(1) and the 
inversion symmetry of W may be applied to show the positive probability of an 
f existing as developed above together with a corresponding curve in [1, or) 2. 
But two such curves put together form a curve as described in the lemma at (1.5) 
and this contradicts the positive probability of their existence. So the initial 
premise must be wrong and consequently 

P{ C*(0)-= 0~ n [0, 112} = 1. [] 

The proof of the interior lemma at (1.5) depends on the topology of the plane 
- in particular on the fact that curves can disconnect the plane. This hinders the 
generalisation of the theorem to higher dimensions. 

2. L6vy's Brownian Process  with Mult idimensional  T ime  

The N-parameter generalisation of the Brownian process due to L6vy is a 
Gaussian process {X(u): u~lR N} of continuous trajectories, satisfying 

x(0)=0, ~x(n)= 0, 
and 

E(X(u)-X(u 2= I l t l - v l ]  for all u and v in ]R N. 

As before, a white noise generalisation is useful. The white noise ~ is defined on 
the space M of hyperplanes equipped with an invariant measure tt inherited 
from the action on M of the group of rigid motions. So # is unique up to a 
constant multiple. The process ~ is Gaussian with 

E~(G)=0 and E~(G).~(F)=I2(Gc~F) 

for F and G Borel sets in IR N. 
If the right constant multiple is chosen for/~ then the process X(u)= ~{h~M: 

h separates u from 0} has the finite-dimensional distributions of the L6vy 
Brownian process. So it can be modified to have continuous trajectories and so 
to be a L6vy Brownian process itself. 

This representation is due to Centsov [31. 
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As before the level set of X at u is defined to be 

L(u) = {v~IRN: X(v) --- X(u)} 

and the contour of X at u is the connected component C(u) of L(u) containing u. 
As with the Brownian sheet we direct our attention to the question of the 
triviality of C(u). 

As a preliminary step of some intrinsic interest we establish a O -  1 law for 
the germ a-field 

~r N a{x(.): rl.lp<r} 
r>O 

Such a 0 - 1  law was stated by McKean in [6] and proved by Mol~an in I-7]. 
The following proof is geometrical in flavour, and more direct. 

(2.1) Theorem. Events in the germ a-field fY have probability 0 or 1. 

Proof Let Am= {heM: the perpendicular from 0 to h is of length between 1/m 
and 1/(re+l)}. Define (~m=a{~(G): G a Borel subset of Am}. Clearly 

~ lira ~ N,, by the white noise representation. The white noise being inde- 
n ~ o o  m = n  

pendent on disjoint sets, the fgm are independent of each other. So the result 
follows from Kolmogoroffs  0 - 1  law. []  

(2.2) Theorem. 
P{ C(0)= {0}} = 1. 

Proof By the 0 - 1  law at (2.1) it suffices to show 

P{C(0)#0}  < 1. 

By an argument similar to that of the proof of (1.1), but using spheres rather 
than boxes and exploiting the scaling symmetry of X, this follows if 

P { X  is positive on the sphere of unit radius centred at 0} 

is positive. 
Let S be the unit sphere and let m be the unit invariant measure on S. Then 

symmetry arguments show that Y is independent of the process X - Y  on S, if 
Y= S X(u) din(u). For  

S 

E Y.(X(u) - Y) = S E r.(X(u) - Y) drn(u) = E Y.(Y- Y) = O. 
s 

On the other hand 

var(Y) = E(Y 2) = E y ~ X(n). X(v) dm(u) din(v) > 0 
S S  

since EX(u). X(v)=�89 + Ilvll- I[u-vl[] >0. 
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So Y is a n o n d e g e n e r a t e  G a u s s i a n  r a n d o m  va r i ab l e  i n d e p e n d e n t  of  the  

c o n t i n u o u s  p rocess  X - Y  res t r i c t ed  to S. T h e r e f o r e  

P{ inf  ( X ( u ) -  Y)> - Y} >O 
LI~II= 1 

a n d  this  c o m p l e t e s  the  proof .  [ ]  

Because  the  p rocesses  u~--,X(u + v ) -  X(v)  and  

0 if  u = O ,  

u ~  Ilu[/X(n/llnll 2) o the rwi se  

b o t h  h a v e  the  s a m e  law as X,  it fo l lows  f r o m  the  resul t  at  (2.2) tha t  

P { C ( u ) = { u } } = I  for any  u in IR N 

and  also tha t  wi th  p r o b a b i l i t y  1 all c o m p o n e n t s  o f  L(u) are  b o u n d e d  for all  u in 
1R N. 

As wi th  t he  B r o w n i a n  shee t  we m a y  c o n c l u d e  tha t  the  u n i o n  of  all  the  

n o n - t r i v i a l  c o n t o u r s  of  X is L e b e s g u e  nul l  bu t  still  dense  in 1R N. 

Most of the results in this paper were obtained in the course of an S.R.C studentship at the 
University of Oxford, and appear in the ensuing D. Phil. thesis. I wish to acknowledge the 
encouragement of my supervisor John Kingman, and the stimulus of correspondence with J.B. 
Walsh and R. Pyke. 
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Note Added in Proof 

The author has recently obtained an analogous Baire category result. Given the usual topology for 
1RNx COR N) the set 

{(u, X): the X-contour at u is trivial} 

is a residual set. 


