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Summary. We consider a minimal form of the usual conditions for the 
dependent central limit theorem and invariance principle for "near mar- 
tingales". We show that these conditions imply convergence to Brownian 
motion in a way that is slightly stronger than weak convergence in D [0, or).  
On the other hand, if a sequence of processes with paths in D[0, or) 
converges to Brownian motion in this way, then we can always find a 
sequence of partitions of the time axis that is such that these conditions hold 
for the corresponding array of increments. 

1. Introduction 

While the central limit problem for independent summands was essentially 
completely solved decades ago, the corresponding problem for dependent sum- 
mands still has not reached its final solution. Various authors have given 
different sets of sufficient conditions for sums of dependent variables to converge 
to the normal distribution, and the more recent papers also include generali- 
zations of the classical invariance principle [2, 4, 5, 8, 13]. The various sets of 
conditions may often be shown to be equivalent [8, 13]; in fact one may 
formulate one convergence theorem from which most of the other theorems of 
this type may be deduced ([4], see also Sect. 3 below). Still, it is easy to see that 
these conditions for convergence are not necessary, not even if one requires the 
invariance principle to hold. Results on necessity have just started to appear [91. 

The purpose of the present paper is to approach this problem from a 
different angle, and thus to show that conditions for convergence that are 
natural generalizations of those arising in the classical central limit theorem, are 
really necessary and sufficient in a certain sense. Let {X,(t); t > 0}n be a sequence 
of processes with paths in D[0, oo), and let {tk~; k=0 ,  1 . . . .  }n be a sequence of 
partitions of [0, oo). (The t~'s may even be stopping times; precise statements are 
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given below). The array of variables that we consider, are given by A Xn(k ) 
=X,(t~+l)--X,(tk,). Natural sufficient conditions for weak convergence of 
{X,(t)} to Brownian motion are formulated in terms of AX,(k) (and the total 
variation of X,(t) in [t~, k+z t, ]). We will show that these conditions really imply 
a type of convergence that is slightly stronger than weak convergence in 
D[0, oo), namely joint convergence in distribution of conditional expectations, 
given the past, of bounded, continuous functionals. Finally, if {Xn(t)} converges 
to Brownian motion in this stronger sense, then it is always possible to find a 
sequence of partitions {tk,} such that the conditions are satisfied for the cor- 
responding array {AX,,(k)}. We give an example to show that the new type of 
convergence is strictly stronger than weak convergence. 

In Sect. 2 we state all these results in a more precise way. In Sect. 3 we give 
equivalent forms of the conditions for convergence, and in Sect. 4 we develop some 
techniques for proving that this new type of convergence holds for some given 
sequence of processes. Finally, Sect. 5 contains the proof of the main result, 
leaning heavily upon the results of Sects. 3 and 4. 

2. The Main  Result  

On some probability triple (~2, ~,~, P) let there be defined a sequence of processes 
{X,(t); t>0} ,  with paths in the space D[0, c~) of right-continuous functions on 
[0, oo) with left-hand limits everywhere in (0, oo). We endow D[0, oo) with the 
Stone topology [7]. Let each Xn(t) be adapted to an increasing family of a-fields 
~,~(t). For  fixed n >  1 let {t~; k=0 ,  1 . . . .  } be a sequence of stopping times relative 
to ~,(t) such that 

(2.1) O=t~  l im k ; t n - -  @ oo a.s. 
k~oo 

Also we assume that for each t > 0  we have 

(2.2) max At~(k)--*O in probability as n--.oo0 where we define 
O<-k<--rn(t) 

(2.3) rn(t)=max{k>_O:t~<=t}; Atn(k)=t k+l_,, --t~k. 

We also define 

V X . ( k ) =  sup IXAs)-x~( t~) l  

(2.4) A X .  (k) = X .  (?~ + 1) _ X .  (t~) 

AcX.(k)  = A X. (k )  . I ([A X.(k)[ <= c). 

where I ( - )  is the indicator function. Let =~ denote weak convergence in 
D[0, oo), ~ denote convergence in probability, D, denote convergence in 
distribution and let Z,(t) 1,,, Z(t) mean convergence in probability uniformly in 
t on compacts ( sup I Z ~ ( s ) - Z ( s ) [ ~ O  for all t>0).  Finally, we use the ab- 

O<s<=t 
breviations Pk [" ] = P [ ' J ~  (tk)], Ek {" } = E {" ] Y,,,(t~)} and Var k {- } = Var { . [ ~  (tk)} 
when no misunderstanding may arise. 
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(2.5) 

Consider the following set of conditions 

r~(t) 

k = O  

rn(t) 

(b) ~ Ek{AIX.(k)} P~O 
k = O  

rn(t) 

(c) ~ Vark{A1X.(k) } v , t 
k = O  

(d) X.(O) v ,O .  

(for all e, t > 0) 

(for all t > O) 

In (b) and (c) we truncate the increments at c = 1, but by (a) it is easy to see that 
the corresponding conditions with any other positive truncation constant are 
equivalent to the ones given. In (2.5) (a) and (c) the convergence is equivalent 
with Pu-convergence, since the left-hand sides are monotonic in t. 

It is instructive first to look at the case where the increments A X,(k) are 
mutually independent and the tk,'s are nonrandom. Then it may be seen that (2.5) 
holds if and only if X,,(t) converges weakly to Brownian motion. Of course, in 
this case the left-hand sides o f  (2.5)(a)-(c) are nonrandom. If we replace the 
convergence here by pointwise convergence for one fixed t = to, then the new set 
of conditions is equivalent to: (i) Xn(to) converges in distribution to N(0, to). (ii) 
The array {AXn(k); 0_<_k<__r,(to), n > l }  is infinitesimal. This is essentially only 
the classical central limit theorem ([6], Chap. 5, Theorem 2). 

In the general case (2.5) implies X , ( t ) ~  W(t), where W(r) is standard 
Brownian motion. This will be discussed below, and it is easy to see from similar 
statements in the literature. It should be emphasized, however, that most sets of 
conditions for convergence to Brownian motion given in the literature, are 
actually slightly stronger than (2.5). This will be further discussed in the next 
section. On the other hand, it is easy to construct examples where X,(t) ~ W(t), 
but (2.5) does not hold. In the typical example, the mesh of the chosen sequence 

[nr] 

of partitions tends to zero too fast, e.g., let X,(t)=n -~ ~ Zj+(nt 
j=l 

-[nt])n-'~ZE,t~+l, where the Zfs  are i.i.d, with E{ Z j} =0  and E ~ z tZj } = 1, and 
where ~,~(t)=a{X,(s); s<t} and tk,=kn -2. 

Of course, in this example it is much more natural to take tk,=kn -1, and 
then (2.5) does hold. In general one may ask the following question: Given that 
X,(t) ==> W(t), is it always possible to find a sequence of partitions such that (2.5) 
holds? Surprisingly, the answer is no, as the following example shows. 

Let Walt ) (i = 1, 2) be two independent standard Brownian motions defined on 
some probability space (f2, J%P). Define U,=f,(WI(1)) , where f , (x )=  +1 for 
x ~ ( ( 2k - 1 ) 2 - " ,  (2k).2-") (k=0,  ___1, +_2,...), f , ( x ) = - i  otherwise. Let S 2 
= sign (Wz(1)) and put 

~Wl(t ) for 0< t_< l  
(2.6) 

X"(g)=[.WI(1)-t-U,,Szl/V2(t-1) for t > l .  

First it is easy to show by characteristic functions that the pair (U,, WI(1)) 
converges in distrubution to (U, WI(I)), where U and W1(1) are independent and 
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P [ U = + I ] = P [ U = - I ] = � 8 9  From this we can show by a straightforward 
argument that the finitedimensional distributions of {X,(t)} converge to those 
of a Brownian motion process. Since tightness is easy to prove, e.g. from 
Theorem 15.5 in [1], weak convergence in D[0, Go) follows. 

On the other hand, in this example the condition (2.5) (b) does not hold for 
any sequence of partitions satisfying (2.1)-(2.2). (We take ~ ( t ) = a  {X,,(s); s<t}.) 
We will indicate how this can be shown when tk~=k6, (k=0, 1, ..., n = l ,  2, ...) 
and 6,.L0. First, it is straightforward to see that it does not make any difference 
to consider untruncated increments in (2.5) (b). Let 1 _< t_< t + 6 < 2. Then E {(X,,(t 
+3)-X , ( t ) ) l~ ( t ) }=U~E{S2(W~( t - l+c3) -W2( t -1) ) lo~( t ) } ,  and J~(t) 
=~{Wl(s); s <  1} v a{S 2 W2(s-1); s<=t}. Note that ..~(t) = ~ ( t )  is independent of 
n. Next we calculate E{Sa(Wz( t -1  +6)-Wz(t -1)) l (Y( t )}  with ~q(t) in turn taken 
to be ~,~(t)v a { W 2 (1)} and Y ( t ) v  a {$2}, respectively. This last expectation turns 
out to depend on S 2 W2(t-  1) only, so that it is ~(t)-measurable. The final result 
of these calculations is that for t > 1 

(2.7) ~=t~/a.J+ 
2 A t - -  1 exp ( - W, (s)2/2 (1 - s)) 

D , U  ~ " ds, 
o V S ~ O - s ) ~ ( s ~ w ~ ( s ) / / ~ - s )  

where ~ is the standard normal distribution function, and U and (S 2, W2(s)) are 
independent. Thus (2.5) (b) cannot hold when t~=kcS,(6n~O ). The proof that it 
does not hold for any other sequence of partitions either, will be postponed. 

What is pathological about this example, is that even though {Xn(t) } 
converges weakly to Brownian motion, the conditional expectations, given the 
past, do not converge to the right distribution. For  instance, for g continuous 
and bounded we have E{g(Xn(2)-Xn(1))I~(1)}=E{g(U,[Z[)[U~} where 
Z ~ N ( 0 , 1 )  and is independent of U, (recall that U,=__I),  while E{g(W~(2) 

- w~(1))l w, (s); s__< l) =E  {g(z)}. 

(2.8) Definition. Let X,,(t) ( n = l ,  2 . . . .  ) and X(t) be processes with paths in 
D [0, oo) and adapted to families of o-fields ,~(t) and J ( t )  respectively. We say 
that {(X~(t), ~(t))} converges to (X(t), if(t)) weakly and in conditional distri- 
butions and write (Xn(t), .~,(t))=% (X(t), ~(t))  if the following holds: For every 
choice of m>= 1, of m time points tf>=O (i= 1, ..., m) and of m bounded, continuous 
functionals gi (i= l . . . . .  m) on D[0, co) the joint distribution of E {gi(X,,(ti + " ))J 
o~(ti)} (i = 1 .. . .  , m) converges to that of E{g~(X(ti+ �9 ))[Y(ti)} (i = l . . . . .  m). 

I f  this holds with .~,,(t)=a{X,,(s); s<t}  and f f ( t )=a{X(s) ;  s<t},  we simply 
write X,(t) =% X (t). 

It is clear that this type of convergence is at least as strong av weak 
convergence, and by the example given above it is strictly stronger. It may be 
shown that the convergence X,(t) =% X(t) is independent of the representation of 
the processes X,(t) and X(t): If X(t) and )?(t) are two processes with the same 
distribution on D[0, ov), then the joint distribution of E{gi(X(t~+ "))lY(ti)} (i 
= 1, ..., m) is the same as the joint distribution of E{gi(X(t i+'))[~(t/)},  where 
.~(t)=a{X(s);  s<t}  and :~(t)=a{f((s); s<t},  and the gi's are bounded and 
continuous. 
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The last remark also suggests that the convergence G:, is really not much 
stronger than the familiar convergence ~ .  The example given at the end of this 
section also seems to confirm this. One should note, however, that different 
choices of the families of c~-fields {~,,(t)} may give different types of convergence 
(X~(t), ~(t))  =G (X (t), ~- (t)), even if one always takes -~(t)=~{X(s);  s < t}. 

The main result of the present paper is the following. 

(2.9) Theorem. Let {X,(t)} be a sequence of processes with paths in D[0, oo), 
adapted to families of a-fields {~(t)}. Let {t,k,} be a sequence of partitions 
satisfying (2.1) and (2.2). Let W(t) be a standard Brownian motion process, and put 
J ( t )=a{W(s ) ;  s<t}. Suppose that (2.5) holds. Then (X,(t), ,~(t))=:G (W(t), o~(t)). 

Conversely, let X,(t), ~( t ) ,  W(t) and g (t) be as above, and suppose that (X,(t), 
~(t))  =G (W(t), ~(t)). Then (2.5)(d) holds, and (2.5)(a) holds for every sequence of 
partitions {t~}. Furthermore, there is a sequence of partitions of the form t~ = k g), 
with 6,,~0 such that (2.5)(b) and (c) hold with {AXe(k)} corresponding to this 
sequence. 

As an immediate corollary we note: If (2.5) holds for some sequence of 
partitions {t~} satisfying (2.1) and (2.2), it always holds for a sequence of the form 
t~=k(5, (6,$0). This completes the proof of the assertions concerning the 
example (2.6). 

One further example might be of some interest. In [10] and [11] Rosen- 
krantz considered the sequence of diffusion processes X,( t )=n-IX(n2t ) ,  where 
X(t) is a diffusion on ( -  o% oo) with infinitesimal variance 1 and drift coefficient 

b(x) with ~ Ib(x)ldx<oo and ~ b(x)dx=O. Rosenkrantz showed that 
- o o  - o o  

X,(t) ~ W(t), standard Brownian motion. By cumbersome, but straightforward 
calculations using Theorem (2.9), we may actually show that X,(t) =~ Wit ). In 
particular we can show that (2.5) (b) holds for some sequence of partitions, even 
though the sequence of drift coefficient b,(x)=nb(nx) does not necessarily 
converge. This example will be discussed in detail elsewhere. 

3. Discussions of the Conditions for Convergence 

The purpose of the first Lemma below, is to shed some light of the condition 
(2.5)(a), but the Lemma is also of independent interest. The direct part of it is 
due to Dvoretzky [5], the converse part is implicit in a proof oy Durrett and 
Resnick in [-4]. 

(3.1) Lemma. Let {An./; n ~ 1, i>  1} be an array of events in a probability space 
(f2, @, P) adapted to an array of r~-fields {~.i ;  n > l ,  i>0} (i.e. A , , , i ~ ,  i and 
,~.i_l ~ , i c J ~  for n, i>1). Let { k , ; n > l }  be a sequence of stopping times ([k, 

= i ] ~ , i )  with values in {0, 1 , 2 , . . . } U { + o o  }. Then P I  ~ A , , i [~O as n - ~  if 
kn i k = l  d 

and only if ~ P[A. . i l~ , i_ l ]  P >0. 
i = l  
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Proof By replacing A,,,~ by A',,.~=A,,~ [k,>i], we see that it is enough to prove 
the Lemma for k, = + oo (n = 1, 2 . . . .  ), since [k, > i] e ~_.  By Lemma 3.5 in 1-5] ?l.l-- 1' 
we have 

P A,. k <5+P k~_lP[An,kls~n,k_lJ>5 for all 3 > 0  and N > I .  

Letting N--* + oo here proves the direct part of the Lemma. To prove the 

converse, we first define M,(oo)=min {k: co~A,,k} on ~) A,,,k, Mn(co)= +oo on 
(~  k - 1  k = l  

A~, k. Then we have [M,,>k]= ~ A~,j, and so 
k = l  j = l  

E t k ~ l r f A n . k , ~ n . k _ l ] t : E t k ~ l  "~ ( k - 1  c . , -  

o(3 

Using a simple form of (2eby~ev's inequality, this gives for all 5 > 0 

P[ ~ P[A,,k'ff,,~-~J>5]<P[Mn< ~ 
k = l  

which is enough to complete the proof. 
In particular, it follows from Lemma (3.1) that (2.5)(a) is equivalent to the 

condition that for all t > 0 

(3.2) max VX,(k) P,O. 
O<-k<--rn(t) 

We notice first that this condition (and therefore also (2.5)(a)) is independent of 
any particular choice of the family of a-fields [~(t)},  as long as X,,(t) is adapted 
to this family. Next it might be of some interest to compare (3.2) to the familiar 
tightness condition (cf. [1], Theorem 15.5) 

(3.3) lira l i m s u p P [  sup [X,(s)-X~(u)(>~]-*O 
5].0 n ~ e o  O<_s.u<_t 

for all e, t>0 .  It is not difficult to see that (3.3) is equivalent to 

(3.4) P [  sup IX,(s)-X,(u)f>e]~O 
OGs, g<--t IsZ,I S,~= 

for all e, t > 0  and all sequences {3,} such that 5,~,0. This is obviously a stronger 
statement than (3.2), in fact it is equivalent to the statement that (3.2) should 
hold for every sequence of partitions satisfying (2.1) and (2.2). 

Thus (2.5)(a) is related to (but weaker than) the tightness condition. On the 
other hand, it also plays the role of the Lindeberg condition when we use 
truncated increments in (2.5)(b) and (c). If we insist upon using untruncated 
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s, = rain ~k: 

Then we have 

increments here, we have to add the usual Lindeberg condition 

r~(t) 
E ~ { ( A X ~ ( k ) ) 2 ; I A X , ( k ) I > ~ } ~ O  (V e, t). 

k ~ O  

In this way it is not difficult to see that many central limit theorems for 
martingales and "near martingales" as given by different authors are special 
cases of the direct half of our Theorem 2.9. (See the discussion in connection 
with Theorem 2.3 on [43.) Central limit theorems with conditions of a some- 
what different type follow by combining Theorem 2.9 with the following result. 

(3.5) Lemma.  Let { X , , i ; n > l ,  i>1} be an array of random variables on a 
probability space (~2, ~ ,  P) adapted ~o an array of a-fields {~. i ;  n > l ,  i>0}.  Let 
{kn; n > l }  be a sequence of stopping times with values in (0, 1,2 . . . .  } ~ { + c ~ } ,  
and let t>0 .  Suppose that there is a constant c > 0  such that IX,,i[ <=c for all n and 

kn kn 

i, and that max IX,,i[-P-~O. Then ~ Xa,,i - P-~t if and only if ~ E{X~.z[ 
l <=i <=kn i ~ 1  i = 1  

Pro@ By Lemma 3.1 and the hypothesis max ]X,,~I e ,  0 we have for every e > 0 
kn 

that ~ P[JX~,kl>e[~.k a] P--+0, and by the boundedness of the X,,i's this 
k= 1 kn 

gives the Lindeberg condition ~ e { X n . k  , 2  . 2 c. I ~ P :, IX,,,k[ > "~..k- l} 0. The con- 
k = l  

clusion will now follow from (3.15), p. 627 in McLeish [81 if we can show that 

(3.6) lim lim sup P 2 E { X , , k [ ~ . k _ l } > a  =0.  
a ~ o e  n - , o e  k -  1 

Under the last hypothesis of Lemma (3.5) this is obvious, so suppose that 
kn 

X,2k - P-~ t. As in Lemma  3.1 we can - and will - take k , =  + oo without loss 
k = l  

of generality. Let 

X ~ , j > t + l  , s , , = + c ~  on X, . j<_t+l  . 
j = l  k j =  1 

} = E  2 . = E  X2k - - < t + l + c  2. { X . . k , s , ~ > = k l ~ , k _ l  , _ 

k k 1 

So for a > t +  1 

oo 

< p  X ~ , k > t + l  + ( t + l + c 2 ) . a  1, 
k - - 1  
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from which (3.6) follows. This completes the proof. 
Suppose now that (2.5)(b) is strengthened to 

rn(t) 

(3.7) ~, IEk{A~X,(k)} [ e ,  0 (for all t>0). 
k = O  

Then it is immediate that (2.5)(c) is equivalent to 

rn(t) 

(3.8) ~ E k { ( A ~ X , ( k ) ) 2 } ~  t (for all t>0). 
k = 0  

On the other hand, using Lemma 3.5 with X, , i=A~X, ( i -1 )  and ~, i=~(t~,) ,  we 
see that (3.8) is equivalent to 

rn(t)  

(3.9) ~, { A , X , ( k ) } Z ~  t (for all t>0). 
k = O  

But by (2.5)(a) and Lemma 3.1 we have that P[A1X,(k)=AX,(k); 
k = 1, 2 . . . . .  r,,(t)]-~ 1, so (3.9) is again equivalent to 

rn(t) 

(3.10) ~ {~x,(k)} -~ "-, t. 
k = O  

In this way many different sufficient sets of conditions for the functional central 
limit theorem for dependent variables may be formulated. It will be shown in 
Sect. 5 that these conditions are also necessary in the sense of Theorem 2.9. 

4. More on the Convergence =~ 

Most of the properties of the familiar weak convergence carry over to the 
convergence ~ ,  at least when the limiting process X(t) is continuous. However, 
in many cases the proofs must be changed. The Lemma below will be useful in 
constructing these new proofs. 

Put D=D[0 ,  co) and let 2 be the Borel subsets of D. Keep the integer m>  1 
and the time points t~>0 (i= 1 . . . . .  m) fixed. Let X~(t), ~(t), X(t) and ~-(t) be as 
in Definition 2.8, and let & (i=1 . . . .  ,m) be realvalued bounded, measurable 
functions on (D,~). Say that g=(gl, . . . ,gm)~fr if the joint distribution of 
E{gdX,(ti+ .))l~,,(ti) } (i=1, ...,m) converges to that of E{gi(X(t~+-))[3(ti)} (i 
= 1,...,m). Let ~ be the class of bounded, measurable functions from (D, 9)  
into R m, and let I'[ be the Euclidean norm in R m, JIfJj =sup[f(x)[ for feJ/r 

x ~ D  

(4.1) Lemma. Let f~Jf/. Suppose that there exists a constant M> IIf ll, and that 
for all e>0  there exist a g~fr and a B~e~ such that 

(a) IIg~LI _<_m 

(b) sup Ig~(x)-f(x)l-<e 
(4.2) ~ m  

<i<m (c) lim infP[X,(ti+ " ) ~ B ~ ] > l - e  (1= = ) 
n ~ o o  

(d) P[X(t~+-)~B~]>I ~-e (l=<i_<_m). 
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Then feN. 

Proof. If g~= (g], ..., g,~) and f =  (fl ,  ... ,s we have 

E IE {gf (X.(t, + .  ))1 g .  (t,)} - E {f~ iX .  (t~ + .  )) I ~.(t,)} I 

< sup Ig~(x)-fdx)] +(llg~ll + 11 f I[) P [X,(t,  + ")r 
x ~ B  ~ 

so that the l imsup of this expression as n - -c~  is bounded above by (1 +2M)e ,  
Similarly 

E IE {g~(X (t~ + "  ))1~ (t~)} - E {f~(X (t~ + "  ))l ~ (t~)} I < (1 + 2 M) e. 

By using Theorem 4.2 in Billingsley [1] and the fact that e is arbitrary and g%N, 
we now find from the definition that feN.  Note that we really need M to be 
independent of e in (a). 

(4.3) Proposition. Let f e ~ .  Suppose that {X~(t)} is tight in D. Suppose that for 
every compact K in D there is a sequence of functions {g(k)}cN such that 
g(k)(x)---~f(x) uniformly on K as k ~ oo and such that {l[g(k)[I} is uniformly bounded 
by some constant independent of K. Then feN. 

Proof Let e > 0  be given. Since {X,(t)} is tight in D, then (4.2)(c) and (d) hold for 
some compact set B ~ in D. Choose a sequence {g~g~} corresponding to this 
compact. Then (4.2)(a) and (b) are true for g~_g(k)with k sufficiently large. 

i4.4) Proposition. (a) Suppose that for all choices of m> 1 and t i ( l < i < m ) ,  N 
contains all bounded, uniformly continuous functions on D. Then (X,(t), 
Y.it)) ~ ix(t), ~ (t)). 

(b) I f  ( X , ( t ) , ~ , ( t ) ) ~ ( X ( t ) , Y ( t ) ) ,  then ,for each m and t i (l_<_i_<m), N 
contains all feJr that are continuous on some set C y ~  with P[X(t~ 
+ ")eCy . . . . .  X ( G + ' ) e C y ] = I .  In particular, if t > 0  and A e ~  is such that 
P [ X  (t + ")e~A] =0,  then 

P [ X , ( t +  . )eAl~,( t ) ]  ~ P [ X ( t +  . ) eAl~( t ) ] .  

Proof. First let the assumptions of (4.4)(a) hold. Then X d t  ) ~ X(t), in particular 
{X,,(t)} is tight. Let g be a vector of bounded, continuous functions on D, and let 
K be a compact subset of D. Consider the algebra d of all realvalued 
continuous functions on K that can be extended to uniformly continuous 
functions on D. This algebra satisfies the assumptions of the Stone-Weierstrass 
theorem, so for each component g~ of g, there is a sequence {h~} c d  such that 
h~--, g~ uniformly on K as k ~ oe. Now each h~ can be extended to a uniformly 
continuous function on D, and we can suppose that the extended function h k 
satisfies I/hkll<l[gll=M: If not, we replace hk(x) by Mhk(x)/Lhk(x)] when 
Ihk(x)[ >M.  Therefore, by Proposition 4.3 we have gsN, and since this holds for 
every g whose components are bounded and continuous, the proof of (a) is 
complete. 
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o ~  c Next suppose that (X,(t),~,(t))=:> (X(t), ~(t)) ,  and let f, m and t~ (1 <i<m) be 
as in (b). Fix ~>0  and let K be a compact  in D chosen so large that P[X(t  i 
+ "  )eK;  1 <i<_m] > 1 -e / 2 .  Using Lusin's theorem ([12], Theorem 2.23) for the 
components of f restricted to K, we see that there is a vector g of continuous 
functions on K such that P[g(X(ti+.))=f(X(t~+.))  and X(t~+.)eK; 
1 <i<m] > 1 - e .  By Tietze's theorem ([3], Theorem VII.5.1), we can extend g to 
a continuous function on D such that HgIF < J[ f H. 

Put A={xeD:  x e C f  and f(x)=g(x)}, C={xeO: If(x)-g(x)[<e} and B 
= in t  C. If xeA, then f (x )=g(x)  and both f and g are continuous in x. Then 
there is a neighbourhood N of x such that ]f0')-g(Y))[ < e  for y e N ;  i.e., xe in t  C 
=B.  Thus A ~ B ,  and P[X(t~+ . )eB;  l<_i<m]>P[X(t~+ . ) cA;  1 - < i < m - I > l  
- e .  Since X , ( t i+  ") ~ X(ti+ .) and B is open, this implies l iminfP[X,( t  i 

n ~ o ~  

+ ' ) e B ;  I<i<--m]>P[X(t~+')EB; l<i<_m]>l--e. Therefore, all the con- 
ditions in (4.2) are fulfilled with g~=g and B~=B, so fe(r 

(4.5) Proposition. Suppose that {X,(t)} is tight in D. Suppose further that g 
= (gl .... , g,~)e fY whenever each gj is of the form 

(4.6) gj(x)= exp "~x(s" , 
k 

where the constants 2~ are real, s~ non-negative, and where i = ] / - 1 ,  and that this 
holds for all possible choices of m and tj (j = 1 ..... m). Then (X~(t), ~(t)) ~ (X(t), 
~(t)). 

Proof. Keep m and t i ( l<j<m ) fixed, and let f = ( f l  . . . .  ,f~) be a bounded, 
continuous function on D. It is enough to show that f~N. Consider one 
component  function fj, and let K be a compact  subset of D. By Proposition 4.3 
we will be finished if we can show that fj can be approximated uniformly on K 
by functions gj such that g =  (g~ . . . .  , g~)~N, and that the approximating sequence 
is uniformly bounded (on the whole space D). The proof  will be carried out in 
several steps. 

(i) Consider the algebra of functions h o that are of the form 

ho (x) = h* (~ q)~ (s) x (s) d s, . . . ,  ~ opt(s) x (s) ds) 

for some choice of r=>l, of (PI . . . .  , %  (continuous functions on [O, oo) with 
compact  support) and of h* (a realvalued continuous function on R~). By the 
Stone-Weierstrass theorem, fj  can be approximated uniformly on K by such 
functions. 

(ii) Fix e > 0  and an interval [a, b] ~ [ - ~ ,  ~ )  such that b > a +2~. Then there 
exist p > l  and so,sl, . . . ,s p such that avO<so<s~<. . .<sp<b , s o - a < e  , 
b - sp<e  and 

p Sk 

(4.7) ~ ~ Ix(s)-x(sk_Olds<e 
k = l  sk  1 

for all x~K. Namely, look at the left-hand side of (4.7) as a function of x and of 
the partition S--{s  0 . . . . .  sp}, say V(x,S). Given x~K it is clear that we can 
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choose S~ such that V(x,S~)<e/2, and such that the points of S~ are points of 
continuity of x. Then the mapping y-~ V(y, Sx) is continuous at y=x,  hence 
there is a neighbourhood N~ of x such that V(y,S~)<e for yeN~. Since K is 
compact, it can be covered by a finite union N ~ u . . . w N ~ .  Now the value of 
V(x, S) cannot increase when S is refined, so by choosing S=Sx~w. . .wS~,  we 
see that (4.7) holds for all x~K. 

Off) Let [ a + a , b - e ]  contain the support of a continuous function qo on 
[0, oo). By the inequality 

~o(s)x(s)ds- k= l ~ ~O(Sk- 1) (Sk--Sk- z)X(Sk- 1) 
p Sk 

_< sup I~(u)l. Y~ j Ix(~)-x(s~_~)lds 
Cl<~U<-~b k =  l Sk-i 

p Sk 

+ sup ix(u)] ~ J Icp(s)-cp(s k i)lds, 
a < u < b  k =  i Sk 1 

and by (i) and (ii), we see that fj  can be approximated uniformly on K by 
functions h that are of the form 

(4.8) h(x) = ]~(X (S 1) . . . .  , X ( S q ) )  

for some choice of q > 1 and s k>O and some continuous function ~ on e q. We 
may suppose that supx~v Ih(x)[ < Mj= sup Ifj(x)l, since otherwise we can replace h(x) 

by max (rain (h (x), Mj), - Mj). 

(iv) Since the assumptions of Proposition 4.5 hold for every choice of m and 
{@, we can let several of the t]s coincide, and it follows that gE~ whenever 
each gj is a finite linear combination of exponentials of the form (4.6). Thus the 
proof will be complete if we can show that for every h of the form (4.8) and every 

> 0 there is a. g which is a finite linear combination of terms of the form (4.6) 
such that sup lh (x ) -g (x ) [<e  and sup[g(x)l<suplh(x)l+ 1, and this will be 

x ~ K  x ~ D  x ~ D  

shown below. Note that if g(x)=~(x(sl) .... ,X(Sq)) for some continuous function 
~, and h(x) is given by (4.8), then suplh(x)-g(x)l<suplB(O-~,(~)l for some 
compact set K ~ R  q. x e K  g e g  

(v) By (iv) it remains to prove the following: Let h be a continuous function 
on R q and let /~ c e  q be a compact set. Then there is a sequence of trigonometric 

rn 

polynomials ~:,(0= ~ an;exp{i{.u,j } such that ~,+/~ uniformly on /~ and 
j=l  

sup[~,({) l<sup[~(~)l+l .  To prove this, let a > 0  be so large that A =  
~ e R  q ,~eR q 

( -  a, a) x . . .  x ( -  a, a) contains/~. We can then use the Stone-Weierstrass theorem 
on the class of trigonometric polynomials that are periodic with period 2a. 
The periodicity gives the uniform boundedness, and this completes the proof. 
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Finally, we give another generalization of a familiar result on weak con- 
vergence. The proof, which can be based on Proposition 4.4(a) and the tech- 
nique of Lemma 4.1 is left to the reader. 

(4.9) Proposition. For each n> 1, let X,(t) and X',(t) be processes with paths in D, 
both adapted to the same family of a-fields ~(t). Suppose that (X',(t), 
J~(t)) =% (X(t), Y(t)) for some process X(t) and family of a-fields .Y(t), and that 
suplX.(s)-X'ds)[ F, O for all t>0 .  Then (X,(t),~(t)) ~ (X(t),Y(t)). 
s<~t 

5. Proof  of the Main Theorem 

We will prove the 
that (2.5), namely 

(a) 

(b) 

(5.1) (c) 

(d) 

(e) 

first half of Theorem 2.9 under somewhat stronger conditions 

X.(s)=X.(?.)  for ?.<s<?. +~ (k=>0, n__>l) 

IAX.(k)l<=c for some c>O (k__>O,n=>l) 

max IAX.(k)[ P ~ 0 (t>O) 
O<-k<-rn(t) 

Ek{AX,(k)} =0  (k>= 0, n >= 1) 
r~(t) 

Ek{(AX,(k)) z} P >t (t>O). 
k = O  

This can be seen to be sufficient by Proposition 4.9: If {X, (t)} satisfies (2.5), then we 
r,, (t) 

can define a new sequence of processes {X',(t)} by X',(t)= ~ (dlX,(k) 
k=O 

-Ek{d~X,(k)}), and this new sequence of processes will satisfy the stronger 
conditions (5.1). Furthermore, from (2.5)(a) (cf. (3.2)) and (2.5)(b) we see that [X,,(t) 
-X',(t)l e",0,  so that (X,(t) ,~,(t))~(W(t),J~(t)) will follow from (X',(t), 

(w(t), ~ (t)). ~ ( t ) )  ~ 

(5.2) Proposition. Let {X,,(t)} satisfy the conditions (5.1). Then for all real 2 and non- 
negative s, t and u we have 

(5.3) E{exp { i2[X,( t+s+u)-X, , ( t+s)J}j~( t )}  i,~ exp {-22u/2}. 

Proof By (5.1)(a) we have 

rn(t+s+u) 

X,(t  + s + u ) -  X,(t + s)= ~ AX,(k), 
k=r~(t+s)+ 1 

so this is essentially one form of the martingale central limit theorem. In fact we can 
prove (5.3) by repeating word for word the proof of Theorem 2.1 and Theorem 2.3 in 
McLeish [8]. We then need the fact that (5.1)(e) is equivalent to (3.10) under the 
other conditions in (5.1) (Lemma 3.5). 
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We proceed to prove the direct half of Theorem 2.9 under the conditions (5.1). 
First, it is easy to see from wellknown functional limit theorems (McLeish [8], 
Brown [2J or Durrett and Resnick [4~) that (5.1) implies X,(t) ~ W(t). To prove 
the stronger convergence ~ ,  we will verify the hypotheses of Proposition 4.5. 
That is, we have to show that all possible linear combinations of terms of the form 

(5.4) E exp i2kX,( t+S k (t . 
k 

converge in distribution to the corresponding linear combinations of terms of the 
form 

(5.6) 

with 

(5.5) E {exp{k~  i2kW(t +sk) } W(Q}. 

Without loss of generality, we may suppose that O<s z ~ ... <s,,. Then we may 
rewrite (5.4) as 

E{k=~llZk,,l~,~(t)}'exp{i(')ol+...+2m)X,(t)} 

Zk. n = E {exp {i(2 k +.. .  + flm)(X,(t + sk) - X, ( t  + s k_ l))} I ~ ( t  + Sk_ 0}, 

where we take s o =0. Furthermore, we may calculate (5.5) to be 

(5.7) I ]  zk .exp {i(,~ + . . .  +tim) W(t)}, 
k = l  

where zk=ex p {-�89 ... +fl.,)2(sk-sk_ l)}. By Proposition (5.2) we have 
Zk,,P---g~Zk . Also, we see that IZk,,l<l, so by the dominated convergence 
theorem 

(5.8) E Zk,,LW,(t P ,  z k. 

From (5.6)-(5.8), it is easy to see that the stated convergence of linear combinations 
holds, so by Proposition 4.5 we have (X,(0, .~(t)) ~ (W(t), J(t)).  

Conversely, suppose that ( X , ( t ) , ~ ( t ) ) ~  (W(t),J(t)).  Then in particular 
X~(t) ~ Wit ), so for all e, 6 and t > 0  we have 

lim P [  sup IX , , ( s ) -X , (u) l>e]=P[  sup ]W(s)-W(u)l>e].  
n~ec3 O ~ s ,  u N t  O<_s,u<_t  

Letting ~550, we see that (3.3) holds for all e, t>0.  As discussed in Sect. 3, this is 
equivalent to the statement that (3.2) holds for all t > 0 and every sequence of 
partitions satisfying (2.1) and (2.2). Thus by Lemma (3.1), the condition (2.5)(a) 
holds for every such sequence of partitions. Also it is obvious that (2.5)(d) holds. 

Instead of proving (2.5)(b) and (c), we will prove that the slightly stronger set of 
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condit ions (3.7)-(3.8) is true for some sequence of partitions. To  this end we first 
define 

[t/~J 

(5.9) Z~( t ,6 )=  ~ JE{A~X,(k) I~(k6)}I ,  
k=0 

[t/~] - -  t ,  

where d ~ X n ( k ) = { X n ( ( k + l ) a ) - X , ( k 6 ) } . I ( J X , ( ( k + l ) 6 ) - X , ( k 6 ) ] < l ) ,  and as 
usual [ .  ] denotes integral part. The  p roof  will be complete if we can find a sequence 
{6,} with 6,J,0 such that  Z~,(t,D,) v , 0  ( ] = 1 , 2 ;  t>0) .  

We let zJ(t,  6) (] = 1, 2) denote  the r andom variables obtained by replacing X,(s) 
by W(s) and ~ ( s )  by ~ ( s )  in (5.9) and (5.10). Then  from Proposi t ion (4.4)(b) it is 
immedia te  that  the joint  distr ibution of 1 2 (Z, (t, 6), Z ,  (t, 6)) converge to that  of 
(Z~(t, 6), Z2(t,  6)). In particular,  for all e > 0  

(5.11) lim sup P [Z ,  (t, 6) > e] < P [Z  (t, 6) > el, 

where Z,( t ,  6) = max (Z,  1 (t, 6), Z 2 (t, 6)) and Z (t, 6) = max (Z 1 (t, 6), Z 2 (t, 6)). F r o m  
familiar propert ies of Brownian mot ion  it is easy to see that ZJ(t, 6) e ,  0 0 = 1, 2; 
t > 0 )  as 6,[0, so from (5.11) 

(5.12) lira lim sup P [Z,(t ,  6) > e] = 0 

for all ~ , t>0 .  In particular,  for each k > l  we can find a 6 ~  such that 

lira sup P [Z  n (k, 6 ~ > k-  t] < k -  1 and then find n k > 1 such that  P [Z ,  (k, 6 ~ > k-  1] 

< k -  1 for n > n k. Fur thermore .  the sequences {6 ~ and {nk} can be chosen such that 
6 0 + 0 and n k ~" oo as k --* Go. If we now define 3. = 6 o for n~ < n < n k+ 1 (k = 1, 2 . . . .  ), it 
follows that  

(5.13) P [Z ,  (t, 6,) > ~l ~ 0 

for all e, t > 0. (Recall from (5.9) and (5.10) that  Z,(t ,  6) is increasing in t; thus the left- 
hand  side of (5.13) is less than k -  1 if k > max (t, e 1) and n > n k.) But (5.13) implies 
Z~(t, 6,) e , 0 (j = 1, 2; t > 0), and therefore (3.7) and (3.8) hold for the sequence of 
parti t ions {t,~--k6,; k > 0 ,  n >  1}. This completes the proof. 

It should be emphasized that  this result, namely that (3.7)-(3.8) hold for some 
sequence of partit ions, is slightly s tronger than the converse part  of Theorem 2.9. it  
follows from the discussion in Sect. 3 that  (3.10) also holds for this sequence of 
parti t ions. The  results of Rootz6n [9] are of some interest here. F r o m  L e m m a  3 in 
[9] we can deduce results of  the following type: If X,( t )  =* X(t),  if (3.7) holds for 
some sequence of parti t ions and in addit ion some regularity assumptions are 
satisfied, then all the related condit ions (2.5)(c), (3.8) and (3.10) are satisfied for this 
same sequence of partit ions. It would be interesting to know the minimal  
regulari ty assumptions that  are needed for theorems of this kind to hold. 

The  results of the present paper  have now been extended to give a general theory 
on weak convergence to one-dimensional  diffusion processes. These results will be 
published elsewhere. 
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In a recent paper by David Aldous, a new type of convergence, closely related 
C 

to our convergence ~ ,  is studied in detail. 
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