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Summary. We consider a minimal form of the usual conditions for the
dependent central limit theorem and invariance principle for “near mar-
tingales”. We show that these conditions imply convergence to Brownian
motion in a way that is slightly stronger than weak convergence in D[0, oo).-
On the other hand, if a sequence of processes with paths in D[O0, c0)
converges to Brownian motion in this way, then we can always find a
sequence of partitions of the time axis that is such that these conditions hold
for the corresponding array of increments.

1. Introduction

While the central limit problem for independent summands was essentially
completely solved decades ago, the corresponding problem for dependent sum-
mands still has not reached its final solution. Various authors have given
different sets of sufficient conditions for sums of dependent variables to converge
to the normal distribution, and the more recent papers also include generali-
zations of the classical invariance principle [2, 4, 5, 8, 13]. The various sets of
conditions may often be shown to be equivalent [8, 13]; in fact one may
formulate one convergence theorem from which most of the other theorems of
this type may be deduced ([4], see also Sect. 3 below). Still, it is easy to see that
these conditions for convergence are not necessary, not even if one requires the
invariance principle to hold. Results on necessity have just started to appear [9].

The purpose of the present paper is to approach this problem from a
different angle, and thus to show that conditions for convergence that are
natural generalizations of those arising in the classical central limit theorem, are
really necessary and sufficient in a certain sense. Let {X (t); t=0}, be a sequence
of processes with paths in D[0, o), and let {t¥; k=0,1,...}, be a sequence of
partitions of [0, o0). (The t“s may even be stopping times; precise statements are
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given below). The array of variables that we consider, are given by A4X (k)
=X, (th*")— X (tf). Natural sufficient conditions for weak convergence of
{X,()} to Brownian motion are formulated in terms of 4 X, (k) (and the total
variation of X, (¢) in [¢*, t**17]). We will show that these conditions really imply
a type of convergence that is slightly stronger than weak convergence in
D[0, c0), namely joint convergence in distribution of conditional expectations,
given the past, of bounded, continuous functionals. Finally, if {X,(t)} converges
to Brownian motion in this stronger sense, then it is always possible to find a
sequence of partitions {t*} such that the conditions are satisfied for the cor-
responding array {4X,(k)}. We give an example to show that the new type of
convergence 1s strictly stronger than weak convergence.

In Sect.2 we state all these results in a more precise way. In Sect. 3 we give
equivalent forms of the conditions for convergence, and in Sect. 4 we develop some
techniques for proving that this new type of convergence holds for some given
sequence of processes. Finally, Sect. 5 contains the proof of the main result,
leaning heavily upon the results of Sects. 3 and 4.

2. The Main Result

On some probability triple (Q, &, P) let there be defined a sequence of processes
{X,(0); t =0}, with paths in the space D[0, o) of right-continuous functions on
[0, o) with left-hand limits everywhere in (0, c0). We endow D[0, o) with the
Stone topology [7]. Let each X, (1} be adapted to an increasing family of o-fields
Z(t). For fixed n>1 let {tk; k=0, 1, ...} be a sequence of stopping times relative
to Z(t) such that

(2.1) 0=t'<il<...; limff=+00 as

k— o0
Also we assume that for each t >0 we have

(22) max 4t,(k)—0 in probability as n — oo, where we define
02k Zra(0)

(2.3) r(t)=max {k=0:t*<t}; A, (k)= —1~
We also define

VX,(k)=sup |X,(s)—X,(&)
thgsgikt!

(24) AXn(k):Xn(tﬁ+1)_Xn(tﬁ)
4. X, (ky=A4X,(k)-1(AX (k) =c).

where I(-) is the indicator function. Let => denote weak convergence in

D[0, o0), —Z» denote convergence in probability, —2-> denote convergence in

distribution and let Z (r)—2%> Z(t) mean convergence in probability uniformly in

¢t on compacts ( sup |Z,(s)—Z(s)| —£~>0 for all ¢:>0). Finally, we use the ab-
0=s=1t

breviations B[+1=P[|%,(%)], E,{*}=E{-| %9} and Var,{*}=Var{| %)}
when no misunderstanding may arise.
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Consider the following set of conditions

Fn(f)

) Y BIVX,(k)>e]—2-0 (for all &:>0)
k=0

rul(t)
(b) ¥ E {4, X,(k} -0
(2.5) k=0

ralt)

(@ Y Var,{4,X,(k}—E>t (for all £>0)
k=0
(d) X,(0)—2>0.

In (b) and (c) we truncate the increments at ¢=1, but by (a) it is easy to see that
the corresponding conditions with any other positive truncation constant are
equivalent to the ones given. In (2.5) (a) and (c¢) the convergence is equivalent
with Pu-convergence, since the left-hand sides are monotonic in t.

It is instructive first to look at the case where the increments 4 X, (k) are
mutually independent and the t“s are nonrandom. Then it may be seen that (2.5)
holds if and only if X ,(f) converges weakly to Brownian motion. Of course, in
this case the left-hand sides of (2.5)(a)-(c) are nonrandom. If we replace the
convergence here by pointwise convergence for one fixed t =t,, then the new set
of conditions is equivalent to: (i) X, (¢,) converges in distribution to N (0, t,). (ii)
The array {4X,(k); 0<k=<r,(t,), n=1} is infinitesimal. This is essen‘ually only
the classical central limit theorem (6], Chap. 5, Theorem 2).

In the general case (2.5) implies X ,(t) = W(t), where W(r) is standard
Brownian motion. This will be discussed below, and it is easy to see from similar
statements in the literature. It should be emphasized, however, that most sets of
conditions for convergence to Brownian motion given in the literature, are
actually slightly stronger than (2.5). This will be further discussed in the next
section. On the other hand, it is easy to construct examples where X (¢) = W(1),

but (2.5) does not hold. In the typical example, the mesh of the chosen sequence
[nt}
of partitions tends to zero too fast, eg, let X, (f)= Z Z;+(nt

—[ntl)n=*Z,, ., where the Z/'s are iid. with E{Z}=0 and EIZZ}~1 and
where %, (t) c{X,(s); st} and t"—kn‘z.

Of course, in this example it is much more natural to take t*=kn~*, and
then (2.5) does hold. In general one may ask the following question: Given that
X ,(t) = W(1), is it always possible to find a sequence of partitions such that (2.5)
holds? Surprisingly, the answer is no, as the following example shows.

Let W;(2) (i=1, 2) be two independent standard Brownian motions defined on
some probability space (@, %, P). Define U,=f,(W,(1)), where f(x)=+1 for
xe((2k—-1)27", (2k)-27") (k=0, +1, £2,..), f,(x)=—1 otherwise. Let S,
=sign (W, (1)) and put

t <t<
26) X ()= Wi (1) for 0<r<1
W,()+U,S, W,(t—1) for t>1.

First it is easy to show by characteristic functions that the pair (U,, W, (1))
converges in distrubution to (U, W (1)), where U and W, (1) are independent and
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P[U= +1]=P[U=—~1]=1 From this we can show by a straightforward
argument that the finitedimensional distributions of {X,(f)} converge to those
of a Brownian motion process. Since tightness is easy to prove, e.g. from
Theorem 15.5 in {17, weak convergence in D[0, oo) follows.

On the other hand, in this example the condition (2.5) (b) does not hold for
any sequence of partitions satisfying (2.1)-(2.2). (We take Z (t)=0 {X,(s); s=t}.)
We will indicate how this can be shown when t*=ké, (k=0, 1, ..., n=1, 2, ..))
and 6,]0. First, it is straightforward to see that it does not make any difference
to consider untruncated increments in (2.5) (b). Let 1 £t <t+0=<2. Then E{(X,(t
+0)= X, 00} = U, E S, 07 t—1+5>- LE=DIZ0Y,  and  Z()
=o{W,(s);s= 1} vai{S, Wy(s—1); st} Note that & (t)=2(t) is independent of
n. Next we calculate E{S, (W (t— 148)— W, (t—1))|%(t)} with 4(t) in turn taken
tobe Z(t)va{W,(1)} and #(t)va{S,}, respectlvely This last expectation turns
out to depend on S, W,(t—1) only, so that it is Z,(t)-measurable. The final result
of these calculatlons is that for ¢t >1

[1/64]
Y, E{X,((k+1)6,)— X, (kO Z,KS,)}
(2.7) k=[1/0,1+1

__1)_)U2A.§' ! exp( W(S)Z/Z(I_S))

o Y2r(1—s) (S, W(S/]/l—s)

where @ is the standard normal distribution function, and U and (S,, W,(s)) are
independent. Thus (2.5) (b) cannot hold when f=ké,(5,]0). The proof that it
does not hold for any other sequence of partitions either, will be postponed.

What is pathological about this example, is that even though {X, ()}
converges weakly to Brownian motion, the conditional expectations, given the
past, do not converge to the right distribution. For instance, for g continuous
and bounded we have E{g(X,2)—X,()%Q)}=E{g(U,|Z])IU,} where
Z~N(0,1) and is independent of U, (recall that U,=+1), while E{g(W,(2)
—~ WL ()W, (s); s£1} =E{g(2)}.

(2.8) Definition. Let X, (t) (n=1, 2, ...) and X (t) be processes with paths in
D0, o) and adapted to families of o-fields Z,(t) and F (t) respectively. We say
that {(X (1), #(t))} converges to (X@), (1)) weakly and in conditional distri-
butions and write (X ,(t), %) = (X (). F (t)) if the following holds: For every
choice of m=1, of m time points 1,20 (i=1, ..., m) and of m bounded, continuous
funcrionals g (i=1,...,m) on D[O, o0) the joint distribution of E{gi(X,,(ti—f— )l

F()} (i=1, ...,m) converges to that of E{g,(X(; + l/(t N G=1,...,m).

If this holds with Z(t)=0{X,(s); s<t} and F(t)=0c{X(s): s<t} we simply
write X ,(t) = X (1).

It is clear that this type of convergence is at least as strong av weak
convergence, and by the example given above it is strictly stronger. It may be
shown that the convergence X ,(t) = X (t) is independent of the representation of
the processes X,(t) and X (¢): If X(¢) and X (t) are two processes with the same
distribution on D[0, o), then the joint distribution of E {gl( (t,+ DI F @)} (@
=1,...,m) is the same as the joint distribution of E{g;(X (¢;+ - N|F (t,)}, where
F(t)= a{X(s), s<t} and F(t)=0{X(s); s<t}, and the gSs are bounded and
continuous.
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The last remark also suggests that the convergence = is really not much
stronger than the familiar convergence =. The example given at the end of this
section also seems to confirm this. One should note, however, that different
choices of the families of o-fields {Z, ()} may give different types of convergence
(X, (1), Z (1) = (X (), F (1)), even if one always takes F (t)=c{X(s); s=t}.

The main result of the present paper is the following.

(2.9) Theorem. Let {X, ()} be a sequence of processes with paths in D{0, o),
adapted to families of o-fields {Z(t)}. Let {t'} be a sequence of partitions
satisfying (2.1) and (2.2). Let W(t) be a standard Brownian motion process, and put
F (y=0c{W(s); s=<t}. Suppose that (2.5) holds. Then (X (1), Z,(1)) = (W(1), Z ().

Conversely, let X (1), Z,(t), W(t) and Z (t) be as above, and suppose that (X (t),
F(1) = (W(t), Z (1). Then (2.5)(d) holds, and (2.5)(a) holds for every sequence of
partitions {t*}. Furthermore, there is a sequence of partitions of the form th=ks,
with 8,10 such that (2.5)(b) and (c) hold with {AX,(k)} corresponding to this
sequence.

As an immediate corollary we note: If (2.5) holds for some sequence of
partitions {t*} satisfying (2.1) and (2.2), it always holds for a sequence of the form
t*=ké, (6,40). This completes the proof of the assertions concerning the
example (2.6).

One further example might be of some interest. In [10] and [11] Rosen-
krantz considered the sequence of diffusion processes X ,(t)=n"'X (n*t), where

X (t) is a diffusion on (— o0, o0) with infinitesimal variance 1 and drift coefficient
o0

b(x) with [ |b(x)ldx<oo and { b(x)dx=0. Rosenkrantz showed that

X . (t) = W(t), standard Brownian motion. By cumbersome, but straightforward
calculations using Theorem (2.9), we may actually show that X (f) = W(t). In
particular we can show that (2.5) (b) holds for some sequence of partitions, even
though the sequence of drift coefficient b,(x)=nb(nx) does not necessarily
converge. This example will be discussed in detail elsewhere.

3. Discussions of the Conditions for Convergence

The purpose of the first Lemma below, is to shed some light of the condition
(2.5)(a), but the Lemma is also of independent interest. The direct part of it is
due to Dvoretzky [5], the converse part is implicit in a proof oy Durrett and
Resnick in [4].

(3.1) Lemma. Let {4, ;; n=1, iz1} be an array of events in a probability space
(Q, #, P) adapted to an array of o-fields {F, ;; nz1, i20} (ie. 4,,€%, ; and
F i F for n,iz1). Let {k,;nz1} be a sequence of stopping times ([k,

kn
=ileZ, ) with values in {0,1,2, ...} J{+ o0}. Then P[U1 An,i]—>0 as n—wo if

o
and only if Y P[A, |\% 4] 0.
i=1

t
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Proof. By replacing 4, ; by A;, ;=A, ;" [k,=i], we see that it is enough to prove
the Lemma for k,= + oo (n=1,2,...), since [k, =i]e % , ,. By Lemma 3.5 in [5]
we have

N N
PLU An‘k]__<_5+P[ 5 P[An,klfj,’k_1]>5] for all 6>0 and N21.
=1 k=1

Letting N — -+ oo here proves the direct part of the Lemma. To prove the
converse, we first define M ,(w)= mm {k wed, ,} on U Ay M(@)=+c0 on

ﬂ A . Then we have [M,>k]= ﬂ AS ., and so

n_]’

E{kgIP[Amk]gf;,k_lj} {i[[ﬂA ]P[Ank{ “]} [OAM].

k=1

Using a simple form of Ceby3ev’s inequality, this gives for all >0
P[ Z PLA, 4| Z k1] >5] SP[M,<o0]

Py TIES B ETER R R VP |

which is enough to complete the proof.
In particular, it follows from Lemma (3.1) that (2.5)(a) is equivalent to the
condition that for all >0

(3.2) max VX,(k)—E>0.

O0<k=r,(t)
We notice first that this condition (and therefore also (2.5)(a)) is independent of
any particular choice of the family of o-fields {Z (¢)}, as long as X ,(z) is adapted
to this family. Next it might be of some interest to compare (3.2) to the familiar
tightness condition (cf. [1], Theorem 15.5)

(3.3) lim limsup P[ sup [X,(5)—X,()|>e]—0
30 n-o0 O<s.u=sr
Is~u| <6

for all e, ¢t>0. It is not difficult to see that (3.3) is equivalent to

(3.4) P[ sup |X,(s)—X,(w)>e]—=0

for all &, ¢>0 and all sequences {6,} such that 6,]0. This is obviously a stronger
statement than (3.2), in fact it is equivalent to the statement that (3.2) should
hold for every sequence of partitions satisfying (2.1) and (2.2).

Thus (2.5)(a) is related to (but weaker than) the tightness condition. On the
other hand, it also plays the role of the Lindeberg condition when we use
truncated increments in (2.5)(b) and (c). If we insist upon using untruncated
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increments here, we have to add the usual Lindeberg condition

ru(t)

Y E{(AX, (014X, (k)>e}—2>0 (Ve
k=0

In this way it is not difficult to see that many central limit theorems for
martingales and “near martingales” as given by different authors are special
cases of the direct half of our Theorem 2.9. (See the discussion in connection
with Theorem 2.3 on [4].) Central limit theorems with conditions of a some-
what different type follow by combining Theorem 2.9 with the following result.
(3.5) Lemma. Let {X, .;n=1, i1} be an array of random variables on a
probability space (Q, F, P) adapted to an array of o-fields {Z, ; n=1, i=0}. Let
{k,; n=1} be a sequence of stopping times with values in {0, 1,2 3 U+,

and let t>0. Suppose that there is a constant ¢ >0 such that | X, ;| <c for all n and
kn k

i, and that max |X, |-£>0. Then Y, X; ,~E>t if and only if Y E{X},
15iZkn i=1 i=1
VPt

Z,

ni—1

Proof. By Lemma 3.1 and the hypothesis max|X, | —> 0 we have for every ¢>0

that Z POX, >l 1]——>0 and by the boundedness of the X, /s this
K=1

gives the Lindeberg condition z E{X: . X2 |>elZ 1} —>0. The con-

clusion will now follow from (3. 15) p. 627 in McLeish [&] if we can show that

(3.6) hmhmsupP[Z E{X? kl.%.k_l}>a]=0.

Under the last hypothesis of Lemma (3.5) this is obvious, so suppose that
Y X7, 1t Asin Lemma 3.1 we can - and will - take k,= -+ co without loss

of generality. Let
k oG
snzmin{k: .ZlXij>t+l}, s,=-+o on [Z Xj~j§t+1].
J= J
Then we have

{ZE{Xnk| nk— 1}}

=1
—E{ Y E{X}s,2klZ, 1}} {Z Xf,k}§t+l+c2.
1 k=1

Sofora>r+1

Sn

P[kiE{X T 1}>a]<P[s <oo]+P[Z E{(X2,| 7, 1}>a]

gP[Z Xﬁ,k>l—|—1]+(t+l+c2)~a*1,
k=1
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from which (3.6) follows. This completes the proof.
Suppose now that (2.5)(b) is strengthened to

ralt)

(3.7) Y |E {4, X, ()} —£~0  (for all £>0).
k=0

Then it is immediate that (2.5)(c) is equivalent to

Palt)

(3.8) Y E (4, X, ()} —E> ¢ (for all £>0).
k=0

On the other hand, using Lemma 3.5 with X, ;=4, X (i—1) and 9';,,:5';(&,), we
see that (3.8) is equivalent to

ralt)
(3.9) Y {4, X, (k> (for all t>0).
k=0
But by (2.5)(a) and Lemma 3.1 we have that P[4, X, (k)=4X,(k);
k=1,2,....r,()]— 1, so (3.9) is again equivalent to

rn (1)

(3.10) S {AX, (k)2 L 1.
k=0

In this way many different sufficient sets of conditions for the functional central
limit theorem for dependent variables may be formulated. It will be shown in
Sect. 5 that these conditions are also necessary in the sense of Theorem 2.9.

4. More on the Convergence =

Most of the properties of the familiar weak convergence carry over to the
convergence =, at least when the limiting process X (t) is continuous. However,
in many cases the proofs must be changed. The Lemma below will be useful in
constructing these new proofs.

Put D=D[0, o) and let & be the Borel subsets of D. Keep the integer m21
and the time points £, =0 (i=1,...,m) fixed. Let X, (1), Z(). X (1) and F () be as
in Definition 2.8, and let g, (i=1,...,m) be realvalued bounded, measurable
functions on (D, %). Say that g=(g,,...,g,)€% if the joint distribution of
E{g/(X,(t;+ ‘WZ@)} (i=1,...,m) converges to that of E{g,(X(t;+ *)F(t)} (i
=1,...,m). Let .# be the class of bounded, measurable functions from (D, %)
into R™, and let | -] be the Euclidean norm in R™, ||| =sup|f(x) for fe.#.

xeD

(4.1) Lemma, Let fe.#. Suppose that there exists a constant M = ||f|, and that
for all £>0 there exist a g°c% and a B*€ D such that

(@) lgfl=M

(b) sup lg*(x)—f(x)|=e
4.2) xeBt
(¢) lim infP[X,(t;+ -)eB]>1—e (1Zi<m)

n— o0

) PX(t,+ )eB]>1~c (1<i<m).
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Then fe4.
Proof. If g°=(g%, ..., g) and f=(f},....f,,), we have

EJE{gi(X,(t;+ )| Z,()} — E{fil X, (t;+ NI F, ()}
< sup g () =Sl +(Ig° Il + 1 £) PLX (¢ + )¢ B7],

so that the limsup of this expression as n— oo is bounded above by (1+2M)e.
Similarly

E|E{gi(X(1;+  WF @)} —E{(X(t;+ N F @)} =(1+2M)e.

By using Theorem 4.2 in Billingsley [17] and the fact that ¢ is arbitrary and g°c¥,
we now find from the definition that fe%. Note that we really need M to be
independent of ¢ in (a).

(4.3) Proposition. Let fe.#. Suppose that {X,(¢)} is tight in D. Suppose that for
every compact K in D there is a sequence of functions {g"}<% such that
g®(x) - £(x) uniformly on K as k— oo and such that {||g®|} is uniformly bounded
by some constant independent of K. Then fc%.

Proof. Let £>0 be given. Since {X ,(£)} is tight in D, then (4.2)(c) and (d) hold for
some compact set B° in D. Choose a sequence {g®} corresponding to this
compact. Then (4.2)(a) and (b) are true for g°*=g" with k sufficiently large.

{(4.4) Proposition. (a) Suppose that for all choices of m=1 and t, (1LiZm), 9
contains all bounded, uniformly continuous functions on D. Then (X, (1),
F0) = (X (1), 7 (1)).

(b) If (X,(0). Z,(1) = (X (1), Z (1)), then for each m and t;, (1<i<m), 4
contains all fed that are continuous on some set C,e@ with P[X(t,
+)eCy, ..., X(t,+ )eCJ=1. In particular, if t>0 and AeD is such that
PLX(t+ -)e0A1=0, then

PLX,(t+ )eAlZ ()] 2> P[X(t+ - )eA|Z (1)].

Proof. First let the assumptions of (4.4)(a) hold. Then X, (¢) = X (¢), in particular
{X, (1)} is tight. Let g be a vector of bounded, continuous functions on D, and let
K be a compact subset of D. Consider the algebra o of all realvalued
continuous functions on K that can be extended to uniformly continuous
functions on D. This algebra satisfies the assumptions of the Stone-Weierstrass
theorem, so for each component g; of g, there is a sequence {h*} —.o/ such that
hf —g; uniformly on K as k— oo. Now each i* can be extended to a uniformly
continuous function on D, and we can suppose that the extended function h*
satisfies [[h*|<|g|=M: If not, we replace h*(x) by Mh*(x)/h*(x)] when
Ih*(x)| > M. Therefore, by Proposition 4.3 we have ge%, and since this holds for
every g whose components are bounded and continuous, the proof of (a) is
complete.
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Next suppose that (X (1), Z(t)=> (X (1), Z (1)), and let f, m and ¢, (1 <i<m) be
as in (b). Fix £>0 and let K be a compact in D chosen so large that P[X(t
+)eK; 1<i<m]>1—¢/2. Using Lusin’s theorem ([12], Theorem 2.23) for the
components of f restricted to K, we see that there is a vector g of continuous
functions on K such that P[g(X(;;+ )=f(X(;;+) and X(,+ -)ekK;
1 =i<m]>1—e. By Tietze’s theorem ([3], Theorem VIL5.1), we can extend g to
a continuous function on D such that ||g|| < ||f].

Put A={xeD: xeC, and f(x)=g(x)}, C={xeD: [f(x)—g(x)|<e} and B
=int C. If xeA, then f(x)=g(x) and both f and g are continuous in x. Then
there is a neighbourhood N of x such that |f(y)—g(y))| <e for yeN; ie., xeint C
=B. Thus AcB, and P[X(t;+ *)eB; 1Si<m|ZP[X(;+ *)eAd; 1<ism]>1
—e&. Since X, (t;+ ) = X(t,+ ) and B is open, this implies lim inf P[X ,(z,

n—->x

+)eB; 1Sism]2P[X(t;+ *)eB; 1<i<m]>1-¢ Therefore, all the con-
ditions in (4.2) are fulfilled with g°=g and B*=B, so fc¥%.

(4.5) Proposition. Suppose that {X,(t)} is tight in D. Suppose further that g
=(g1,--->8)EY Whenever each g; is of the form

p
(4.6) g{x)= CXP{ R x(s,’{)},

k=1
where the constants ] are real, s| non-negative, and where i=1 —1, and that this
holds for all possible choices of m and t; (j=1,...,m). Then (X (), Z,(t)) = (X (1),

Proof. Keep m and t;(1=<j<m) fixed, andlet f=(f;,....f,) be a bounded,
continuous function on D. It is enough to show that fe%. Consider one
component function f;, and let K be a compact subset of D. By Proposition 4.3
we will be finished if we can show that f; can be approximated uniformly on K
by functions g; such that g=(g,,...,£,)€%, and that the approximating sequence
is uniformly bounded (on the whole space D). The proof will be carried out in
several steps.

(i) Consider the algebra of functions ki, that are of the form

ho(x)=h*(] 9, () X(5)ds, ... | ,(5) x(s) ds)

for some choice of r=1, of ¢@,,...,, (continuous functions on [0, cv) with
compact support) and of h* (a realvalued continuous function on R"). By the
Stone-Weierstrass theorem, f; can be approximated uniformly on K by such
functions.

(i1) Fix ¢>0 and an interval [a, b] <[ —¢, o0) such that b=a+2¢. Then there
exist pz1 and s4,s,...,8, such that av0=s,<s,<...<s,=b, 5,—a<s,
b—s,<eand

P

p

(4.7) > ?Ix(s)—x(sk_1)|d5<s

k=1 sg-1

for all xeK. Namely, look at the left-hand side of (4.7) as a function of x and of
the partition S={sy,...,s,}, say V(x,5). Given xeK it is clear that we can
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choose S_ such that V(x,S,)<e¢/2, and such that the points of S, are points of
continuity of x. Then the mapping y— ¥(y,S,) is continuous at y=x, hence
there is a neighbourhood N, of x such that V(y,S,)<e for yeN,. Since K is
compact, it can be covered by a finite union N, u...UN, . Now the value of
V(x,S) cannot increase when S is refined, so by choosing =5, u...uUS, , we
see that (4.7) holds for all xeK.

(iii) Let [a+e b—e¢] contain the support of a continuous function ¢ on
{0, o0). By the inequality

[oEx()ds— 3 (s 1) (5 =5 ) x(5e_ )

< sup lo@l 3, | e —x(sy )lds

afusbd k=1 sic-1

+sup @Y | 06— @l ds,

aZuszbh k=1 sp—y

and by (1) and (ii), we see that f; can be approximated uniformly on K by
functions & that are of the form

(4.8) h(x)=h(x(s,), ..., x(s,))

for some choice of gz 1 and 5,20 and some continuous function /# on R?. We
may suppose that sup |h{(x)| = M; —sup | /;(x)), since otherwise we can replace h(x)

by max (min (h(x), M ) ~M,).

(iv) Since the assumptions of Proposition 4.5 hold for every choice of m and
{t;}, we can let several of the ;s coincide, and it follows that ge¥ whenever
each g; is a finite linear combination of exponentials of the form (4.6). Thus the
proof will be complete if we can show that for every h of the form (4.8) and every
e>0 there is a.g which is a finite linear combination of terms of the form (4.6)
such that suplh(x)—g(x)|<e and suplg(x)\<sup|h(x)]+1 and this will be

xeK

shown below. Note that if g(x)= g(x(sl) x(s, )) for some continuous function
g, and h(x) is given by (4.8), then sup\h(x) x)l<sup|h( —8(&) for some
compact set K < R¢.

(v) By (iv) it remains to prove the following: Let h be a continuous function
on R? and let K = R? be a compact set. Then there is a sequence of trigonometric

polynomials g,(¢)= 3 a,;exp{i¢-u,} such that g,—Fh uniformly on K and
j=1

sup |2,(E) <sup |A(&)|+1. To prove this, let a>0 be so large that A=
¢eR? R4

(—a, a)x ... x(—a,a) contains K. We can then use the Stone-Weierstrass theorem
on the class of trigonometric polynomials that are periodic with period 2a.
The periodicity gives the uniform boundedness, and this completes the proof.
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Finally, we give another generalization of a familiar result on weak con-
vergence. The proof, which can be based on Proposition 4.4(a) and the tech-
nique of Lemma 4.1 is left to the reader.

(4.9) Proposition. For each n= 1, let X, (t) and X, (t) be processes with paths in D,
both adapted to the same family of o-fields Z,(t). Suppose that (X(t),
Z, (1) = (X (1), F (t) for some process X(t) and family of o-fields F (t), and that
sup | X, (s)~ X, (s)| —E> 0 for all t>0. Then (X, (t), %)) = (X (t), Z (1)).

s=t

5. Proof of the Main Theorem

We will prove the first half of Theorem 2.9 under somewhat stronger conditions
that (2.5), namely

(a) X, (5)=X,(t" for r<ss<ti**  (k20,n21)
(b) 14X (k) =c¢ for some ¢>0 (k=0,n=1)

5.1) (© max [|AX, (k] 20 (t>0)
0 <k =Zrn(t)
@) Ef4X,(k)}=0 (kz0,nz1)
()
© S BAAX, 007~ (t>0)
k=0

This can be seen to be sufficient by Proposition 4.9: If { X, (¢)} satisfies (2.5), then we
rn(t)

can define a new sequence of processes {X,(t)} by X,(0)= ) (4 X,(k)
k=0

—E {4, X,(k)}), and this new sequence of processes will satisfy the stronger
conditions (5.1). Furthermore, from (2.5)(a) (cf. (3.2)) and (2.5)(b) we sece that [X ()
~ X ()| -2250, so that (X,(t), Z,(1) = (W(1), Z (1)) will follow from (X,(2),
Z,(0) = (W), Z (1)).

(5.2) Proposition. Let { X, (1)} satisfy the conditions (5.1). Then for all real A and non-
negative s,t and u we have ‘

(5.3) E{exp {iA[ X (t +s+u)— X, (t+9)]}| Z(0)} —E> exp {— A%u/2}.
Proof. By (5.1)(a) we have

ra(t+s-+u)
X, (t+s+w)—X (t+s5)= Y  AX, k),

k=r,(t+s)+1
so this is essentially one form of the martingale central limit theorem. In fact we can
prove (5.3) by repeating word for word the proof of Theorem 2.1 and Theorem 2.3 in

McLeish [8]. We then need the fact that (5.1)(e) is equivalent to (3.10) under the
other conditions in (5.1) (Lemma 3.5).
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We proceed to prove the direct half of Theorem 2.9 under the conditions (5.1).
First, it is easy to see from wellknown functional limit theorems (McLeish [8],
Brown [2] or Durrett and Resnick [4]) that (5.1) implies X ,(¢) = W(t). To prove
the stronger convergence =, we will verify the hypotheses of Proposition 4.5.
That is, we have to show that all possible linear combinations of terms of the form

(5.4) E {exp{ i irX n(t+sk)}
k

=1

)

converge in distribution to the corresponding linear combinations of terms of the
form

(5.5) E {exp{ i ik, W(t+sk)}
k

=1

F (t)}.

Without loss of generality, we may suppose that 0=<s,<...<s,. Then we may
rewrite (5.4) as

(5.6) E{ﬁ Zk,n]/“;(t)} cexp {i(A, +... +4,) X, ()}

with
Zy y=E{exp {i(Ag+ ... + 10X, (t+5)~ X, (t +5,_ DHF(E+5,_ 1)},

where we take s, =0. Furthermore, we may calculate (5.5) to be

(5.7) l—m[ Zp-exp {i(d, + ...+ 4,) W(0)},
k=1

where z,=exp{—3(/,+...+4,)(s,—s,_;)}- By Proposition (5.2) we have
Z, %>z, Also, we see that |Z, |<1, so by the dominated convergence
theorem

(5.8) E{H Zk,nl'g:n(t)}—ln—) ﬁ Z-
k=1 k=1

From (5.6)-(5.8), it is easy to see that the stated convergence of linear combinations
holds, so by Proposition 4.5 we have (X (1), Z,(1)) = (W(t), Z (1)).

Conversely, suppose that (X,(¢), Z(t)) = (W(t), # (1)). Then in particular
X, (6)= W), so for all &6 and t>0 we have

lim P[ sup |X,(8)—X,w)|>e]=P[ sup |W(s)— W(u)|>e].
H— 00 (i)si s,;‘usﬁat ?s§~ s& lusgat

Letting 6|0, we see that (3.3) holds for all ¢, r>0. As discussed in Sect. 3, this is
equivalent to the statement that (3.2) holds for all i>0 and every sequence of
partitions satisfying (2.1) and (2.2). Thus by Lemma (3.1), the condition (2.5)(a)
holds for every such sequence of partitions. Also it is obvious that (2.5)(d) holds.

Instead of proving (2.5)(b) and {c), we will prove that the slightly stronger set of
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conditions (3.7)-(3.8) is true for some sequence of partitions. To this end we first
define

[¢/]

(5.9) Z,(t,0)= Z [E{4] X, (k)| Z,(kO)},
i)

(5.10) Z3(t,0)=| Y E{(4] X, (k)| Z,(ké)} —1),
k=0

where 49X ,(k)={X,(k+1)8)—X,(k&)} - 1(X,(k+1)8)— X, (kd)|<1), and as
usual [ -] denotes integral part. The proof will be complete if we can find a sequence
{d,} with 8,10 such that Zi(z,6,)—2>0 (j=1,2; t>0).

Welet Z/(t, 8) (j = 1,2) denote the random variables obtained by replacing X, (s)
by W{s) and Z,(s) by Z(s) in (5.9) and (5.10). Then from Proposition (4.4)(b) it is
immediate that the joint distribution of (Z}(t, &), Z2(t, 8)) converge to that of
(Z*(t, ), Z?(t,)). In particular, for all £>0

(5.11) limsup P[Z,(t,0)2e]<P[Z(t,0)2¢],

where Z,(t,8)=max (Z}(,8), Z2(t,5)) and Z(t,6)=max(Z*(z,), Z*(t,d)). From
familiar properties of Brownian motion it is easy to see that Z(t, §)—2> 0(j=1,2;
t>0)as 6]0, so from (5.11)

(5.12) lim lim sup P[Z,(t, )= &] =0

8l0 n-oo0

for all &t>0. In particular, for each k=1 we can find a & >0 such that
lim sup P[Z,(k,60)= k™ '] <k~ ', and then find n, =1 such that P[Z,(k,o9) =k~ *]

<k~ for n=n,. Furthermore. the sequences {4} and {n,} can be chosen such that
6210 and 1,1 oo as k— oo. If we now define §,=6; for n,<n<n, , (k=1,2,...), it
follows that

(5.13) P[Z,(t,5,)2] >0

for all ,¢ > 0. (Recall from (5.9) and (5.10) that Z,,(z, 6} is increasing in ¢; thus the left-
hand side of (5.13) is less than k~1 if k= max (¢, *) and n=n,.) But (5.13) implies
Zit,6,) L-0(j=1,2;¢>0), and therefore (3.7) and (3.8) hold for the sequence of
partitions {t*=k3g,; k=0, n=1}. This completes the proof.

It should be emphasized that this result, namely that (3.7)-(3.8) hold for some
sequence of partitions, is slightly stronger than the converse part of Theorem 2.9. It
follows from the discussion in Sect. 3 that (3.10) also holds for this sequence of
partitions. The results of Rootzén [9] are of some interest here. From Lemma 3 in
[9] we can deduce results of the following type: If X, (f) = X (), if (3.7) holds for
some sequence of partitions and in addition some regularity assumptions are
satisfied, then all the related conditions (2.5)(c), (3.8) and (3.10) are satisfied for this
same sequence of partitions. It would be interesting to know the minimal
regularity assumptions that are needed for theorems of this kind to hold.

The results of the present paper have now been extended to give a general theory
on weak convergence to one-dimensional diffusion processes. These results will be
published elsewhere.
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to

In a recent paper by David Aldous, a new type of convergence, closely related
our convergence =, is studied in detail.
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