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Multiple Channel Queues in Heavy Traffic 
IV. Law of  the  I tera ted Logar i thm 

DONALD L. IGLEHART 4t 

1. Introduction and Summary 

The previous papers ([3, 4, 7]) in this series have dealt with functional central 
limit theorems for the stochastic processes characterizing multiple channel queues 
in heavy traffic. In this paper we develop functional laws of the iterated logarithm 
for these processes. We shall restrict our study to the simplest multiple channel 
queueing systems (see [3, 4, 7], and [8] for background and a complete description 
of these and more complicated systems). 

The queueing systems considered consist of r independent arrival channels 
and s independent service channels, where as usual the arrival and service channels 
are independent. Arriving customers from a single queue and are served in the 
order of their arrival without defections. We shall treat two distinct modes of 
operation for the service channels. In the standard system a waiting customer is 
assigned to the first available service channel and the servers (servers-service 
channels) are shut off when they are idle. Thus the classical GI/G/s  system is a 
special case of our standard system. In the modified system a waiting customer 
is assigned to the service channel that can complete his service first and the servers 
are not shut off when they are idle. Let 2~ denote the arrival rate (reciprocal of the 
mean interarrival time) in the i th arrival channel and #j the service rate (reciprocal 

of the mean service time) in the jth service channel. Then 2 = ~ 2~ is the total 
P 

i=1 
arrival rate to the system and # = #z is the maximum service rate of the system. 

j = l  

As a measure of congestion we define the traffic intensity p = 2/#. We shall restrict 
our attention to systems in which p >  1, which we shall refer to as heavy traffic. 

The principal tools in our analysis are the functional law of the iterated 
logarithm (f. 1. i.1.) for Brownian motion obtained by Strassen (1964) and the well- 
known representation of Skorohod (1965). We summarize these results in Section 2 
and also develop a f.l.i.1, for random partial sums and renewal processes. In 
Section 3 a f. 1.i. 1. is obtained for the process Q'(t), the number of customers in the 
modified system at time t. If we let ~o (t) = (2 t log log t) ~, then as an easy consequence 
of the f. 1. i. 1. we have for p -- 1 (2 = #) 

ii m Q' (t)/(p (t) = ~ a.s., 

and 
lim Q'(t)/q) (t) = 0 a.s., 

t ~ o O  
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where 7 is a positive constant to be specified later. On the other hand, for p > 1 (2 > #) 

lira [Q ' ( t ) - (2 -# )  t]/g0(t)=7 a.s. 
t~o0 

and 
lim [ Q ' ( t ) - ( 2 - # )  t]/qo(t)= - 7  a.s. 
t---~ c~ 

Similar results are obtained in Section 3 for the standard system when p > 1. 
S~ction 4 is devoted to the f.l.i.1, for the departure processes of the standard and 
modified systems for all values of p. Section 5 deals with the f.l.i.1, for the load 
process, virtual waiting time, and waiting time of the n th customer. Finally, in 
Section 6, following Strassen, we study the process v (t) = t -  1 m {z: e <_ z <- t, Q'(z) > 
c~0(z)} for p = l ,  where m{'} is Lebesgue measure and 0_<c<% In particular, 
we show that 

li-m v(t)-- 1 - e x p  {-4((72/c2) - 1)} a.s. 
t-coo 

2. Functional Laws of the Iterated Logarithm 

Let C be the metric space of all real-valued continuous functions on [0, 1] 
with the uniform metric p(x, y)= sup [x(t)-y(t)[  for x, y~C.  Denote by rg the 

o_<t_<l 

Borel sets of C. Let Ck be the product space of k (> 2) copies of C with the product 
topology and let [. [ be the Euclidean norm in R k. Denote by cg k the Borel sets of 
Ck. Following Strassen (1964) we let Kk(6), 6 > 0, be the set of absolutely continuous 
functions xe Ck such that x(0)=0 
and 

i 

j" [~(t) ]  ~ dt__<~ ~, 
0 

where 2 denotes the derivative of x which exists almost everywhere with respect 
to Lebesgue measure and the square denotes inner product. Strassen has shown 
that Kk(6) is compact in Ck and that for XeKk(6) and O<a<_b< 1 

Jx(b)-  x(a)l < g)(b-a) ~. (2.1) 

While Strassen worked entirely in C and Ck it is more natural for our queueing 
processes to work in the space of functions with jump discontinuities. Let D be 
the space of all real-valued right-continuous functions on [0, 1] having left limits 
and endowed with the Skorohod topology induced by the metric d (under which D 
is complete and separable); see Billingsley (1968, Chapter3) for a complete 
discussion of D. We let D k be the product ofk copies olD with the product topology 
and Borel sets @k. 

The important fact about (D, 9)  for us is that the Skorohod topology on D 
relativized to C coincides with the uniform topology there. Let A c C be relatively 
compact in (C, cg) and suppose its set of limit points in (C, cg) is the compact set K. 
Then A is relatively compact in (D, 9);  its set of limit points in (D, 9 )  is K and K 
is compact in (D, 9)  since N relativized to C is cg. Similar remarks hold for (Ck, ~gk) 
and (Dk, ~k)" These facts allow us to state Strassen's f. 1.i. 1. for Brownian motion 
in terms of (Dk, ~k) rather .than the original (Ck, (~k)" 
12a Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 17 
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Now let r be k-dimensional standard Brownian motion and define the random 
functions Cn of Dk by 

~(t)  = ~ (nt)/~o (~) 

for te[0, 1] and n > 3 ;  for the obvious extension of Wiener measure to (Dk, ~k) 
see Billingsley (1968, p. 137). Then Strassen's f.l.i.1, for {~n: n>3} in (Dk, ~k) is 

Theorem 2.1 (Strassen). With probability one the sequence {~,: n> 3} is relatively 
compact in (Dk, ~k) and the set of its limit points coincides with Kk(1 ). 

Having this result Strassen then uses the Skorohod (1965) representation to 
obtain a similar result for the natural sequence of functions generated by partial 
sums of independent, identically distributed (i.i.d.) random variables (r. v.'s). We 
state Skorohod's result next. 

Theorem2.2 (Skorohod). Let {x~: n > l }  be a sequence of i.i.d, r.v.'s with 
E {x 1 } = 0 and E {x 2 } = a 2 < oo and {4 (t): t >_- 0} an independent standard Brownian 
motion both defined on a common complete probability space. Then there exists a 
sequence {% : n > 1 } of non-negative i. i.d. r.v.'s defined on the same space such that 

E { z l } = a  2 and the processes {x~" n > l }  and ~ ~ z i  - 4  ri " n > l  have 
the same joint distributions. ~i= l ~ 

We shall use Theorems 2.1 and 2.2 and Strassen's method to derive a f.l.i.1. 
for processes generated by a renewal process. Let {u~' n >  1} be a sequence of 
non-negative i.i.d.r.v. 's with E {Ul} = , t -  1 > 0 and 0 .2 {ul } = v 2 < co. Let the r.v.'s 
x ~ - u , - 2  -1 play the role of the {xn} sequence in Theorem 2.2. Then if we let 

n n -1  

same joint distributions. Form the partial sums So =0, S~= u 1 + - . - + u , ,  n > 1, 
and introduce the renewal process 

N ( t ) = { ~ a x  { k: Sk <t} , ul <t  
u l>t .  

Similarly, define the partial sums So = 0, S, = ul + "  + ~ ,  n > 1, and let N(t) be the 
associated renewal process. Now define the random function of D, N,, for n > 3 by 

N,(t)=[N(nt)-2nt]/q)(n),  re[O, 1]. 

The random function N', is defined similarly in terms of hr(t). The random functions 
N, and Nn will have the same distribution by our construction. Let 4n(t) = 4 (n t)flp (n). 
The next result is comparable to Theorem 2.1 but for the sequence {Nn: n>3}. 

Theorem 2.3. With probability one the sequence {Nn: n > 3} is relatively compact 
in (D, 9 )  and the set of its limit points coincides with Kl(v 23). 

Proof. We shall show that d (N, ,v2~4 , )~0  a.s. and the result will follow 
from Theorem 2.1. Since d(x, y) <-_ p(x, y), it will suffice to show that p(N,, v 23 4,) ~ 0 
a.s. By a well-known set of inequalities we have 

"~ SN(t) - -  N ( t )  ~-~ ~ t - - /~/( t )  ~ ]I, SN(t) --  l~r (t) -I- 1[ UN(t)+ 1, 
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or  
/~(t) \ /~(t) ,, 

Since the sequence {ft," n > 1} is i.i.d, with finite second moment it is well known 
that fi;v,)+ 1/~o ( t )~  0 a.s. By the strong law for partial sums and renewal processes 

fi(t) 
we have ~ ~jt-+ v22 a.s. From this point we can follow Strassen (1964, p. 217) 

i=1 
to obtain 

Pr { lira I [R(t) - 2 t] - v 2~- ~ (t)[/~o (t) = 0} = 1. 
t ~ o O  

This implies that p (/V,, v 2 ~ ~,) --+ 0 a.s. and completes the proof. 

To prepare for our study of queueing processes we next extend Theorem 2.4 
to cover the linear combination of a finite number of independent renewal 
processes. Assume now that we are given r + s  independent sequence of non- 
negative, i . i .d.r .v. 's  with finite variance: {ui,: n > l )  (i= 1 . . . .  , r) and {4: n > l }  
( j= 1, 2 . . . .  , s) all defined on a common complete probability space (s ~P) .  
Also assume that r + s + 1 independent standard Brownian motions {~J(t): t > 0} 
(j = 0, 1, 2, ..., r + s) which are independent of the sequence {u~} and {4} are defined 
on (Q, ~,P) ;  this construction, of course, can always be carried out. Let 
{A~(t): t > 0} (i = 1, 2, ..., r) be the renewal processes associated with the sequences 
{ui: n >  1} (i= 1, ..., r) and {Si(t): t>0} be those associated with the {v~: n>  1} 
(j = 1, 2, ..., s). We shall let 

r 

2 i = l / E { u ] }  ' /2 j=I/E{vj} ,  ~ =  2 / ~ i  ' p =/~//2, {x i 2  --J~i'3 0"2 {Ul} , i  
i=1 

and aj2 = 123j o .2 {~}, and 

i=1 j = l  

Next define the random functions A~.-[Ai(nt)-,~nt]fl, o(n) (i= l, ..., r) and 
S~-[SJ(nt)-/2h*t]/(p(n) ( j=  l, ..., s). Let the random function X , - A , - S , ,  

where A, = ~, A~ and S ,=  SJ,. Then we easily obtain the following corollary. 
i = 1  j = l  

Corollary2.1. With probability one the sequence {X,: n>3} is relatively 
compact in (D, ~) and the set of its limit points coincides with K~ (7). 

Proof. Form the random functions d~, S~, and 2 ,  as in Theorem 2.3. From 
the triangle inequality and the proof of Theorem 2.3 we have 

- V G.~'+J]  <_ P O~i~i j~=l J n ] P(An,~ a.s .  

B u t ~  ' ~ ~i ~ . -  o-j ~ has the same distribution as 7 ~o. Using Theorem 2.1 the 
i=1 j = l  

result follows for {X.: n > e} and therefore also for {X.: n > e}. 

The next corollary is only needed to study the departure process of our 
queueing system when p = 1. 
12 b Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 17 
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Corollary 2.2. With probability one the sequence {(An, S,): n>3} is relatively 
compact in (D2, ~2) and the set of its limit points coincides with K 2 (~). 

Proof From Theorem 2.3 we have p(/i n, a ~1)_~ 0 a.s. and P(Sn, a 42) ~ 0 a, s., 
where ~1 and 42 are based on independent Brownian motions, a2 = (~2 + . . .  + at), 
and a 2 = (0 ̀2 + . . .  + 0`2). Hence P2 {(An, Sn), (~ ~ ,  0̀  42)} -+ 0 a.s. The result follows 
then from Theorem 2.1. 

We close this section by stating a useful result indicated by Strassen. 

Lemma 2.1 (Strassen). Let {xn: n > 1} be a relatively compact sequence in (D, ~)  
with the compact set K as its set of limit points. I f  h is a continuous mapping from 
(D, ~)  into some metric space S with Borel sets 5(, then the sequence {h(xn): n>__ 1} 
is relatively compact in (S, 5P) and the set of its limit points coincides with h (K), 
a compact set. 

3. The Queue Length Process for Modified and Standard Systems 

This section shall be devoted to obtaining the f.l.i.1, for the processes repre- 
senting the total number of customers in the system under both the modified and 
standard service disciplines. The modified system is introduced basically as a 
tool to get a handle on the standard system. For a complete discussion of this 
device see [3, Section 2]. 

We assume now that we are given as the basic data for our problem the r + s 
independent sequences of non-negative, i. i. d. r.v.'s with finite variance all defined 
on a common complete probability space ([2, ~, P) as described in Section 2. 
The variable uin represents the interarrival time between the (n-1)  st and n TM 

customers in the i th arrival channel and the variable v~ represents the n th potential 
service time of the jth server. As in [31 the v~'s are associated with the j th  s e r v e r  
rather than with the n th customer which is usually the case in queueing theory. 
With this interpretation for the u~'s and v~'s the renewal process A i(t) represents 
the total number of arrivals in the i th arrival channel in the interval (0, t] and 
S j (t) represents the total number of potential service times in t h e f  h service channel 
in (0, t]. Because of the service discipline in the modified system it is particularly 
easy to express the queue length process, Q'(t), in terms of these basic renewal 
processes. We assume that the system is initially empty, although as in [3] our 
limit theorems do not depend on this condition. For each ~o e s and t > 0, we have 

Q' (t) = X ( t ) -  inf {X(s): 0-< s < t}, (3.1) 
where 

and 

A(t) = A l ( t ) + . . .  + Ar (t), 

S(t)=S l(t)+... + S  s(t), 

X( t )=A( t ) -S ( t ) .  

Let A / (i= 1 . . . . .  r), S~ (j = 1, ..., s), and Xn be as defined in Section 2. Let Q'n be 
the random function in D defined by 

Q'n- [Q' (nt)-  [,~ - ~] + nt]/~o (n), 
where t~[0, 1]. 
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To obtain the f.l.i.1, for Q', it is convenient to introduce the continuous 
mapping f :  D ~ D which corresponds to an impenetrable barrier at the origin. 
For  x~D, f is defined by f ( x ) ( t ) = x ( t ) -  inf {x(s)}, t~[0, 1]. The f.l.i.1, for Q'n 

O<_s<_t when p = 1 is contained in 

Theorem3.1. I f  p = l ,  then with probability one the sequence {Q'n: n>3} is 
relatively compact in (D, 9 )  and the set of its limit points coincides with f [K 1(7)]. 

Proof Since p = 1, the translation terms in both Q', and X, are zero. Hence 
from (3.1) we have Q',=f(X,). Since f is a continuous mapping the result follows 
immediately from Corollary 2.1 and Lemma 2.1. 

The next two corollaries follow easily from Theorem 3.1. 

Corollary 3.1. I f  p = 1, then the lira Q' (t)/q) (t) = 7 a.s. 
t ~  oo 

Proof First we observe that sup x(1)=7 from (2.1), where the supremum 
x~f[K(7)]  

is actually attained for the function x(t)=Tt.  From Theorem3.1, we have 
lira Q'(n)/q)(n)=7 a.s. However, as remarked by Strassen (1964, p. 215), we could 

n - - ,  oo 

just as well have considered the net {Q',: u > e} and obtained a result comparable 
to Theorem 3.1. This would establish our result. 

Corollary 3.2. I f  p = 1, then lira Q' (t)/q~ (t) = 0 a.s. 
t ~ o O  

Proof. Use the method of Corollary 3.1 and observe that the inf x(1)=O 
which is attained for the function x (t)-= 0. xE~K(7)~ 

Actually a good deal more is true for the limit inferior. From Corollary 2.1 
we know that the lira X(t)= + oo a.s. and the lira X( t )=  - o o  a.s. Hence since 

t---~ el3 t ~ x 3  

Q' ( t)=f(X)(t) ,  Q' (t)= 0 for arbitrarily large values of t a.s. 

Next we turn to the corresponding results for p > 1. 

Theorem3.2. I f  p > l ,  then with probability one the sequence {Q'n: n>3} is 
relatively compact in (D, 9 )  and the set of its limit points coincides with K 1 (7)- 

Proof We shall show that d(X,, Q',) ---, 0 a.s. and the result will follow from 
Corollary 2.1. Recall that d(X,,  Q',)<p(X,, Q',)= sup {-X(s)}/qo(n)>O. By the 

O<_s<_n 

strong law for renewal processes the lira [ - X ( t ) / t ]  = ( # - 2 ) <  0 a.s. Thus, for any 
t ~ o o  

> 0 and e > 0 there exists a So such that 

(so ~ t ( # -  2) <__ ~ >= 1 - ~/2. 

Hence, the 
P { sup { - X(s)}/~r (n) <__ ~ for all n__> [So] + 1} _>_ 1 - b/2. 

so~s<n 

On the other hand since X(t) is a finite r.v. there exists a no such that the 

P{ sup {-X(s)}/(o(n)~=z for n~=no}~=l-cS/2. 
O<_s<_so 
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Thus if we take n~ = no v ([So] + 1) we have shown that the 

P{ sup {-X(s)}/~o(n)<=e for all n>n l }>  1 - 6  
O<_s<_n 

and the theorem is proved. 

The same technique used for Corollaries 3.1 and 3.2 yields 

Corollary 3.3. I f  p > 1, then 

(i) lim [ Q ' ( t ) - 0 , - # )  t]/q~(t)= +7 a.s. 
t ---~ oo 

and 
(ii) lim [Q' ( t ) -  ( 2 -  p) t]/tp (t) = - ~ a.s. 

t ~ O O  

We turn now to the standard system and seek identical results for the queue- 
length process Q(t) again for p=>l. The central idea, due to Borovkov (1965, 
Section 5), is to define the standard system in terms of the same basic sequences 
of random variables already used for the modified system. This device was used 
in [3] and yields the following inequalities: for all coco and t > 0  there exists a 
to =< t such that 

O (t) <= Q' (t) + ~ [S j (to + Oj (to))- S j (to)] (3.2) 
j=l 

and 

Q' (t)< Q (t)+ ~, [S j(t + Oj (t))- S j (t)], (3.3) 
j=l 

where Oj(t) denotes the shift in channel j at time t and is related to the excess 
random variable of a renewal process based on a subsequence { ~ } ;  Oj(t) is 
explained in detail in [3, Section 3]. The method of proof will be to show that 
d (Q,, Q',) --* 0 a.s., where Q , -  [Q (nt)-  [ 2 -  #] + nt]/~o (n) for t e [0, 1]. Our proof 
of this fact is valid for all values of p. 

Theorem3.3. I f  p> l, then with probability one the sequence {Q,: n>3} is 
relatively compact in (D, 9)  and the set of its limit points coincides with f [K 1 (y)] 
when p = 1 and with K 1 (y) when p > 1. 

Proof. From (3.2) and (3.3) we have the estimate 

s + [sJ (nt + S (nt)] 
j = l  d (Q,, Q',) < p (Q,, Q',) < sup 

o_~,_~1 q~(n) 

Hence to show d(Q n, Q',)~O a.s. it will suffice to show that for all j, l<j<=s, that 

sup 
o_<t_<l q~(n) 

SJ(nt + 0j(nt))-  S t(nt) 
--* 0 a.s. (3.4) 

As observed in [-3, proof of Theorem 3.1], sup Oj(nt)< max vJ, k, where 
0 _ < t _ < l  l <_k<_SJ(n)+ l 

SJ (t) is the renewal process generated by the subsequence, {v~k}, of unused potential 
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service times in the jth service channel. Since the subsequence {v~k } is i.i.d., we 
have max {vJ, Jn ~} ~ 0 a. s. as we have remarked previously. Hence 

l <_k<_SJ(n)+l 

Oj(nt)/n -~0 a.s. sup ~ (3.5) 
0 < t < l  

From the proofs of Theorems2.3 and 2.4 we know that p(S~,,ajr a.s. 
Strassen (1964, p. 214) has shown that for every e > O, p (~j ~,, K(aj))< e eventually 
with probability one. Combining these two facts we see that for e > 0 there exists 
no such that with probability close to one p(SJ,, K(a~))<e for n>no. Let wx(6) 
denote the modulus of continuity for C with the uniform metric; namely 

Wx(6)= sup Ix(t)-x(s)l for xeC. 
0 < s , t < l  
ts-tl<=~ 

Then using (2.1) we have for e, t/> 0 an nl with the property that 

P{wsJ(6)<2e+aj5 ~, for all n~nl} 1-~l. (3.6) 

Hence lira limws~(5)=0 a.s. Putting together (3.5) and (3.6) yields (3.4) and 

completes the proof. 

Results comparable to Corollaries 3.1, 3.2, and 3.3 but for the standard system 
follow in the same way from Theorem 3.3. 

4. The Departur e Processes 

Let the departure processes for the standard and modified systems be denoted 
by {D(t): t>0} and {D'(t): t>0} respectively, where each process measures the 
number of departures for the corresponding system in the interval (0, t]. Define 
the random function Dn by 

D,--[D(nt)-(2A#)nt]/q)(n), te[0,  1] 

and D', in a similar manner. In this section our goal is to develop a f. 1. i. 1. for both 
{D,: n>3} and {O',: n>3} when p>0.  

From the definition of the departure processes, D(t)= A(t)-Q(t) and O'(t)= 
A(t)-Q'(t). Using the definition of Q'(t) we obtain 

D'(t)=S(t)+ ~f< [A(s)-S(s)J. 
O--s--t 

Next we introduce the continuous mapping g: D • D ~ D defined by 

g(x, y)(O=y(t)+oinft[x(s)-y(s)], t~[O, 1]. 

Recall that in the proof of Theorem 3.3 we showed that d(Q,, Q',)~O a.s. 
for all values of p. This in turn implies that d(D,, D'n) ~ 0 a.s. So any result estab- 
lished for {D',: n=>3} will hold for {D,: n>_3}. Hence we shall work with the 
more tractable modified system. We look first at the case p < 1. 
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Theorem 4.1. I f  p < 1, then with probability one the sequences {D',: n> 3} and 
{D,: n > 3} are relatively compact in (D, @) and the set of their limit points coincides 
with K 1 (~). 

Proof We shall show that p (Q',, 0) ~ 0 a. s. which implies that d(D',, A,) ~ 0 a. s. 
This in turn implies the result using a slight variant of Corollary 2.1. We proceed 
now to show p(Q',, 0 ) ~  0 a.s. From the definition of Q', we have 

' sup [ x ( n t ) -  o in< {X(ns)}]m(.). P(Q., 0 ) =  o<,_ .< ,  _ _ 

Now for 5e(0, 1) we have 

p(Q'~,O)__< sup IX(nO- ~nf {X(ns)}f/q,(n) 
0 < t < l  t - -  = =<t 

+oSUp 
(4.1) 

The first term on the right-hand side of (4.1) is less than or equal to wx.(6) and 
using the same method employed in the proof of Theorem 3.3 lira lira Wx,(6)= 0 

6 ~ 0  n ~ c c  

a.s. So we can forget about this term and concentrate on the second term. The 
second term can be written as 

sup Imin[O, <inf {X(ns)}-jn[<{X(ns)}]l/q~(n). 
O_<t=<l O _ s _ t - - b  - -  - -  - -  

Thus our proof will be complete if we can show that for every t/> 0 there exists 
an no such that 

P{oS=<utpl [o<~n[_o{X(ns)}-X(nt)]/@(n)>O for all n>no}-_> l - t / .  (4.2) 

We have immediately 

inf {X, (s)} - X, (t) - 6 (2 - #) n/cp (n) (4.3) [ in<f {X(ns)}-X(nt)]/q~(n)>=o<_~<t_a 
O < _ s _ t - - ~  

just using the definition of X,. Since for every e > 0  p(X, ,  Kl(7))<e eventually 
with probability one and K1(7) is compact, the first two terms on the right-hand 
side of (4.3) are uniformly bounded in t eventually with probability one. Since 
p < l  and 6>0,  - 6 ( 2 - # ) n / r  as n ~ .  Hence we have shown (4.2) 
and the proof is completed. 

Next we turn to the case p = 1 which requires the use of Corollary 2.2. 

Theorem 4.2. I f  p=  1, then with probability one the sequences {D',: n>3} and 
{D,: n > 3} are relatively compact in (D, ~)  and the set of their limit points coincides 
with g [K 2 (7)]. 

Proof Simply apply Corollaries 2.1 and 2.2. 

Theorem 4.3. I f  p > 1, then with probability one the sets {D',: n > 3 } and {D,: n > 3 } 
are relatively compact and the set of their limit points coincides with Ka(a ). 
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Proof  We have shown in the proof of Theorem 3.2 that p(X , ,  Q',)--+O a.s. 
But this implies that p(D',, S , ) ~  0 a.s. which in turn gives us d(D',, S , ) ~  0 a.s. 
The desired result follows using the method of Corollary 2.1. 

Results comparable to Corollary 3.3 also follow for the departure processes. 

5. The Load, Waiting Time, and Queue Length at the i th Service Channel 

Let Q~(t) be the number of customers in the standard system at time t who 
will be processed through the ith service channel and /J(t) be the work load 
(future service time required for all customers in the system) at time t which will 
be processed through the ith service channel. 

Define the corresponding random functions of D as 

Qi _ Qi(nt)/~ o (n) 
and 

lJ, =-IJ(nt)/cp(n) 
where te  [0, 1]. 

The first lemma is an immediate consequence of the queue discipline. 

Lemma 5.1. For all values of  p, p (lJ.,, L~) ~ 0 a.s., i, j = 1 . . . .  , s. 

Proof  Since a waiting customer goes to the first available server, /J(nt) and 
U(nt) can differ at most by a potential service time. Hence 

p( /J , , / J , )<(  < <max {v~,/q)(n)}) v ( < <max {VJk/~O(n)}). (5.1) 
l_k-Si(n+Oi(n)) 1 _k_S  '(n+Oj(n)) 

As demonstrated in the proof of Theorem 3.3 the right-hand side of (5.1) goes 
to zero a.s. 

Lemma 5.2. I f  p < 1, then p (IC 1 Qin, iz ]- 1 Q j) ___+ 0 a.s. 

Proof  First we relate Q~(t) to/J(t) .  Let B~(t) be the total number of customers 
who arrive in (0, t] and are processed through the i TM service channel. Then 

B'  (t) 

e(t)= y~ v~+/(t), (5.2) 
k=Bi(t)-[Qi(t)-l]+ + 1  

where ri(t) is the residual service time of the customer being served in the i th 
service channel at time t, and {v~,} are the actual service times in the ith service 
channel. Since 

sup ri(nt)/~o(n)< max i l <_k < A(n)Vk/q)(n) ---+ O a.s., 
O_<t_<l 

we shall ignore the factor ri(t) in (5.1). Doing this we have 

/2 (n t) 1 B,(.,) -- 2 ( v ~ -  ~/~ 1) Ar 
~o(n) 
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This leads us to 

p (#i-1 Q~, #j-1 Q~) < p (lJ,, U,) 

1 B~(.,) 
+ sup Z (v~ - #V 1) _ _ _  

O_<t<l q)(n)  k=Bi(nt)_tQi(nt)_l]+ +1 

1 BJ(.t) l) 

tp(n) k=nJ(,O-tf2~(nO-11 +1 ) 

after neglecting some terms of the order 1/q~(n) for all co. Thus it will suffice to 
show that I 1 B~(,t) 

sup ] ~, (V~ - -  # / -  1) _.). 0 a.s. (5.3) 
O < t < l  ~o(n) k=Bi(nt)_tQi(nt)_l]+ +1 

since p (/J,,/J,) ~ 0 a. s. by Lemma 5.1. We know that sup B i (n t)/n < A(n)/n ~ 2 a.s. 
O<_t<_l 

and that sup Qi (n t)/n ~ 0 a. s. since p__< 1. Thus with high probability B i (n t) =< 2 ~ n 
o_<t=<l 

for all te[O, 1] and all sufficiently large n. Similarly, for any 6>0,  Q i ( n t ) < n 6  
with high probability for all re[O, 1] and sufficiently large n, So on a set of arbi- 
trarily large probability for all sufficiently large n 

I _-< sup ~ , ] L  sup ~ (v~- #i -1) TE~,- i 1 Bi(nt) .. T 
<- 

O-<t<l (p(n)  k=Bi(nt)_[Qi(nt)_l]++l O<s,t<2~,  
Is-tl_<-~ 

where Tk i = X~ +. . .  + X~, X~ = v~- #F 1, Td = 0, T~ = Tt~,/q~ (n), and w~ is the modulus 
of continuity of x in the space C[O, 22]. But lim 1-Fmw~(fi)=0 a.s. by the same 

~--*0 n~oo 
argument used in Theorem 3.3, since the {X~: k >  1} are i.i .d.r.v. 's with mean 
zero and finite variance. This establishes (5.3) and completes the proof. 

Lemma 5.3. I f  p < 1, then p [(#/#) Q,, Q~] ~ 0 a.s. 

Proof. 

<,=1 ~ p  [Q~" (#-~-~'i")' Q~] ~ 0  a.s. 

by Lemma 5.2. 

Lemma 5.4. I f  p <= 1, then p (lJ,, Qi,/#i ) ~ 0 a. s. 

Proof. Use the method of Lemma 5.2. 

Lemma 5.5. I f  p < 1, then p (lJ,, Q,]#) ~ 0 a.s. 

Proof. Simply use Lemmas 5.3 and 5.4. 

The total load for the entire system, L(t) is just Ll( t )+. . .+LS( t )  and the 
virtual waiting time, W(t), is just min {/2(t)}. As usual let L,=L(nt ) /q) (n)  and 

l<=i<=s 
W,--W(nt)/cp(n) with te[0,  1]. Then we have immediately from Lemma 5.5 the 
following result. 

( ) Lemma 5.6. I f  p < 1, then p L , , - ~  Q, -~ 0 and p \ ,, # ] 
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The results in Lemmas 5.2-5.5 are mainly of interest for the case p-- 1, since 
p (Q,, 0) ~ 0 a. s. when p < 1. Combining Lemmas 5.3, 5.5, and 5.6 with Theorem 3.3 
we obtain 

Theorem5.1. I f  p = l ,  then with probability one the sequences {Q~: n>3}, 
{/JR: n>3}, {L~: n>3}, and {l/V,: n>3} are relatively compact in (D, 9)  and their 
limit points coincide with the sets f [K 1 (#j V/M)], f [Ka (7/re)], f [K1 (s 7/#)], and 
f [K1 (7/#)] respectively. 

As before, corollaries comparable to Corollaries 3.1 and 3,2 can easily be 
obtained. 

Now we turn to the process Wd, the waiting time of the n th customer in the 
standard system. Define the random function, Zn, in D by 

Z,  -= W['~tl/q3(n), t~[0, 1]. 

Then using the same methods already employed we can obtain 

Theorem5.2. I f  p = l ,  then with probability one the sequence {Z,: n_>_3} is 
relatively compact and the set of its limit points coincides with f [K 1 (7/#~)]. 

We remark that for the classical queue GI/G/1 Theorem 5.2 can be immediately 
deduced from Strassen (1964, Theorem 3). 

6. An Application 

Strassen (1964) obtained a number of interesting results by applying his f. 1. i. 1. 
to particular functions. In this section we shall show how one of his results can be 
immediately taken over for the process {Q'(t): t>0} when p =  1. 

Following Strassen we define v( t )=t- lm{z:  e<z<<_t, Q'(t)>ccp(z)} for t>e, 
where m {- } is Lebesgue measure and 0 < c < 7. Hence v (t) measures roughly the 
fraction of time in [0, t] that the modified queue length process exceeds the 
function ccp (z). In the case p = 1, we can follow Strassen's argument and obtain 

l imv(t)= sup m{t:x(t)>ccp(t)} a.s. 
t~oo x~f[Kl(~)] 

But Strassen shows that 

sup m {t" x (t) ~ c ~o (t)} = 1 - exp { - 4 ((72/c 2) - 1)} 
x~Kl(7) 

and that the supremum is actually attained for the function 

. .  f(c/so).t, o<_t<-So 
x~ t ~, So<t<l ,  

where so=exp{-4((72/c2)-l)} .  By definition of the function f it is clear that 
f [K1 (7)] c K1 (7) and that Xo ~ f  [K1 (7)]. Hence we have 

lira v(t)= 1 - exp {-4((72/c2) - 1)} a.s. 
t~oO 

Comparable results could be obtained for processes other than Q'(t). 
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