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Compactness and Sequential Compactness 
in Spaces of Measures 

PETER G~,NSSLER* 

1. Introduction 

This paper is concerned with several characterizations of conditionally com- 
pact and conditionally sequentially compact subsets of the space ca(X, Y) 
endowed with the topology ~ of set-wise convergence on the a-field ~ in X. In 
contrast to the usual way of considering first compactness in the Foo = a (ca (X, ~ ) ,  
ca(X, o~)*)-topology ([5], IV.9.1 and 9.2), we start proving directly and in a rather 
self-contained way compactness criterions in the ~ - t o p o l o g y  (2.6). The main 
advantage of the approach presented in Section 2 is its simplicity, e.g. no resort 
on the Eberlein-Smulian-Theorem is necessary in order to link compactness with 
sequential compactness. In the same simple way we establish the connection of 
~ -  with ~ -  resp. Jo-compactness (2.11-2.19) which yields immediately the well 
known compactness criterions with respect to the latter topology. In Section 3 
we consider the case where X = (X, J-) is a topological space and where ~ are 
the Borel sets in X. 3.7-3.13 are concerned with compactness results first studied 
by Grothendieck ([6], Th6or6me 2, (1)-(4), p. 146) in the case of Radon measures 
on locally compact basic spaces (X, Y). For Jg-regular measures (Definition 3.1) 
3.7 generalizes in particular Grothendieck's Criterion (4) to Hausdorff spaces and 
3.11 shows that the equivalence of the statements (1), (3) and (4) holds true for 
regular Hausdorff spaces. Finally 3.12 proves the equivalence of (1) to (2) for 
completely regular Hausdorff basic spaces (X, 3-). As a Corollary (3.14) we obtain 
for analytical spaces (X, J-) several characterizations for ~-condi t ional ly  com- 
pact resp. @-conditionally sequentially compact subsets of ca(X, ~ ) ,  where the 
equivalence of ~ -cond i t iona l  compactness to (iii) resp. (iv) may be considered 
as an analogon to Prohorov's well known criterion ([15], Theorem 1.12, p. 170). 

A further application centers around Dieudonn6's Theorem ([-3], Proposi- 
tions 8 and 9, p. 37) and its extension due to Wells, jr. ([17], Theorem 3, p. 125 
and the corollary on p. 128). The results of Section 3 enable us to generalize 
Dieudonn6's Theorem from compact metric spaces to regular Hausdorff spaces 
and to extend the theorem of Wells, jr. from compact spaces to normal Hausdorff 
spaces. Both is established in 4.5 together with 4.9 and yields the main Theorem 4.10 
of Section 4. 

Once 4.5 was proved it was first discovered by Pfanzagl that Dieudonn6's 
Theorem could be even extended to arbitrary Hausdorff spaces (see the main 

* Part of this work was done while the author was visiting lecturer at the Mathematical Institute 
of the University of Copenhagen. 
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theorem in [14c]). In Section 5 we derive this result using the compactness cri- 
terions of Section 3 together with Lemma 1 in [14@ Finally we prove in 5.3 a 
boundedness result which generalizes [3], Proposition 9, from compact spaces 
to arbitrary Hausdorff  spaces. 

It should be emphasized that besides the techniques going back to Dieudonn6 
and Grothendieck we resort to the concept of a sufficient sub-o--field ~0 of ~- for 
a given sequence of measures (#,]~),~N which is useful insofar as convergence of 
a bounded sequence (#,[~),~N on ~o implies its convergence on ~- (1.24). It 
turns out that for the present case this is the proper tool to link compactness with 
sequential compactness (see the proof of the equivalence of (i) to (ii) in 2.6). 

Finally it should be remarked that the compactness criterions studied here 
play an essential role in statistical theory; the validity of important theorems in 
this field are limited by compactness assumptions on the underlying family of 
distributions (cf. [1~, Section 6, [11], p. 146, [12], Lemma 4, [14a] and the literature 
cited there). 

Let X be an arbitrary non-void set, ~- a a-field of subsets of X and ca (X, ~') 
be the family of all countably additive real-valued set functions defined on ~ It 
is well known (see [5], III.4.5) that every #eca(X,  ~ )  is a bounded set function 
and (see [5], III.4.7), given #aca(X,  ~) ,  the set function 1#1 defined by 

n 

[#[(A): =sup  ~ I#(Ai)l, A e N ,  
i = l  

(where the supremum is taken over all finite sequences of disjoint sets Aie~- 
with A i ~ A) is a non-negative bounded and countably additive set function on 
which is equal to # if # itself is non-negative, i.e. if #(A)>_0 for all A ~  With 
ca + (X, ~-) we denote the space of all non-negative #~ ca (X, ~) .  Besides ca (X, ~-) 
we occasionally consider the space ba(X, ~ )  of all bounded additive real-valued 
set functions on -~. For #eba (X,  ~-) the set function I#1 defined as above is a 
non-negative bounded and additive set function on ~ (see [5], III. 1.5 and 1.6). 
Hence ((g (l:= (#((X), # ~ ba (X, Y), defines a norm in ba (X, ~-) and endowed with 
this norm (ba(X, @), [[" [[) resp. (ca(X, ~ ) ,  J]-11) become Banach spaces. Elements 
of ca(X, ~ ) [ b a ( X ,  ~ ) J  are called measures [contents] and if we write #lo~ it is 
to indicate that the measure [content] # is to be considered as a set function on 
~.  Throughout gJ~ = 93~(~- denotes subsets of ca (X, ~-). 

N [IR] denotes the set of positive integers [real numbers], ~[ the complement 
of a set A in X, i.e. L [ : = X - A .  We write A c and intA for the closure resp. interior 
of a set A in a topological space. 

Let us list some well known results which are basic for the following sections. 
If no special reference is given, the proofs may be found in [53. 

1.1. Definition. OJ~l~ is said to be dominated by a non-negative measure 
,~.I~-(giR(~'~2[~-) ifffor every #egJ~ 2(A)=0 implies #(A)=0.  If g J l l ~ ' ~ l ~  and 
if [#[ (A) = 0 for all # e 9)i implies 2 (A) = 0, then 9Jl I~" and 2[~- are called equivalent 

1.2. Criterion. ~ I ~ ' ~ Z I ~ -  iff for every #~J~ and for each e>O there exists 
b(g, e)>0  such that 2(A)< 6(#, e) implies I#(A)] <e. 
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1.3. Definition. Given 9J~l~ we denote by 9JlXl~ the set of all 2eca+(X,  g )  of 

the form 2 =  ~ 2-"  I#,l with #,egJl, neN,  and we write 19Jl[ for the set 

1.4. Proposition. I f  9Jll~ is countable, there exists 2 e ~  ~ such that I~l ~21~ 

1.5. Definition. 9J~lY is said to be uniformly dominated by 2 e c a + ( X , ~ )  
( g ) l [ ~ 2 l ~ )  iff for each e > 0  there exists 6(e)>0 such that 2(A)<6(e) implies 
sup [p(A)[ <e. 

1.6. Criterion. 9 ~ I Y ~ 2 I ~ / f f  I~l~,~l~ 

1.7. Definition. 92R[Y is called equicontinuous iff lim sup]/~(Ak)[=0 for each 
sequence (Ak)k~N$ O, A k i n ,  keN.  k~  , ~  

1.8. Remark. If ~l~ ,~ l~ , ,  then 9J~l~ is equicontinuous. Using 2.6 below 
together with a result of Brooks [2J we obtain a simple proof for the converse 
statement (see 2.7). This was first proved by Dubrovski ([-4], p. 738, Theorem 2). 

1.9. Theorem (Vitali-Hahn-Saks). I f  for a sequence #,eca(X, ~ ) ,  heN,  (p,(A)),+~ 
converges in IR for every A e ~ then {/~,1~: n~N} is uniformly dominated by every 
dominating (non-negative) measure. 

1.10. (Niko@m). If for a sequence ~ ,eca(X,  ~-), neN,  (~,(A)),~ converges in 
IR for every A e ~ then the set funct ion/~olJ  defined by #0 (A)." = !ira #, (A), A e 

is a measure and the set {#,1~: n e N w  {0}} is uniformly dominated by every 
dominating (non-negative) measure. 

1.11. Lemma. Let ~l~---{g.[~: neN} be equicontinuous and suppose that 
50 c ~ is a subsystem of ~, containing X, which is closed under finite intersections 
and which generates ~ Then convergence of (#,) ,~ on 5e (i. e. (p, (S)),+~ converges 
in IR for every S ~ 5 r implies convergence of (~,) ,~ on ~. Conversely, if convergence 
of (#,) ,~ on 5 ~ implies its convergence on a(5 r (the a-field generated by 5~), it 
follows from 1.9 that {#,[a(Se): neN} is equicontinuous. 

Proof. Let ~ . '={A~o~:  (/~,(A)),+~ converges in IR}. By assumption 5 ~ .  
Obviously ~ is closed under disjoint unions and proper differences. As 5 ~ is 
closed under finite intersections it follows that the field generated by 5 ~ is con- 
tained in @. We shall show below that N is, furthermore, a monotone system 
(i.e. ]" and $ closed). Since a monotone system containing a field is a a-field, we 
obtain N = 

Let (Ak)keNT A e ~  with Ake ~ ,  keN.  Then Bk: = A-AkJ,  O. By equicontinuity 
there exists for every ~>0  a k(e)eN such that [tzn(Bk(~))[<=e/3 for all neN.  Hence 

[#. (A) - #,. (A) I = I~. (Bu(e)) + #n (Ak(e)) --/~,' (B~(~)) -- #., (Ak(~)) ] 

for all sufficiently large n, meN.  This implies A e ~ .  As ~ is closed with respect 
to proper differences, it follows that it is also ~ closed. 
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1.12. Theorem (Nikod~m). Let 93~cca(X, Y). I f  {#(A): #~gJl} is bounded for 
every A ~ o  ~, then {#(A): #~gJ~, A~.~} is bounded, too. Therefore {I#](A): #6~)~, 
A ~ ~ } is bounded. 

Proof See [5], IV.9.8. The second assertion follows from the Hahn-Decom- 
position-Theorem ([-5], III. 4.10). 

1.13. Definition. ~ c ca(X, ~ )  is called bounded iff 9J~ is bounded as a subset 
of(ca(X, ~) ,  1[. 1]), i.e. iffb~." = sup ]I#H = sup 1#] (X)< oe. Asequence #,~ca(X, J~), 

#~g31 #s~01 

neN,  is called bounded iffthe set {#,[ff: heN} is bounded in (ca(X, Y), I1" II). 
As to the topological concepts and theorems used in later sections we should 

mention the following: 

1.14. Definition. Let (X, Y-) be a Hausdorff space and X o be a subset of X. 

(i) X o is called conditionally sequentially compact (c. s.c.) in (X, Y)  iff each 
sequence in X 0 contains a subsequence which converges in X. 

(ii) X o is called sequentially compact (s. c.) in (X, J )  iff each sequence in X 0 
contains a subsequence which converges in X o. 

(iii) X o is called conditionally compact (c. c.) in (X, Y) iff the closure of X o in 
(X, Y) is compact. 

Relativized topologies on subsets X o of a topological space (X, J )  will be 
usually denoted by the same letter, i.e. we write (Xo, J )  (instead of (X0, .Y-- c~ Xo) ) 
for the topological subspace X o of (X, Y). 

1.15. Lemma. Let (X, 3-) be a compact Hausdorff space and X o ~ X 1 c X.  Then 
X o is c.c. in (X 1, Y )  iff X~ c X 1 (where X~o denotes the closure of X o in (X, J ) ) .  

Proof We remark that the closure of X o in (Xa, J )  is X; ~ X 1. 

c> If X; ~ X 1 is compact in (X1,3-), it is also compact and therefore closed 
in (X, J-). As X o c X; c~ Xx, this implies X;  c X;  ~ X 1 , whence X; ~ XI. 

C C  C -~ X o X~ implies X 0 c~ Xa = X~ which is closed and therefore compact in 
(X, .Y-), hence X6 ~ X 1 is compact in (X1, J ) .  

1.16. Remark. Any subset of a c. s. c. [,c. c.] set is c. s.c. [,c. c.] again. 

1.17. Theorem ([-9], Theorem 8, p. 141). Let f be a continuous function carrying 
the compact Hausdorff space (X, J-) onto the Hausdorff space (Y, J-'). Then (Y,, J-') 
is compact. I f  f is 1-1, then it is a homeomorphism. 

1.18. Corollary. Let (X, J )  be a compact Hausdorff space and ~--'~ J a Haus- 
dorff topology. Then J-'  = J .  

1.19. Lemma. Let J~l c J j  be Hausdorff topologies on X.  Then any set X o ~ X  
c i  - -  c 2  r  which is c.c. in (X, J22) is also c.c. in (X, ~-~1) and X o - X  o (where X o denotes the 

~-closure of  X o in (X, 3~-i ), i = 1, 2). Furthermore, ~ coincides with ~ on X~ ~. 

Proof As ~ c ~ ,  ~2-compactness of X~' implies ~-~-compactness. Hence 
X; ~ is ~ll-Closed and therefore X; ~ c X;  ~. Hence X;' is ~-compact .  As ~=~22 
implies X~o~cX~ ~, we obtain X;' = X ;  ~. By 1.18, ~ coincides with ~22 on X;L 
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Our main interest in the following sections centers around compactness and 
sequential compactness in ca(X, ~ )  endowed with special topologies. One of 
them will be the topology of set-wise convergence on ~ In this connection it 
turns out that the concept of a sub-a-field o~ o of ~ which is sufficient for a family 
9Jl]~ in ca(X, Y)  is a very useful tool. 

1.20. Definition. Let ~ denote the topology in ca(X, ~ )  of set-wise con- 
vergence on Y,, i.e. ~ is the weakest topology for which all mappings # ~ #(A), 
A e ~  are continuous. In other words: If #eca(X, ~ )  and if (#p)~B is a net in 
ca (X, ~) ,  then (/~p)p~B ~-converges  to #((#~)p~B ~ # ( ~ ) )  iff (#~ (A))p~B ~ # (A) 
for all A e 

1.21. Remark. If ~ = ~3 (X, .~) denotes the space of all bounded .~-measurable 
functions on X, then ~ coincides on every bounded 9 ) l cca (X ,~ )  with the 
topology ~ ,  being the coarsest topology rendering all mappings # ~ #(f), f ~ ,  
continuous. (#(f) denotes the integral of f with respect to/~.) Furthermore, 
coincides with ~ on ca + (X, ~ )  but it can be shown by examples that on ca (X, o~) 

is strictly coarser than ~ ,  in general. 
For every #~ca(X, o ~)  and sub-a-field ~ of Y we denote by #~~ Ae~,  

the conditional expectation of the indicator function 1 a of the set A e ~  with 
respect to #, given ~o, i.e. #~~ is defined to be the #-equivalence class of all 
~o-measurable functions fulfilling #(AnAo)=#(#~~ for every A o ~  o. 
The existence of#~ for every #eca(X, N)  and A e ~  follows from the Radon- 
Nikod)m Theorem ([7], p. 128 together with remark (4) on p. 131). 

1.22. Definition. A sub-a-field ~o of ~ is called sufficient for 93lJ~ c ca(X, ~ )  
iff for every Aeo~ there exists CpAe ("] #~ 

1.23. Lemma. I f  ?011~ is countable, there exists a countably generated sub-a- 
field ~ of ~ which is sufficient for ?iJll~. 

Proof Let 9J l l~= {#,1~: n~N}. Then 2: = ~ 2-" I#,l dominates 9XI~ 
,~N 1 + I[#,tl d#,[~- 

Let P"e d ~  (the class of Radon-Nikod)m derivatives of # , l ~  with respect 

to 2]~), heN, and let o~ o be the a-field generated by {p,: heN} (i.e. the smallest 
a-field with respect to which all p,, n~N, become measurable). ~o is countably 
generated and we have for every neN and A e ~ :  

#, (A c~ Ao) = )L (p, 1A ~ ao  ) = "~ ( )L~~ (P, 1A c~ Ao)) = ~L (p, 1Ao )J~ (IA)) = #n (2~~ (1a) 1Ao ) 

This implies that for every A e ~  for all Aoe~o . 

x o(h)  
n~N 

hence ~o is sufficient for 9Jl]o~ 

1.24. Lemma. Let 9X]~ c ca (X, ~.~) be bounded and suppose that the sub-a-field 
~o of ~ is sufficient for 9XJo~ Then the topology 5--~o (of  set-wise convergence on ~o) 
coincides with ~-~ on 9X. Furthermore: Any sequence #n ~ 9X, n ~ N, which converges 
on ~o does also converge on ~. I f  9311 ~ c ca+ (X, ~) ,  the boundedness assumption 
on 93l can be dropped. 
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Proof Let A e f f  be arbitrary. As :@o is sufficient for ~ l ~  there exists 
(oAs (-] #~~ in particular: #(A)=#(q~A) for all # ~ .  Hence for arbitrary 

r, s~lR: {#~93l: s<#(A)<r}  = {#egJ~: S<#(~OA)<r }. This implies 

(cf. 1.21). The proof of the second assertion follows the same patterns. 

2. Compactness and Sequential Compactness in Spaces of Measures 
Defined on an Arbitrary Measurable Space (X, o~) 

Let (X, ~ )  be a measurable space, i.e. X is a non-void set and ~ a a-field of 
subsets of X. Our main aim is to give several characterizations of conditionally 
compact (c. c.) and conditionally sequentially compact (c. s. c.) subsets of ca (X, Y) 
endowed with the topology @ of set-wise convergence on =@ 

2.1. Lemma. Let 931[=@ be bounded. Then 9311~ is c.c. in (ca(X, =@), 3--5) iff each 
YsaccumuIation point of 9~ in [ -  b~, b~] 0+ belongs to ca(X, if). 

Proof Follows from 1.15 applied with X = [ - b ~ ,  b~] =~, J - = ~ ,  Xo =93l and 
Xl=ca(X,=@)c~[-b~,b~] w together with the fact that 9J~[~- is c.c. in 
(ca(X, if), ~ ) i f f  9J~[ff is c.c. in (ca(X, ff)c~ [ - b ~ ,  b~] w, ~ ) .  

2.2. Lemma. I f  gJ~l=@ is c.s.c. [c.c.] in (ca(X, Y), ~ ) ,  then 9J~lff o is c.s.c. [c.c.] 
in (ca(X, ~0), ~o)  for every sub-a-field -~o of =@ 

Proof. The c.s.c, case is obvious. As to the c.c. case we remark that the con- 
tinuous image of a c. c. set into a Hausdorff space is again c.c. Applying this for the 
continuous map f :  (ca(X, =@), ~ ) ~  (ca(X, fro), @o) defined by f (# l f f ) :=  #[~o, 
the assertion follows. 

2.3. Lemma. Let 9J~l=@ be c.c. in (ca (X, ~) ,  3-~). I f  SP c Y separates the elements 
of ca(X, if), then the topologies ~ and 3-~ coincide on the J~-closure of ~)11=@ in 
ca(X, if). Furthermore: Any sequence #,~?0~, n~N, which converges on S e also 
converges on =@ 

Proof Let ff.II c be the ~-c losure  of 93llff in ca(X, ~-). By assumption g)~c is 
~-compact .  As ~9 ~ separates the elements of ca(X, if), ~ is a Hausdorfftopology. 
By 1.19 @ coincides with .7~ on 92R C and 9Jr c is also the @-closure of !l)l]o~ in 
ca(X, =@). By 2.1 #,e9)1, neN, and (#,) ,~N~#o(~) (with #o(A):=lim sup #~(A), 
A ~=@) implies #o ~gJ~ and therefore (#,),~--+ #o (~)-  

2.4. Corollary. Let 9J~l~ be c.c. in (ca (X,W) ,~)  and let f C c ~  be a field 
generating the a-field ~ Then convergence of a sequence #= egJ~, n~N, on f9 implies 
its convergence on =@ 

Proof Follows from 2.3 and [5], III. 5.9. 

2.5. Example. Convergence on a field does not imply convergence on the gen- 
erated a-field, in general: Let X ,=  [-0, 1], f f  the Borel sets in [0, 1]. For each 
n e N  let #, be the probability measure concentrated in the point 1In and #o be 
the probability measure concentrated in 0. Let ~o be the field generated by the 
intervals [a, b) in [0, 1]. Then ~o generates ~ and (#,),~-+ #o (~o) but (#,(A)),~ 
is not convergent for A,=  {2-~: keN}, i.e. (#=),~-+ #o(@) is false. 
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2.6. Theorem (cf. [5], IV. 8.9, IV.9.1, 9.2 and [13], p. 119). Let 9~]y cca(X, ~) 
be bounded. Then the following assertions are equivalent: 

(i) ~1: is c.c. in (ca (X, :% ::). 
(ii) 93~I: is e.s.c in (ca(X, :), ::). 

(iii) 93l [ :  is uniformly dominated by some non-negative finite measure 2e?/J~ ~ 
and every non-negative measure v [~  dominating ~]  ~ dominates 9J~[ ~ uniformly. 

(iv) 9J~[~ is equicontinuous. 
(v) Every countable subset of ~i~[~ is equicontinuous. 

Proof. (i)>(ii) Let (#,[~),~N be a sequence in 9J~]~; then according to 1.23 
there exists a countably generated sub-a-field ~o of ~ which is sufficient for 
{# , [~ :  neN}.  Let (r be a countable field generating 0~o. As for every A ~  o 
{#,(A): n ~ IN} is bounded in ]R, using the diagonal procedure, we obtain an infinite 
subset N o c i N  such that (#,),~o converges on ~o. As by 2.2 ~1-~o is c.c. in 
(ca(X, ~o), ~ o )  we obtain, according to 2.4, that l~m#,(A) exists in IR for all 

A~o~ o. Since -~o is sufficient for {#,[W: n~No}, 1.24 implies convergence of 
(#,),~o on 0~, whence by 1.10 #o(A).'=2!mo#,(A ), A ~ ,  defines a set function 
which belongs to ca(X, :-).  

(ii)>(i) By 2.1 it suffices to show that each Y:-accumulation point of 9)l in 
[ - b ~ ,  b~] ~, say #o, belongs to ca(X, ~) .  It is easy to verify that #o is a content, 
hence it remains to show that #o is countably additive on ~ :  Let (Ak)k~ ~ be a 
sequence of pairwise disjoint sets in ~ and let Ao.'= ~, A k. As #o is a J : -accu-  

k~N 

mulation point of ~)J~, for every n~iN there exists #,~gJ~ such that ]#o(Ak)--#,(Ak)[ 
<l/n for k = 0 , 1  . . . . .  n. We have lim#,(Ak)=#o(Ak) for all k=0 ,1 ,  .... By (ii) 

n~N 

there exists an infinite subset No c N and a/~o ~ca(X, ~ )  such that (#,),~o---> ~o(~:) - 
Hence #o(Ak)=/~o(Ak) for k=0 ,  1, .... As /~o is countably additive, we obtain 
#o(Ao)=/~o(Ao) = ~,/~o(Ak) = ~ #o(Ak) �9 

ken  ken  
(ii)~>(iii) (a) First we shall show that every c.s.c, subset in (ca(X, ~) ,  ~ )  is 

dominated by a non-negative finite measure 2 ~ ~J~Z. This follows from the following 
auxiliary proposition ([5], p. 307). 

(P) For each e > 0  there exists n~iN, an n-tuple kq, #2, " " ,  #n ~fJ~ and a 6 > 0  
such that [#i[(A)<6, i=  1 . . . .  , n implies ]#(A)l<e for every # ~ .  

According to (P) for every n t iN there exists a finite subset ~ ,  of 93l and 6, > 0 
such that [#1 (A) < 6, for all # ~ 93~, implies [# (A)] < 1/n for all # e 9~R. As 9J~o ." = U 9J~, 

is countable, there exists by 1.4 a non-negative finite measure 2~9J~ which is 
equivalent to [~J~o [. Hence 2 [ ~  dominates 93l[~ 

(b) We conclude the proof of (iii) by showing that a c.s.c, subset 9J~]~ in 
(ca(X, ~) ,  ~:))  is uniformly dominated by every non-negative dominating 
measure. 

If this were not true, there would exist a non-negative dominating measure 
Vo]~ for 9J~l~, ~ and an % > 0  such that: 

(+ )  For every n e N  there exists A , e ~  and #~gJ l  with vo(A~)<l/n and 
]#,(A,)I > %. 
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By (ii) there exists an infinite subset N O ~ N such that (y,),~o converges on 
to some #0eca(X, ~-). According to 1.9 this implies that {#, l~:  n~N0} is uni- 
formly dominated by every non-negative dominating measure; this, however, 
contradicts ( + ). 

(iii):>(iv) Follows by 1.8. 

(iv) c>(v) Obvious. 

(v)~>(ii) Let (#,) ,~ be an arbitrary sequence in ~J~ro~. According to 1.23 
there exists a countably generated sub-a-field ~o of ~ which is sufficient for 
{Y,l~: nEN}. Let ~fo be a countable field generating ~o. As for every A~f~ o 
the set {#,(A): heN} is bounded in IR, using the diagonal procedure, we obtain 
an infinite subset N o c N  such that (#,),~No converges on ~0-As {#,]g:  n~No} 
is equicontinuous, (#,),~o converges on ~o, by 1.11, and therefore on ~ by 1.24. 
Hence the set function #o1~, ~ defined by ~o(A):=~!mo#,(A), A~o~, belongs to 
ca(X, ~) .  

2.7. Corollary (Dubrovski [4], p. 738, Theorem2). Let 9XI~-cca(X,~-) 
be arbitrary. Then equicontinuity of gX[~ implies that there exists 2eca+ (X, ~,~) 
such that 9Xlff~2L@ and every v~ca+ (X, J~) dominating 9Jll~ dominates 9Jllg 
uniformly. 

Proof. (a) We shall show first that every equieontinuous 9J~l~cca(X, ~ )  is 
dominated by some 2cca+(X,~-). For every k e N u { 0 }  let 9XkIg:={#egX: 

c o  

k=< It#l] < k +  1}.As IIYl[ < o~ for every #Eta(X, ~) , i t  follows that TAll# =k_~0~0lkl~,~= 

and the equicontinuity of 9?lift implies that each 9Jtk[O~ is equicontinuous. As 
9~g[~- is bounded, it follows from 2.6 that there exists 2ksca+(X, f f  ) with 

~k(X)--<_I such that 9 J ~ 1 o ~ l ~ / ~  , k~N~{0}.  If we define 2:= ~ 2-~2~, then 
~=o 

2 e ca + (X, Y) and 93l[~ ~ 2[~-: For, given any p ~ 9)i, there exists k = k (#) ~ N ~ {0} 
such that #eg)~ k. As 2(A)=0 implies 2k(A)-=0 , we obtain #(A)=0. 

(b) Next we claim that, given #,eca(X, ~-), neN,  with {g,,l~: heN} ~2[~,  
equicontinuity of {g,I._~-: n~N} implies that {#, t~:  n ~ N } ~ t ] ~  The proof of 
this claim can be found in a recent paper of Brooks ([2], p. 468, Theorem 3). 

(c) We conclude the proof by showing that (a) and (b) imply the assertion. It 
follows from (a) that there exists 2~ca+(X, i f)  such that ~ I W ~ 2 1 ~  We show 
that every v o s ca+ (X, ~-) dominating fflll~- dominates 9311~ uniformly. Assume 
that g)l[~-~,t I~,~ does not hold. Then there exists e o > 0 such that (+) (see above 
p. 130) holds. Since {#,lff: n s N } ~ v 0 [ f f  and {#.1~: neN} is equicontinuous, it 
follows from (b) that {#,lff: n e N } ~ v o I f f  which contradicts (+). 

2.8. Corollary. I f  9 X [ ~ ~ o o [ ~  and if gXl~ ~ )~{~ , then .g31t~ ~ )~1~. 

Proof ~3l]~-~2o1~ implies that 9XI~ is equicontinuous, whence the assertion 
follows from 2.7. 

2.9. Corollary. Let ~l~=ca(X,~) be bounded. Then 9J~l~ is c.s.c, in 
(ca(X, ~-), @ )  iff the auxitiaryproposition (P) (see p. 130) is fulfilled. 
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Proof c.s.c, of 9)l[~ implies (P) (see [5], p. 307). On the other hand (P) implies 
that 9~1~- is equicontinuous, whencce the assertion follows from 2.6. 

Finally we obtain the following compactness criterion: 

2.10. Proposition. Let ~ [ ~ c a ( X , ~ )  be bounded. Then 9Jl]~ is c.s.c, in 
(ca(X, Y), ~ )  iff for every countable subfield f~ of ~ convergence of a sequence 
in 9J~ on f~ implies its convergence on the a-field a(fr generated by f~. 

Proof If 9Jl]~ is c.s.c, in (ca(X, ~,~), ~ ) ,  2.2 implies that 9J~]~ o is c.s.c, in 
(ca(X~o), ~o)  for every sub-a-field o~ o of o~ hence, by 2.6, 931la(fr is c.c. in 
(ca (X, a (~)), 9-~(e)), whence 2.4 (with Y = a (fr yields the assertion. 

On the other hand, to any sequence #,~9Jl, neN,  there exists, by 1.23, a 
countably generated a-field -~o of ~ which is sufficient for {#,[.,~: n~N}. Let f~ 
be a countable field generating ~o. As for every AeN the set {#,(A): neN} is 
bounded in IR, using the diagonal procedure, we obtain an infinite subset N O ~ N 
such that (#,),~o converges on fr By assumption this implies convergence on 
-~o and as ~o is sufficient for {#n].,~: neN}, 1.24 implies convergence of (#,),~No 
on o~, whence, by 1.10, it follows that 9J~]~- is c.s.c, in ( c a ( X , ~ ) , ~ ) .  

In the following we will briefly investigate the connection of compactness 
properties with respect to the topologies ~ ,  R and the topology Joo.'= 
a(ba(X, ~-), ba(X, N)*) [resp. a(ca(X, ~) ,  ca(X, ~)*)] usually used in analysis; 
i.e. Yoo is defined as the coarsest topology on ba(X, ~-) [ca(X, ~-)] rendering all 
continuous linear functionals on the Banach space ba (X, ~ )  [ca (X, ~ ) ]  endowed 
with I1" II continuous. 

2.11. Remark. As ba(X, ~ )  is isometrically isomorphic to the dual space 
~3(X, ~-)* of ~3(X, ~-) (see [5], IV. 5.1), the topology R = R ( x , ~ )  (cf. 1.21) is the 
so-called weak*-topology (in the terminology of [5] (after identifying ba(X, ~ )  
with ~3(X,~-)*) R on ba(X,o~) is the ~3(X,~)-topology). Hence it follows 
from [5], V.4.3 that every R-compact  subset of ba (X ,~ )  is bounded in 
(ba(X, ~-), I1" II), whence any R-compact  [c.c.] 9J lcca(X,~)  is bounded, too. 
It follows easily from 1.12 that any @-compact  [c.c.] resp. any ~ - s . c .  [c.s.c.] 
9J~cca(X, ~ )  is also bounded. Furthermore, we remark that R is coarser than 
Joo(R ~ ~o) and that this relation is strict in general (see [1], 2.2, p. 42). 

2.12. Lemma ([1], Lemma 2.4, p. 43). For every v~ca+(X, ~,~), ca(X, ~ ;  v).'= 
{#eca(X, ~ ) :  # [ ~ v l ~ }  is a ~-~-closed linear subspace of ca(X, ~ )  on which Jm 
coincides with ~oo. 

2.13. Proposition. A subset 9Jl]~ of ca(X, ~ )  is ~oo-compact iff it is ~-~-compact 
or ~--~-compact. 

Proof If 9Jll@ is ~oo-compact, ~ C ~ o  implies ~-compactness. On the other 
hand, if 9)11~ is ~ -compac t  it is bounded by 2.11, hence 2.6 implies that 9J~l~ is 
dominated by a non-negative finite measure; therefore, by 2.12, ~oo and ~ coincide 
on 93ll ~ Hence ~ 1 ~  is ~o-compact. In the same way one proves the equivalence 
of ~oo-compactness with ~-compactness  (cf. 1.21). 

2.14. Corollary. A subset ?OLIN of ca(X, ~ )  is c.c. in (ca(X, ~) ,  ~oo) iff it is c.c. 
in (ca(X, ~) ,  ~ )  or c.e. in (ca(X, ~) ,  @ )  and subsets of this kind are necessarily 
bounded. 
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Proof We observe first that each of the conditions on 9J~l~ implies that 
9)11~ is bounded. This follows from [51, II.3.20 and 2.11. 

~> Follows from 1.19 applied with X=ca(X,  ~) ,  ~ = ~  or ~ ,  J22 =~oo and 
X o = 9311~ 

-< ~ c Yo (see 2.1 1) implies 9JV ~ c 93V (where 92R ~~ [gJF] denotes the Joo - [ ~  - ] 
closure of 9Jl]~ in ca(X, ~).  If 93F is ~-compact,  it is Joo-Compact by 2.13. As 
9JV ~ is a .Fo-closed subset of a Joo-Compact set, it is 3oo-Compact itself. In the same 
way one obtains the equivalence of Joo-C. c. to ~ - c .  c. 

2.15. Proposition. For any sequence #.Eca(X,Y), n~N, 3-oo-Convergence is 
equivalent to J~-convergence and the latter is, in turn, equivalent to J-~-convergence 
(cf. [5], IV. 9.5.). 

Proof t> Follows from the fact that ~ [ ~ ]  is coarser than Jo. 
< Let (#,),~N---' #o(~). As {#,l~:  n e N ~  {0}} is dominated (see 1.4), ~o and 
coincide on {#,[~-: n e N u  {0}}, by 2.12, whence (#,),~--, #o(3-00). If (#,),~--. 

#o(@), it follows by 2.11 that {#,l~-: n~N} is bounded, whence ( # , ) , ~  #o(~)  
(see 1.21). 

2.16. Corollary. A subset 9011~ of ca(X, o~) is s.c. [c.s.c.] in (ca(X, ~-), ~oo)/ff 
it is s.c. [c.s.c.] in (ca(X, Y), ~ )  or s.c. [c.s.c.] in (ca(X, ~),  @)  and subsets of 
this kind are necessarily bounded. 

Proof Follows from [51, II. 3.27 and 2.15. 

2.17. Corollary ([1], Theorem 3.6, p. 43; cf. also [51, V.6.1). For subsets 9JllJ 
of ca(X, .~) the following assertions are equivalent: 

(i) 9311~ is c.c. in (ca (X, ~) ,  ~ ) .  

(ii) 9J/[~ is c.s.c, in (ca (X, o~), ~ ) .  

(iii) 9N[ -~- is c.s.c, in (ca(X, o~), Jo). 

(iv) 9911~ is c.c. in (ca(X, ~) ,  Jo). 

Proof Follows immediately from 1.19, 2.6, 2.14 and 2.16. 
Finally we obtain the following criterion: 

2.18. Proposition. A subset ~ l o ~ c c a ( X ,  ~-) is J~-compact iff it is J~-sequen- 
tially compact. 

Proof E> If gJliff is ~-compact ,  it is c.c. in (ca(X, if), ~ )  and as 9J~lff is 
bounded, it follows from 2.6 that 9)lift is c.s.c, in (ca(X, if), ~ ) .  Hence any 
sequence in 9)l contains a subsequence ~-converging to some #0eca(X, if). 
As 9J~l~ is ~-closed,/~o ~99l. 

<~ If 9)l[@ is s.c. in (ca(X,~), ~ ) ,  it follows from 2.16 that 9JllJ ~ is s.c. in 
(ca(X,~),~oo), hence ~o-sequentially closed. Furthermore, it follows from 2.6 
and 2.14 that 9)11~- is c.c. in (ca(X, ~-), ~o). As in every metrizable locally convex 
space the class of all weakly conditionally compact and weakly sequentially 
closed subsets coincide with the class of all weakly compact subsets (see [10], 
w 1. (7)), it follows that 9J/l~" is ~o-compact and hence by 2.13 @-compact. 

2.19. Corollary. A subset 93~1~ c ca (X, ~ )  is ~oo-Compact iff it is ~oo-sequentially 
compact. 

Proof Follows from 2.13, 2.18 and 2.16. 
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3. Compactness and Sequential Compactness in Spaces of Measures 
Defined on the Borel Sets of a Topological Space (X, ~-). 

Grothendieck's Theorem 
In this section we shall give further compactness criterions under the addi- 

tional assumption that the basic space X is endowed with a Hausdorff topology, 
say ~,, and ~ is the o--field of Borel sets in X. Let a f  denote the system of compact 
subsets of (X, Y). If not stated explicitely, all spaces (X, ~ )  in the following are 
supposed to be Hausdorff spaces. 

3.1. Definition. (a) #~ca(X, ~ )  is called S-regular iff for every U e J  and 
every e>0  there exists K e ~ ,  K c U ,  such that I#(A)[<e for all A s ~  with 
A c U - K .  The family of all [non-negative] Jl-regular #eca(X,o~) will be 
denoted by Ar-rca(X, ~-) [:((-rca+ (X, N)]. 

(b) Let veca+(X, ~) .  We say that J (  v-approximates J-  iff for every UeY- 
and every e>0  there exists KeJC, K c  U, such that v ( U - K ) < e .  

3.2. Criterion. # ~ S - r c a  (X, ~ ) / f f  X I# l-approximates J .  

Proof Follows immediately from the fact that for every #sca(X, ~ )  

(,) sup [#(A)[< I # I ( U - K ) < 2  �9 sup I#(a)l (cf. [5], III. 1.5). 
A e ~ , A = U - K  A ~ , A c U - K  

3.3. Lemma ([14b]). Let v l ~ c a +  ( X , ~ ) and assume that Jd v-approximates ~. 
Then ~ v-approximates also ~ i. e.: For every Borel set A and every e > 0 there 
exists KegC, K ~A ,  such that v ( A -  K)<e. 

3.4. Corollary. #6 X'-rca (X, ~ ) / f f  5/d [# [-approximates ~.  

Proof Follows from 3.2 and 3.3. 

3.5. Proposition. Every # ~ JY~-rca(X, ~ )  is outer regular, i. e.: For every A ~ 
and every e>0  there exists U ~ , ,  A c  U, such that I#(B)]<e for all B 6 ~  with 
B = U - A .  

Proof Follows immediately from 3.4. 

3.6. Proposition. 9Jl[~ c Jl-rca(X, ~ )  implies that j~r 2-approximates ~-- for 
every .~ ~ 9X ~. 

Proof Let ~.~gJ~ ~, i.e. i#,[ 
2=  ~ 2-"- 1 + I[#,]l 

n~lN 

with #,~gJl, n~N. As #,eaf-rca(X, ~) ,  it follows from 3.2 that for every U~3- 
there exists an increasing sequence of compact sets whose union, say K~, is 
contained in U with [# , I (U-K~)=0 for all n~N. Therefore 2 ( U - K ~ ) = 0  and 
this implies the assertion. 

The next theorems are concerned with compactness results first studied by 
Grothendieek ([6], Th6or6me 2, (1)-(4), p. 146) in the case of Radon measures 
on locally compact basic spaces (X, ~'). For Jl-regular measures 3.7 generalizes 
in particular Grothendieck's criterion (4) to arbitrary Hausdorff spaces and 3.11 
shows that the equivalence of the statements (1), (3) and (4) in [6], p. 146/147, 
holds true for regular Hausdorff spaces. Finally 3.12 proves the equivalence of 
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(1) to (2) in [6], p. 146, for completely regular Hausdorff basic spaces (X, Y). 
Necessary and sufficient conditions for ~-compactness of the type (iii), (v) 
and (viii) below were obtained independently and with different methods by 
Yops~e ([16aJ, Theorems 8 and 9). 

3.7. Theorem. Let (X, J )  be a Hausdorff space and let 9J~l~ be a bounded 
subset of •-rca(X, ~) .  Then the following assertions are equivalent: 

(i) 9J/l~- is c . c .  in (ca (X, ~-), G). 
(ii) 9)llY is c. s.c. in (ca (X, ~),  ~ ) .  

(iii) ~r ~-- uniformly with respect to # ~93l. 

(iv) Yl#1-approximates ~ uniformly with respect to #~gJl. 

(v) (a) For every K s : g  and every e>0 there exists UE~-- such that U = K  
and ]# l (U-K)<e  for all #egJ~. 
(b) (IpIlY: #egJl} is uniformly tight, i.e.: For every e>0 there exists 
K ~  such that ]#l(K)<~ for all #sg?~. 

(vi) (a) For every sequence of pairwise disjoint sets UjeW,, j~N ,  we have 
lim #(Uj)=0 uniformly with respect to #~92~. 
jEN 
(b) For every sequence of pairwise disjoint sets K;~JY', j c N ,  we have 
lim #(K;)= 0 uniformly with respect to #e992. 
jeN 

Proof. (i) ~ (ii) see 2.6. 
(ii)E>(iv) If 9)l[~cJC-rca(X,~" ) is c.s.c, in (ca(X,~-) ,~) ,  it follows from 

2.6 that there exists 2~9J/~ which dominates 9J~l~ uniformly. By 1.6 I~l is also 
uniformly dominated by 21~ 3.6 implies that Jg,~-approximates 3- and therefore 
also .Y (see 3.3), whence the assertion follows. 

(iv) ~(iii) Obvious, since Y-- c 
(iii)~>(v) It is obvious that (iii) implies (v)(b). To see that (iii) implies (v)(a), 

let K ~ g (  and e>0 be given. By assumption there exists for U'." = _ R e J  a K ' ~  
with K ' c  U' and [#[(U'-K')<e for all #egJk Therefore U : = K ' ~  U '=K and 
I#1(U-K)= [#1(U'-K')<e for all #sg)l. 

(v) c>(iii) Let U ~J-  and e > 0 be given. According to (v)(b) there exists K~ ~( 
such that [#1(l~)<e/2 for all #~gJ~. As Uc~ Ks~,U, (v)(a) implies that there exists 
U ' e J  with U'= Uc~K and I#1(U'-(Uc~K))<e/2 for all #~gJ~. It follows that 
K ' : = U - ' c ~ K ~ ,  K ' c U c ~ K  and IpI((Uc~K)-K')<e/2, hence K ' c U  and 
I# I (U-K ' )<e  for all #~931. 

(iii)~(ii) By 2.6 and 1.8 it suffices to show that every countable subset of 
gJt[~ ~, say {p, lJ~: n~N}, is uniformly dominated by 2:= ~ 2-"l#,l. As ~lo~ is 

n~N 

bounded, 21ff is finite and S2-approximates 3- (cf. 3.6). Therefore it is sufficient 
(see 3.5) to show that {#,[J :  n~N} resp. {[#,[1~--: neN} (see 1.6)is uniformly 
dominated by 2[~. If this were not true, then there would exist e0 >0 such that 
for an infinite subset N o o n  there exists U ' ~ J  such that 2(Us and 
I#,l(U,')>e o, n~N o. For every n~N o let U,:= u {U/': i>n, i~No}. Then U , ~ ,  
n e N  o, is non increasing with lim2(U,)=0 and [#,[(U,)>e o for all n~N o. By 

n~N0 
assumption for every n e N  o there exists K ' , s ~  with K ' c  U, and [#[(U,-K',)< 
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2-"-1 6o for all # e ~ .  For h e n  o let K . :=  0 {K'i: l < i < n ,  ieNo}; then K . e S ,  
c ' c U. and I#.L(K.)= I#.I(U.)-I#.I(U.-K.). We have K. K. 

U . - K .=  U {U.-  K'i: l _< i<_n, i~No} = U {Ui-K'~: 1 <= i<=n, ieNo}, 

' 2 hence ]#.](U.-K.)<= ~ [#.](Ui-Ki)<6o/ and therefore ]#.[(K.)>6o/2 for all 
l<i<_n 
ieNo 

hen o. Furthermore, K:= ~ K, e X  and 2(K)--limA(K,)=0 and therefore 
.aN0 "aNO 

[#,i(K)=0 for all heN. As Ke3-~, there exists, by assumption, KoeJf such that 
KocK and ]#.l(K-Ko)<~0/2 for all ne]N. Together with ]#,](K)--0 for all 
hen  this implies I#,I(/s for all ne]N. As K o is compact, Ko~K= ~ K, 

n a~',I 0 

implies that K o = K, for all sufficiently large n e]N o and hence mY, J (Ko)--> I#. I (K,) >__ 
60/2 for all sufficiently large n e]N o which contradicts [#n J(Ko)< 60/2, n e]N. This 
proves the equivalence of (i)-(v). 

(v)>(vi) We shah prove the following even stronger implication" (v) implies 
that for any sequence of pairwise disjoint sets AfiJ ~, jeN, we have ~im #(A j)--0 

uniformly with respect to #egJl. Suppose the latter to be wrong. Then there exists 
a sequence of pairwise disjoint sets Aje~, jeN, so that there exists a 60>0, an 
infinite subset IN o ~ N and measures #fi 9"J/, jeNo, with inf I#j(Aj)I > 60 . Without 

jeNo 
loss of generality we may assume ]No=]N. As 2:= ~2-J]#j l  is a finite non- 

jeN 

negative measure dominating {#j]ff: je]N}, the equivalence of (v) to (ii) already 
obtained implies by 2.6 that {#j].~: je]N} is uniformly dominated by 2i~. Hence 
there exists 6 (6o)> 0 such that 2 (A)< 6 (6o)implies sup I#j(A)i < 60. As )L(~ A j)= 

j a n  j~N 

~.(Aj) < oo implies lim 2(A j)= O, we obtain i#j (Aj)i < ~o for all sufficiently large 
jeN j a n  

je]N which contradicts inf I#~(Aj) i > 60 . 
jeN ~ 

(vi)(a) >(v)(a) Assume (v)(a) to be wrong. Then there exists K o e ~ff and e 0 > 0 
such that for every U e 3- with U ~ K o there exists #v e 9J/with I#uJ(U- Ko)> 60 . 
We shall construct inductively a decreasing sequence V, of open neighborhoods 
of Ko, a sequence U, e3-- with U,~ V,_,n V,, ne]N, and a sequence #,egJ/such 
that ~nfly,(U,)] >60/4. (This obviously contradicts (vi)(a).)Assume, starting with 

Vo: = X, that this construction is already done up to n -  i. Then, by assumption, 
there exists #.6931 such that I#.i(V._,-Ko)>e o. As y . eX- rca (X ,~ ) ,  there 
exists K. e ~f with K. = V._ 1 -Ko  such that I#. (K.)] > eo/2 (cf. 3.2(*)). As K o and 
K. are disjoint compact sets, there exists U', V.'eg- such that V/,~K o, U/,~K. 
and V" c~ U" = ~), where, according to the outer regularity of #. (see 3.5), U~ can be 
chosen so that ]#.I(U},-K.)<eo/4. Let U.:= U~c~ V._ 1 and V.:= V,~c~ V._ 1. Then 
U=V._lc~V., Ko=V.=V._ ~ and K.=U.=U',  whence I#.i(O.-K.)<eo/4. 
Therefore [#. (U.)I > ]#. (K.)I- ]#.1 (U. -  K.)> 6o/4. 

(vi)(b)~(v)(b) Assume (v)(b) to be wrong. Then there exists %>0 such that 
for every Ke~f( there exists #~YJt with [#~l(K')>6o. We shall construct induc- 
tively a sequence of disjoint sets K~e ~,, j~]N, and a sequence #fi~It, j~N, such 
that sup]#~(Kj)]>6o/2. (This obviously contradicts (vi)(b).) Let K~.'=0. By 

j~N 
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assumption there exists #,~93l_ with {gi{(K'l)>%. As #isJf- rca(X,Y),  there 
exists K i t s  such that K i c K '  1 and l#1(K1){>%/2 (cf. 3,2(.)). This proves the 
inductive beginning. Now assume that K i and/~ with the property stated above 

n--1  

are already obtained for i= 1 .... , n - 1 .  As K',,= ~ Ki is compact, there exists 
i = 1  

/~,EgJl such that [#,l(g",)>%. Since #,ec(f-rca(X,~) there exists K, ECr ~ such 
C - !  that K, K, and {#jg~){ > %/2. This concludes the proof of 3.7. 

3.8. Proposition. Let 931{~cxr ~-) be c.c. [c.s.c.] in (ca(X, ~),  ~ ) .  
Then every Jsaccumulat ion point of 9J~ in ca(X, ~ )  belongs to ~-rca(X,  ~).  In 
particular: I f  l~,~ Ar-rca (X, o~), n ~ N, and if(p,), ~ ~ go (J-~), then/~o ~ ~(-rca (X, @). 

Proof Let #oeca(X, N) be a ~-accumulat ion point of 9)11~ in ca(X, Y), i.e. 
go = @-lira/~R for some net { /~}~  ~ g)l. Since 9Jl{~ is c.c. [-c. s.c.] in (ca(X,~), ~ ) ,  

/~B 
it is bounded (see 2.11) and 3.7(iv) implies that for every A ~ -  there exists an 
increasing sequence of compact sets whose union, say K~, is contained in A and 
so that sup ]#~{(A-Ko)=0, i.e. sup/~(F)=0 for all F ~ - w i t h  F c A - K , .  Hence 

3eB fleB 

~-convergence of (#~)p~B to go implies i~o(F)=O for all F ~ -  with F ~ A - K ~  
which, in turn, implies {g0{ ( A -  K j  = 0, i.e. go e JY'-rca (X, ~).  

3.9. Corollary. 93~1~ ~ ~r (X, ~ )  is c.c. [c. s.c.] in (ca (X, ~-), ~ ) / f f  93l{~ 
is c.c. [c. s.c.] in (J(C-rca (X, ~-), ~ ) .  

Proof The c.s.c, case is an immediate consequence of 3.8. To prove the 
equivalence in the c.c. case let 9Jl ~~ and 9)l ~' denote the ~-c losure  of 9Jl}~- in 
~-rca(X,  ~ )  and ca(X, ~-) respectively. If 9311~- is c.c. in (ca(X, ~) ,  ~ ) ,  then it 
follows from 3.8 that 9Jl~~ ~' is ~ -compac t  in ~-rca(X,  ~) .  On the other 
hand, if 9311~- is c.c. in (:~r-rca(X, ~) ,  ~ ) ,  it follows that 93l ~~ is ~ -compac t  in 
ca (X,~)  and therefore, by 3.8, 9J~(931~~ ~~ This implies that 9)F' is 
~ -compac t  which was to be proved. 

3.10. Remark. Note that 3.7 ((iii)c>(iv)) extends 3.3 from one-point subsets to 
bounded subsets of ~((-rca(X, ~).  

3.11. Theorem. Let (X, Y )  be a regular Hausdorff space and let 9J~{~ be a 
bounded subset of Ar-rca(X, ~-). Then each of the assertions in 3.7 is equivalent to 
one of the following assertions: 

(vii) For every uniformly bounded sequence ~ ( X ,  ~ ) ,  j ~ N ,  converging on 
every K e ~Y~ and for every # e 9~ in/~-measure to a function f, we have limp (f~) = p (f) 
uniformly with respect to p~gJ~, s ~  

(viii) For every sequence of pairwise disjoint sets U~6~ j 6 N ,  we have 
lira y(U~)= 0 uniformly with respect to #egJL 
j e N  

(Note that (viii) is nothing else than (vi)(a), i.e. for regular Hausdorff spaces 
c.c. [c. s. c.] is already implied by (vi)(a).) 

Proof (vii)~(viii) Let U~e~,, j~N,  be a sequence of pairwise disjoint sets. 
Then f~: = lvs , j eN,  is a uniformly bounded sequence of~-measurable functions 
converging pointwise to the zero function, whence by (vii) (with f =  0) lim/~ (f~)= 
~tm/~(U~)= 0 uniformly with respect to kt~gJl. 

10 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 17 



138 P. Ggnssler: 

(viii)~(v)(b) Assume (v)(b) to be wrong. Then there exists So>0 such that 
for every K e • there exists #reg31 so that [#~l(K)> So. This, together with (v)(a) 
(which is implied by (viii)= (vi)(a) as we have seen in 3.7), implies that one can 
construct inductively sequences K,  E2,ff and U,e J,, heN,  and a sequence #,egJ~, 

c c ~ U~=f)ifn+m, supl#l(U~-K,)<2-"eo/4 ' nsN, suchthatK, cU, U~,neN, U~n 
#eTJI 

neN,  and inf I#,(U,)[ > So/4. (This obviously contradicts (viii).) 

Let K'I.'=~b. By assumption there exists #1~gJ~ with 1#1l(K'0>e o. Since 
# 1 ~ S - r c a ( X , ~ ) ,  there exists K 1 E ~  such that K l c / s  1 and ]#l(K0l>eo/2 
(cf. 3.2(.)). By (v)(a) there exists U ~ - -  such that U~ = K1 and sup I/~l(U; - K0 < Co/8. 

Since (X, Y-) is a regular Hausdorff space there exists U leY such that K1 c U 1 
U( c U 1 and therefore 

sup[p[(U;-K1)<So/8 and [#I(U1)I>=[#I(K1)I-I#II(U[-K1)>So/4. 
#e~Ol 

This proves the inductive beginning. Now, assume that K~, U~ and #~ with the 

properties stated above are already constructed for i=  1,. . . ,  n. Let F,+~:= 0 U~ ~ 
n i=1 

and K',+I.'= U Ki. Then Fn+l~J and K',+IEJU. By assumption there exists 

/=1 i #,+legJ~ such that ]#,+l[(K',+0>eo. Hence [#,+ll(F,§ o -  2-iSo/4. Since 
i=1 

#. + 1 e ~ - r c a  (X, if) ,  it follows that there exists K, + 1 c F, + 1 such that 

As K.+ 1 c~ F.+I= ~ and as (X, Y-) is a regular Hausdorff space, we can conclude 
using (v) (a) that there exists U'+ 1 e ~- such that Us + 1 K.  + 1, Us + 1 c~ F. + 1 = ~ and 
sup I#1 (U~+ 1 - K.  + 1) < 2- (" + 1) so/4" Using again that (X, 9--) is a regular Hausdorff 

space it follows that there exists U.+~sY- such that K . + l c  U.+ lc  U.~+lc Us 
In addition, we have 

U~+I~UC=~ for m = l ,  2 , . . . , n ,  supl#[(U~+l-K,+l)<2-("+~)So/4 

and 

]#,+x(V,+ 1)1 > I#,+ 1 (K,+ 01-  I#,+1[ (U,C+ 1 -  K,+I) 

>�89 (So-/~12-/eo/4) -2-("+l'So/4>eo/4. 

Since (v) (a), as we have already remarked, is implied by (viii), we have thus proved 
that (viii) implies (v). 

According to the equivalence of (v) to (ii) (see 3.7), the proof of 3.11 will be 
concluded by showing that 

(ii)~(vii) Assume (vii) to be wrong. Then there exists a uniformly bounded 
sequence f~e ~3,j~N, so that there exists an s o > 0, an infinite subset N o c N and 
measures #,~ 9Jl, n ~ No, with info [ # . ( f ,  - f)[ > s o . W. 1. o. g. we may assume N O = N. 



Compactness and Sequential Compactness in Spaces of Measures 139 

By assumption C.'=sup~ (~xSUp If~(x)[)< ~ .  As (ii) implies (v)(b) (see 3.7). There 

exists K o e ~ such that sup 1~,1 (/(o) < ~o/4 C, hence 
nffN 

] # , ( f , - f ) - # , ( ( f , - f )  1Ko)] < t#.l ( ] f , - f l  1~o)<eo/2 for all nelN 

and therefore !nfl#.((f.-f)1Ko)l > eo/2. 

On the other hand, if we define #: = ~ 2-  " [#m [, it follows that f~ convergences 
rnElN 

to f on K o in #-measure. Now (ii) implies by 2.6 and 1.6 that # [ ~  dominates 
{l#ml]~-:meN} uniformly, hence there exists 3(eo)>0 such that #(A)<J(eo) 
implies I#ml(A)<~o/8C for all meN.  Taking 6:=min(eo/4b~,6(eo)) (b~:=  
sup II~ll < oo), we obtain for all n > n o (K0, r that I#m[ (Kor~ { I f , - f l  > 6}) < eo/8 C 

for every meN,  which implies for all n>no(Ko, (5), neN,  that 

[#, ( ( f , - f )  1Ko)[ < I~,1 (IL - f ]  1Ko~{1r162 =<~) 

+ [#.[ ([f.--fl 1Ko~1r162 8b~+ 2 Ceo/8 C<=eo/2. 

This contradicts [kt, ( ( f , - f )  1Ko) I > eo/2 , heN.  

3.12. Theorem. Let (X, J-) be a completely regular Hausdorff space and let 
~tJ~lY be a bounded subset of • - rca(X,  if).  Then each of the preceeding assertions 
(i)-(viii) is equivalent to the following assertion: 

(ix) For every uniformly bounded sequence of continuous functions f~, j e N ,  
converging to zero at every point x e X ,  we have tim # ( f j ) = 0  uniformly with respect 
to #efOl. 

Proof. (vii)~(ix) Obvious. 

(ix) c>(viii) Suppose (viii) to be wrong. Then there exists a sequence of pairwise 
disjoint sets Uje~-', j e N ,  so that there exists t o > 0, an infinite subset N o c N and 
/~j e 9)l with inf [#j (Uj)[ > t o . W. 1. o. g. we may assume N O = N. As #j e xf'-rca (X, ~,~), 

j e ~ o  

there exists Kj c U s such that I#jl (Uj -  KS) < eo/4. Therefore I#s(Ks) l > r#s(Us) l 
- [#s[ (U~- Ks) > 3 Eo/4 for e v e r y j e N .  Since (X, ~-) is completely regular, for every 
xeK~ there exists a continuous function f 7  with 0 < f T <  1, fT(x)> 1 - e j  and 
fjx[ U j -0 ,  where 0 < e s <  1 is chosen so that Igs(Kj)(1-es)[> 3eo/4 and ~sl#sl(/s) 
< %/4. As each fj~, xeKs,  is continuous, there exist open neighborhoods Vj x of x 
contained in Uj such that f~] Vf > 1 -  ~s' Since Kj is compact, finitely many of 
them, say V71, ... , VT", will cover Kj. Put fj." = max f[i .  Then fj  is continuous, 

l < i < n  ~ 

0 < f~_< 1, f j IKj  > 1 - ej and fj[ Uj -- O. It follows that ~im N fj  (x) = 0 for any x e X and 

I#j(fj)l--> (1 -~s)[pj(Kj)[- I#j[ (Us- Ks)-ej  I#sl (Ks) > %/4" This obviously contra- 
dicts (ix). 

3.13. Remark. In order to give a most unified presentation of compactness 
criterions, 3.7, 3.11 and 3.12 are stated in the present form, although the reader 
will have realized that in some of the implications proved above there was made 
10" 
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no use of regularity of (X, Y-) resp. boundedness of 9J/Iotas it is summarized in the 
following table: 

~01 arbitrary 9Jl bounded 

(X, 3") 3.7 3.11 3.12 3.12 

Hausdorff space (iv) c>(iii) (vii) t>(viii) (vii) c>(ix) (ii) t>(vii) 
(iii)~(v) 
(viii) = (vi) (a) t> (v)(a) 
(vi)(b) ~>(v)(b) 

Regular Hausdorff space (viii) E> (v)(b) 

Completely regular Hausdorff space (ix) c>(viii) 

If (X, ~ )  is an analytical space (i. e. regular Hausdorff space and continuous 
image of a Polish space), then every #sca(X,  ~-) is ~- regular  (see [8]). As in 
addition analytical spaces are normal (see [8]), we obtain from 3.7, 3.11 and 3.12 
the following corollary: 

3.14. Corollary. Let (X, ~') be an analytical space. Then for bounded subsets 
9~]~ of ca(X, ~,~) the assertions (i)-(ix) are all equivalent. 

Although we will not consider the weak topology ~-~, we want to mention one 
special case where, for non-negative Jg-regular measures ~-convergence is 
implied by J~-convergence. ~ (in the sense of [-16b]) is defined as the coarsest 
topology in ca+ (X, ~ )  for which every map # ~ #(f) ,  where f :  X ~ IR is bounded 
and upper semi-continuous, is upper semi-continuous. If ~ denotes as before 
the Borel sets in X, then ~ is clearly coarser than ~ (cf. 1.21), hence ~-conver-  
gence implies ~-~-convergence. The following Lemma goes into the converse 
direction: 

3.15. Lemma. Let (X, Y )  be a Hausdorff space and let # , ~ - r c a +  (X, ~-), nEN, 
be bounded and uniformly dominated by a finite non-negative measure. Then 
(#,),~<--* #o (~)  implies (#,),~N ~ #o (~-~). 

Proof As {#,l~-: heN} is bounded and uniformly dominated, 2.6 implies 
that {#, I f f : n  e N} is e. s. c. in (ca (X, ~ ) ,  ~ ) .  Hence to every subsequence N o = N 
there exists a further subsequence N I = N  o such that (#,),~NI~pNI(~) with 
#N eW-rca(X, ~ )  (see 3.8), whence (#,),~N1-~ #~,(~-~)- Since (W-rca+ (X, ~-), ~ )  
is a Hausdorff space (see [16b], Theorem 11.2), we obtain #N =#o.  This implies 
that the whole sequence (#,),~N is ~-convergent  to #o- 

(If (X, 3-') is a regular Hausdorff space, 3.15 holds for z-smooth rather than 
tight measures applying [16 b], Theorem 11.2.) 

4. On the Theorems of Dieudonn6 and Wells, Jr. 

In this section we will give an application of our previous results to the problem 
of giving sufficient conditions on a subfamily ~ of the family ~- of open sets in a 
Hausdorffspace (X, ~-) to ensure that convergence of a sequence #, ~ ~ - r c a  (X, ~) ,  
n~N, on ~ implies its convergence on the a-field ~ of Borel sets in X. Sufficient 
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conditions of this type were studied by Dieudonn6 and Grothendieck with cg = j -  
([3], Proposition 8, p. 37 and [6], p. 150) for compact metric resp. locally compact 
spaces ( X , g )  and recently by Wells, jr. ([17], Theorem 3, p. 125) for compact 
spaces and families cg which are strictly smaller than f ,  in general. TopsCe ob- 
tained in [16a], Corollary 3, p. 28, independently and with different methods a 
result which extends, for non-negative tight measures, Dieudonn6's Theorem to 
regular Hausdorff spaces. 

As we shall see below the techniques presented by Wells, jr. can be extended to 
yield together with an application of our compactness criterions the main Theo- 
rem 4.10 which covers the results just cited. 

4.1. Definition. Let cg be a family of open sets in a Hausdorff space (X, Y-). We 
call cg a ~[J00-l-converging class (for 2((-rca(X, ~))  provided every sequence 
# ,~S-rca(X,~-) ,  n~N, which converges on cg (i.e. lim#,(C) exists in IR for 

rtEN 
every CEcg) converges for the topology @ [Joo]. 

cg is called a bounding class (for Y-rca(X, ~))  provided every sequence 
# , sS- rca (X,~- ) ,  heN,  for which sup I#,(C)[<oe for every C ~ ,  is bounded. 

h e n  

4.2. Remark. It follows from 2.15 that cg is a Joo-Converging class iff cg is a 
~-converging class. 

IfC~ is a @-converging class, it follows from 1.10 and 3.8 that for every sequence 
#, ~ S-rca(X,  Y) which converges on cg there exists a measure #o e S - r c a  (X, o~) 
such that lim #, (A) = #o (A) for every Borel set A; i. e.: If cg is a @-converging class, 

nffN 

then for every sequence #,~ S - r ca  (X, ~) ,  n E N, which converges on E, #o (C):= 
lim #,(C), C~E, is the trace on cg of a S-regular  measure #o[~- to which (#,) ,~ 
nE~'q 
converges (~ ) .  

4.3. Lemma. Let (X, g-) be a regular Hausdorff space and let cg be a family of 
open sets in X satisfying 

(S) I f  K ~ S ,  U ~ Y, and K c U, there exists C ~ cg such that K ~ C ~ U. 

Then every bounded sequence #,eS-rca(X,~-) ,  nsN, which converges on 
cg is @-convergent /f (viii) of 3.11 holds with ~JJl[~= {#,1~: nEN}. 

Proof We remark first that any two S-regular measures which coincide on 
J (or S )  are identical (cf. 3.3 and 3.5). By (S) it follows that cg separates the elements 
of S-rca(X,  Y), hence by 2.3 (applied with S-rca(X,  ~ )  instead of ca(X, ~))  
coincides with ~ on every c.c. subset 9J~]o~ of (S-rca(X, ~) ,  ~ )  and any 
sequence #ncg)t which converges on cg does also converge on ~ Therefore it 
remains to show that {#,1~: ncN} is c.c. in (S-rca(X, ~) ,  @). As by 3.11 (viii) 
with gJ~[~= {#, l~:  neN} implies that {#,[~:  n~N} is c.c. in (ca(X, ~) ,  ~ ) ,  it 
follows from 3.9 that {#,[~:  neN} is c.c. in (S-rca(X, o~), @). 

The following lemma generalizes Lemma 1 in [17] from compact spaces to 
arbitrary Hausdorff spaces. 

4.4. Lemma (cf. [17], Lemma 1, p. 125). Let (X, ~-) be a Hausdorff space and 
suppose that cg is a family of open sets in X fulfilling the following conditions: 

(1) cg is closed with respect to finite intersections. 

(2) C~, C26Cg and C~ c~ C~= 0 implies C~ ~ C2~Cg. 
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(3) I f  F e J ,  U e Y ,  and F c U, there exists C e Cg such that F c C c U. 

(4) I f  C', and C',', neN,  are sequences from cg such that 

. . . . . .  r '  o r '  C'2cCl, C1c7. C 2 ~ . . . c 2 C n C 7 _ . . . ~ .  ~ n _ l ~ ' ' ' ~  

then there exists Coe~ interpolating the given sequence, i.e. C '2cCocC'  n for 
every neN. 

Let and suppose that (L) CJ c C: = 0 for each 
i*n 

Then for any 2 e ~ - r c a +  (X, ~ )  and every c~>0 there exists an infinite subset 
N o o n  and a DNoeCg such that ~ C~CD~o and 2(DNo)<6. 

n~No 

Proof Let c5 > 0 be given and let F. '= C2 i-1 . Then F e J  =, F C2,, hence 
i= 

_ _  r (3) applied with U. ' -  C2, allows us to pick for every n~N a set D 2 , e ~  such that 
F c D 2. c C~, for every n ~ N. By this we obtain the following sequence: 

C1 c ( C 1  k.) C 3 ) c ( C 1  k-. J C3 k.-) C 5 ) c . . .  =(D6nD4~D2)c(D4&D2)cD2, 

where, according to (1) and (2), each member occuring within the brackets belongs 
to ~f. From now on the proof follows exactly the patterns as in [17], p. 126, and 
we will not repeat it here. 

4.5. Theorem. (I) Let (X, Y-) be a regular Hausdorff space and suppose that 
is a family of open sets in X fulfilling the conditions (1), (3) and (4) of 4.4 and 

(2') C1, C 2 ~  and C1~ C~=0 implies Ci u C2e~. 

Then every bounded sequence # ~ S - r c a ( X ,  ~-), neN,  which converges on 
converges for the topology Y-~. 

(II) Let (X, Y-) be a normal Hausdorff space and suppose that ~ is a family of 
open sets in X fulfilling the conditions (1), (2) and (4) of 4.4 and 

(3') I f  F~Y =, U~J-, and F c U ,  there exists C ~  such that F c C c C ~ c U .  
Then every bounded sequence #,e~r-rca(X,Y) ,  neN, which converges on 
converges for the topology Y~. 

Proof (a) Let #, e ~ - r c a  (X, ~ ) ,  n s N, be a bounded sequence which converges 
on ~. Assume that, for some A0e@, (#,,(Ao))n~ does not converge. Then there 
exists % > 0  and for every n e N  a m,~N such that I#,(Ao)-#,+m,(Ao)l>e o. 
Therefore v~.'= # , - # ,  +m~, n ~N, defines a bounded sequence of ~- regular  meas- 
ures which converges to zero on ~f, but does not converge to zero on ~ The 
proof of (I) and (II) will be concluded by showing that every bounded sequence 
of ~- regular  measures, say (v,),,~, which converges to zero on ~ converges to 
zero on ~ .  We remark that, if (v,),~ N is ~-convergent ,  it follows already from (S) 
in 4.3 that the limiting measure, being ~- regular  by 3.8, must be identically zero. 

(b) Assume, on the contrary, that (v,) ,~ is not ~-convergent .  Then, by 4.3, 
(viii) withgJ~l~= {vn[o~: n~N} must be wrong, i.e. there exists a sequence of pair- 
wise disjoint sets UieY-,jeN, so that there exists e o >0, an infinite subset N o c N  
and a subsequence (v~)j~ o of (v,) ,~ with inflv, (Uj)I> %. W.l.o.g. we may 

j ~ l  o 
assume that }nf Iv~(U~)[ > %. Since v~e Je~-rca (X, ~'), there exists K ~  Jr ,  K~ ~ U~, 
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such that [vjt(Uj- K j)< [vj(U)[-e o- As (X, -Y-) is a regular Hausdorff space, there 
exist Uj, U/e  J -  with K j c  U jc  ~jU"c Uj, j e N .  Applying (3)with F:=Kj,__ U:= Uj, 
there exists Cjeif such that Kjc Cjc U/. It follows that C c j  C~,cj Uj 'c  Uj, hence 
( ~ Ci)Cc~ C~=~) for each h e N ;  furthermore, Ivj(Cj)l->_ Iv:(g~)]-Ivj l (uj-gj)>8o 

i # n  

for every j a N .  
If we now apply 4.4 with 2 :=  l vii, N -  { 1 } instead of N, and 3 = eo/3, we obtain 

an infinite set N~ c N - { 1 } and a D~I a if such that D~ ~ ~ C i and I val (D~) < ~o/3. 
ieN1 

--7 Applying (3) [(3')] with F. '=( ~ C~) ~ and U:=  C a, we obtain Dla i f  such that 
ieN~ 

F c D t c U IF c D~ c D ] c  U]. Put C~:  = D~ c~ Da ; then, by (1), CN eif, C~ ~ ~) C i 
ieN1 

c C c c and I vml (C~) <~o/3. Furthermore, C~ c~ C~ = 0 [ ~ c~ C~ = 0] and therefore it 
follows by (2') [(2)] that C~, w C~eif. Following the inductive process described 
in [17], p. 127, one obtains a subsequence (C,,)i~N of ( C , ) ~  such that (v~),~ N does 
not converge to zero on some Coeif  which contradicts our hypothesis that 
(v,) ,~ converges to zero on every member of if. 

4.6. Remark. If (X, 5") is a normal Hausdorff space, (1), (2), (3') and (4) in 4.5 
are fulfilled with if = J r " =  { U e S-: U = int (U~)}, the family of the so-called regular 
open sets in X. It is easy to see that ~ = {int F: F e J }  and that J r  is strictly smaller 
than "3--, in general. 

Proof. We remark first that for any two sets A and B we have 

(,) int (A w B) c (int A ~ B ~) c~ (A c ~ int B). 

(1) Ua, U2s~- ~ implies Ulc~ U2e:-  and Ulc~ U2cint(Ulc~ U2)C; conversely: 
int (U, c~ U2)C cint(U[ c~ U~)= int(U~)c~ int(U~)= Ul C~ U 2 . 

(2) Let U1, U2e~7, U[c~U~={~, Then UlwU2~J,, UlWU2cint(UlwUj;  
conversely by (*): int (U 1 u U 2)c = int (U~ w U~) c (int (U i) w U~) c~ (U[ u int (U~)) = 

(g~ u~)~(u;~ u2)= u1u us. 
(Y) Since (X, 3-) is a normal Hausdorff space, FaJ , ,  UeY, and F c U ,  

implies that there exists F e J  with F c  V c  VCc U. From this it follows that 
Y c  V~int(VC)c V~c U and, furthermore, F c  Vcint(VC)c(int(VC))cc VCc U, 
where int(V~)e~. 

(4) U ( ' c U y c . . . c U / ( c . . . c U / , c U / ~ _ i c . . . c U ~ c U  ~ with U/, Ui"~J[,. i~N, 
is interpolated by U:=in t (~)  U/')~e~/(or by U . '= in t (~  U/)~eg). 

i a ~  JaN 

So far we have not considered the boundedness problem, i.e., given any 
sequence #, ~ gf-rca(X, if) ,  neN,  for which sup I~.(c)l < oo for every Ceif ,  under 

ttaN 

what conditions on if does it follow that (# , ) ,~  is bounded. 
Our aim is to prove that the families if considered in 4.5 are also bounding 

classes. 
Let us start with the following basic result due to Dieudonn6: 

4.7. Lemma ([3], Proposition 9, p. 37). I f  (X, 5-) is a compact Hausdorff space, 
then 5" is a bounding class (for gf-rca(X, ,~)). 



144 P. G~inssler: 

4.8. Corollary. Let (X, 5-) be a Hausdorff space, # ,eY-rca(X,  ~ ) ,  heN,  a 
sequence of measures for which sup I#.(U)l < 0o for every U ~J .  I f  {1#.1 [ : :  heN} 

n~N 

is uniformly tight, then ( # , ) ~  is bounded. 

Proof Let K~XU be arbitrary. Then 

sup I#.(U c~ K)I < sup [#.(U)I + sup I#.(U n K)I < oe 
neN n~N n~N 

for every Ue~.  Let ~ r  denote the Borel sets in (K, 5"); then # , l~ r  s ~f~-rca(K, ~r)  
and, by 4.7, it follows that sup I#.1(1)<oo, whence the uniform tightness of 

n~N 

{1#.11o*: heN} implies the assertion. 

4.9. Lemma (cf. [17], Corollary, p. 128). Under the conditions of 4.5 the families 
cg considered there are also bounding classes, i.e. any sequence #,~ sC-rca(X, ~ ) ,  
heN,  with sup I#,(C)l < oe for every CeCg, is bounded. 

n~hXl 

Proof If (#,),~ N is not bounded, there exists an infinite subset N o c N such that 
~ �89 

l imll#,ll=oe. W.l.o.g. we may assume N o = N .  Let #,:=#,/ll#.ll ; then 
n~go  

!im/~,(C)=0 for every CeCg while maintaining sup II/~.ll=oe. We shall show 
n~N 

that this is impossible. It follows from the proof of 4.5 (part (b)) that (/~,)n~ fulfills 
(viii) and hence (v) which is equivalent to (iii) (see 3.13). According to (iii) there 
exists for every U e : -  and e > 0  a K e ~  such that sup I~ , I (U-K)<e.  Applying 

n~N 

(3') [(3)] there exists C s cg with K c C ~ U, whence sup [/~, (U) I < sup I/~, (C) I + 
h e n  h e n  

sup I /~ , I (U-K)< ~ for every U e J .  Since by (v)(b) {1~.11:: heN} is uniformly 
n~N 

tight, 4.8 yields the desired contradiction. 

With 4.9 we obtain 

4.10. Theorem. Under the conditions of 4.5, the families cg considered there are 
both 3-~-converging classes and bounding classes. 

5. Extensions 

After I had obtained 4.5 it was first discovered by Pfanzagl that for bounded 
sequences #.~ •-rca (X, ~ ) ,  n~N, Dieudonn6's Theorem (with cg = j )  could be 
extended even to arbitrary Hausdorff spaces by use of the following lemma: 

5.1. Lemma ([14c], Lemma 1). Let (X, o ~)  be a measurable space, A.~ ~,, neN, 
a sequence of pairwise disjoint sets and let p,~ca(X, ~-), heN,  be a sequence of 
measures such that lim #, (Am) = 0 for every m ~ N and !nfl#, (A,)] > 0. Then there 

n~N 

exists an i,finite subset N o c N such that in f  o1#. ( 2 A,,)[> 0. 
msNo 

Once becoming aware of 5.1 the main result in [14c] can be proved applying 
5.1 and the compactness criterions of Section 3 in rather the same way as 4.5 and 
4.9. The final proof given in [14c] for 5.2 below is more comprehensive insofar as 
the case of bounded sequences is not handled separately. 

5.2. Theorem. Let (X, J )  be a Hausdorff space and suppose that cg is a family 
of open sets in X fulfilling (S) of 4.3 and 
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(4') Ci~(~, ieN, implies U Ci ~c~" 

Then cg is a J-~-converging class. 

Proof As in the proof of 4.5 it suffices to show that every sequence of Y -  
regular measures which converges to zero on cg converges to zero on ~. 

(a) We show first that every bounded sequence of S- regular  measures, say 
(v,) ,~,  which converges to zero on cg is c.s.c, in (Jf'-rca(X, ~ ) ,  ~ ) .  We remark 
that, if this holds true, then every subsequence of (v,) ,~ contains a further sub- 
sequence converging to the Uf-regular) measure identically zero on ~ whence 
the whole sequence (v,) ,~ converges to zero on 

(b) If a bounded sequence of J:-regular measures fails to be c.s.c., then, by 
3.7, either (vi)(a) is wrong or, if (vi)(a) holds true, then (vi)(b) is wrong. Applying 
5.1 we will show that both assumptions contradict the assumed convergence of 
(v.),~ N to zero on cg. 

(c) If (vi)(a) is wrong, there exists a sequence of pairwise disjoint sets U~J, ,  
j s N ,  and a subsequence of (v,),~N, w.l.o.g, still called (v,),~N, such that 
!nf I v, (U,)I > 8o > 0. Since v, ~ cg(-rca (X, ~ ) ,  n e N, there exists K,  e S ,  K,  c U,, such 

that Iv, l(U,-K,)<8o/4;hence ]v,(K.)[ > I v, (U,)I- Jv, I (U,-K,)> 3 8o/4 for all n~N. 
Applying (S) there exists C,e  :g such that K,  c C, c U,, n e N, the C, being disjoint 
with [v,(C,)l>lv,,(K.)l-lv, l(U,-K,)>8o/2 for all n~N. Therefore 5.1 yields an 
infinite subset N o c N  such that inflv,( Z Ci)l>0. Hence (v,( 2 Ci)),~ does not 

n~No i~No i~No 
converge to zero which is a contradiction since, by (4'), ~ Ci~Cg. Therefore (vi)(a) 
holds true. ~ o  

(d) If (vi)(b) would be wrong, there would exist a sequence of pairwise disjoint 
sets Kje  ~ ,  j e  N, and a subsequence of (v,),~, w. 1. o. g. still called (v,),~, such that 
inf Iv, (K,)I > 8 0 > 0. As (vi)(a) implies (v)(a) (see 3.13) and as (v,),~ N converges to 
n~N 

zero on cg, it follows from (S) that (v,),~ N converges to zero on X. Hence again 5.1 
can be applied to obtain an infinite subset N o c N such that ~:= inf Iv,( 2 K .)[ > 0. 

n~No jeNo J 
Applying (vi)(a) and (S) we obtain CjeC~, Cj=Kj,  such that sup Iv, I (C~-Kj)<  

n~N 
2-J-~6 and therefore sup lv, l( U C ~ - Z  Kj)<6/2, i.e. inflv,( ~ C~)1>6/2, 

n~N jeNo jeN0 n~No j~No 

which again contradicts the assumed convergence of (v,),~ N to zero on c~. This 
concludes the proof of 5.2 for bounded sequences v, e ~ - r c a  (X, ~) ,  n e N. 

(e) It remains to show that any sequence of 2r measures which con- 
verges to zero on cg is bounded. 

This follows from the following analogon to 4.9, generalizing [3], Proposition 9, 
p. 37, from compact spaces to arbitrary Hausdorff spaces, and by this the proof 
of 5.2 will be concluded. 

5.3. Lemma. Let (X, ~-) be a Hausdorff space and suppose that ~ is a family of 
open sets in X fulfilling (S) of 4.3 and (4') of 5.2. Then cg is a bounding class. 

Proof Let /~,e~r-rca(X,~-), n~N, be a sequence of measures for which 
sup [#n(C)l < O~ for every C~Cg. If (# , ) ,~  is not bounded, we arrive at /~,~SU- 
n~N 

rca(X,~-) with l im/~,(C)=0 for every CeCg while maintaining sup H/~,II =Go 
n~N n~N 
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(cf. 4.9). We shall show that this leads to a contradiction. As pointed out in proving 
5.2(c) and (d), it follows from (S) and (4') that (vi) holds true for {/],1•: n~N}. 
Since (vi) implies (v) which is equivalent to (iii) (see 3.13), we obtain for every 
U~Y- and e > 0  a K e ~  such that sup IFt[(U-K)<e. Applying (S) there exists 

h e n  

C~cg with K c C c U, whence sup I~.(U)l_-< sup I~.(C)l + sup [/~,l ( U -  K) < or. As 
n~N h e n  h e n  

{t~,[t~-: heN} is uniformly tight, 4.8 yields the desired contradiction. 
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