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Compactness and Sequential Compactness
in Spaces of Measures

PETER GANSSLER*

1. Introduction

This paper is concerned with several characterizations of conditionally com-
pact and conditionally sequentially compact subsets of the space ca(X, #)
endowed with the topology 7 of set-wise convergence on the o-field & in X. In
contrast to the usual way of considering first compactness in the 7, =0 (ca(X, ),
ca(X, #)*)-topology ([5], IV.9.1 and 9.2), we start proving directly and in a rather
self-contained way compactness criterions in the Z,-topology (2.6). The main
advantage of the approach presented in Section 2 is its simplicity, e.g. no resort
on the Eberlein-Smulian-Theorem is necessary in order to link compactness with
sequential compactness. In the same simple way we establish the connection of
Tz~ with - resp. Jy-compactness (2.11-2.19) which yields immediately the well
known compactness criterions with respect to the latter topology. In Section 3
we consider the case where X =(X, ") is a topological space and where & are
the Borel sets in X. 3.7-3.13 are concerned with compactness results first studied
by Grothendieck ([6], Théoréme 2, (1)-(4), p.146) in the case of Radon measures
on locally compact basic spaces (X, 7). For A -regular measures (Definition 3.1)
3.7 generalizes in particular Grothendieck’s Criterion (4) to Hausdorff spaces and
3.11 shows that the equivalence of the statements (1), (3) and (4) holds true for
regular Hausdorff spaces. Finally 3.12 proves the equivalence of (1) to (2) for
completely regular Hausdorff basic spaces (X, 7). As a Corollary (3.14) we obtain
for analytical spaces (X, ) several characterizations for J-conditionally com-
pact resp. Jz-conditionally sequentially compact subsets of ca(X, %), where the
equivalence of J-conditional compactness to (iii) resp. (iv) may be considered
as an analogon to Prohorov’s well known criterion ([15], Theorem 1.12, p.170).

A further application centers around Dieudonné’s Theorem ([3], Proposi-
tions 8 and 9, p.37) and its extension due to Wells, jr. ([17], Theorem 3, p.125
and the coroliary on p.128). The results of Section 3 enable us to generalize
Dieudonné’s Theorem from compact metric spaces to regular Hausdorff spaces
and to extend the theorem of Wells, jr. from compact spaces to normal Hausdorff
spaces. Both is established in 4.5 together with 4.9 and yields the main Theorem 4.10
of Section 4.

Once 4.5 was proved it was first discovered by Pfanzagl that Dieudonné’s
Theorem could be even extended to arbitrary Hausdorff spaces (see the main
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theorem in [14c]). In Section 5 we derive this result using the compactness cri-
terions of Section 3 together with Lemma 1 in [14c¢]. Finally we prove in 5.3 a
boundedness result which generalizes [3], Proposition 9, from compact spaces
to arbitrary Hausdorff spaces.

It should be emphasized that besides the techniques going back to Dieudonné
and Grothendieck we resort to the concept of a sufficient sub-o-field %, of # for
a given sequence of measures (u,| %), Which is useful insofar as convergence of
a bounded sequence (u,|%),.n o0 F, implies its convergence on & (1.24). It
turns out that for the present case this is the proper tool to link compactness with
sequential compactness (see the proof of the equivalence of (i) to (ii) in 2.6).

Finally it should be remarked that the compactness criterions studied here
play an essential role in statistical theory; the validity of important theorems in
this field are limited by compactness assumptions on the underlying family of
distributions (cf. [1], Section 6, [11], p. 146, [12], Lemma 4, [14a] and the literature
cited there).

Let X be an arbitrary non-void set, # a o-field of subsets of X and ca(X, &)
be the family of all countably additive real-valued set functions defined on % It
is well known (see [5], I11.4.5) that every ueca(X, #) is a bounded set function
and (see [ 5], [11.4.7), given ueca(X, #), the set function |u) defined by

W) =sup Y [k(A),  AeF,

i

(where the supremum is taken over all finite sequences of disjoint sets A,€ #
with 4,< A4) is a non-negative bounded and countably additive set function on &
which is equal to pu if x itself is non-negative, i.e. if p(4)=0 for all Ac £ With
ca (X, #) we denote the space of all non-negative peca(X, ). Besides ca(X, #)
we occasionally consider the space ba(X, #) of all bounded additive real-valued
set functions on % For ueba(X, %) the set function |u| defined as above is a
non-negative bounded and additive set function on & (see [5], 111. 1.5 and 1.6).
Hence [{ull:=[u((X), ueba(X, F), defines a norm in ba(X, #) and endowed with
this norm (ba (X, #), ||} resp. (ca(X, #), |-|) become Banach spaces. Elements
of ca(X, #)[ba(X, #)] are called measures [contents] and if we write u|F it is
to indicate that the measure [content] u is to be considered as a set function on
Z. Throughout IM=IR|F denotes subsets of ca (X, F#).

IN[R] denotes the set of positive integers [real numbers], 4 the complement
ofaset Ain X,i.e. A:= X — A. We write A° and int 4 for the closure resp. interior
of a set 4 in a topological space.

Let us list some well known results which are basic for the following sections.
If no special reference is given, the proofs may be found in [5].

1.1. Definition. M|F is said to be dominated by a non-negative measure
MF IR F <A F)iff for every eI A(A)=0 implies u(4)=0. If M| F <A{F and
if |u[(4)=0 for all ueIi implies 1(A4)=0, then MM|F and 1|F are called equivalent
(M| F ~ A F).

1.2. Criterion. M| F <A F iff for every ueM and for each £>0 there exists
oy, €)>0 such that A(A)<d(u, &) implies |u(A)| <e.
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1.3. Definition. Given 9t|.# we denote by | the set of all Aeca (X, F) of

the form A=) 2" l'u”l with p,eM, neN, and we write [I| for the set
{]MI #Ewt} nelN 1+ ”I”"n“

1.4. Proposition. If MM|F is countable, there exists AeM* such that ||~ 1| Z.

1.5. Definition. 9t|# is said to be uniformly dominated by ieca (X, #)
M| F LA F) iff for each ¢>0 there exists d(g)> 0 such that A(4)<d(e) implies
sug [u(d)|<e.
ue

1.6. Criterion. M|F <€A F iff |M|<KA|F.

1.7. Definition. M|.# is called equicontinuous iff hm sup| u(4,)1=0 for each
sequence (A, )10, A,eF, keN.

1.8. Remark. If M|.F <KA|Z, then M| F is equicontinuous. Using 2.6 below
together with a result of Brooks [2] we obtain a simple proof for the converse
statement (see 2.7). This was first proved by Dubrovski ([4], p. 738, Theorem 2).

1.9. Theorem (Vitali-Hahn-Saks). If for a sequence p,eca(X, F),neN, (i1,(4)),cx
converges in R for every Ae %, then {u,|F : neIN} is uniformly dominated by every
dominating (non-negative ) measure.

1.10. (Nikodym). If for a sequence y,eca(X, F), neN, (1,(A4)),cn converges in
R for every Ac#, then the set function p,].%# defined by p,(A): =1i1£ U A), Ae %,

is a measure and the set {un|97 :nelN U {0}} is uniformly dominated by every
dominating (non-negative) measure.

1.11. Lemma. Let M| F ={u,|F : neN} be equicontinuous and suppose that
& < F is a subsystem of &, containing X, which is closed under finite intersections
and which generates &. Then convergence of (1), 00 & (i.e. (un (S))uen COnVerges
inR for every S€ &) implies convergence of (1,),. 01 F. Conversely, if convergence
of (Upnen 0N & implies its convergence on 6 (&) (the o-field generated by & ), it
follows from 1.9 that {p,|0(F): nelN} is equicontinuous.

Proof. Let @:={AeZF: (1,(A)),cn converges in R}. By assumption ¥ <.
Obviously Z is closed under disjoint unions and proper differences. As & is
closed under finite intersections it follows that the field generated by & is con-
tained in %. We shall show below that 9 is, furthermore, a monotone system
(i.e. T and | closed). Since a monotone system containing a field is a o-field, we
obtain ¥ =

Let (A )y nTA€F with A,€9, keN. Then B,:=A— A4, . By equicontinuity
there exists for every >0 a k(e)eN such that |u, (B, )| <¢/3 for all neN. Hence

“‘ln (A) ™ (A)| = |:un (Bk(e)) + U, (Ak(s)) - Hm (Bk(E)) - Mo (Ak(ﬂ))|
Sy (Age) = o (Ag )| 1, B o)+ o Byl =e

for all sufficiently large n, meIN. This implies A 2. As @ is closed with respect
to proper differences, it follows that it is also | closed.
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1.12. Theorem (Nikodym). Let MM cca(X, F). If {u(A): neW} is bounded for
every AeZ, then {u(A): ueM, AeF} is bounded, too. Therefore {|u|(4): ueI,
AeF} is bounded.

Proof. See [5], IV.9.8. The second assertion follows from the Hahn-Decom-
position-Theorem ([5], 111.4.10).

1.13. Definition. 9 cca(X, %) is called bounded iff M is bounded as a subset
of (ca(X, Z), |- |),i.e.iff byy: —sup H,u||—sup],u|(X)<oo A sequence y,eca(X, #),

nelN, is called bounded iff the s set {,u,,[,/ ne]N } is bounded in (ca (X, %), ||*]).

As to the topological concepts and theorems used in later sections we should
mention the following:

1.14. Definition. Let (X, 7") be a Hausdorff space and X, be a subset of X.

(i) X, is called conditionally sequentially compact (c.s.c.) in (X, ) iff each
sequence in X, contains a subsequence which converges in X.

(i) X, is called sequentially compact (s.c.) in (X, J) iff each sequence in X,
contains a subsequence which converges in X,.

(iif) X, is called conditionally compact (c.c.) in (X, ) iff the closure of X, in
(X, 7)) is compact.

Relativized topologies on subsets X, of a topological space (X, .7) will be

usually denoted by the same letter, i.e. we write (X,,, 7) (instead of (X,, 7 N X))
for the topological subspace X, of (X, 7).

1.15. Lemma. Let (X, 7) be a compact Hausdorff space and X, < X, < X. Then
Xy isc.c.in(X,, 7) iff X5<=X, (where X§, denotes the closure of X in (X, T)).

Proof. We remark that the closure of X, in (X, ) is X{n X|.
= If X§n X, is compact in (X,,.9), it is also compact and therefore closed
in (X, 7). As Xy, X§n X, this implies X{ < X§n X, whence X{< X, .

<1 X{< X, implies X§n X, =X which is closed and therefore compact in
(X, 7), hence X{n X, is compact in (X, 7).

1.16. Remark. Any subset of a c.s.c. [c.c.] set ig c.s.c. [c.c.] again.

1.17. Theorem {[9], Theorem 8, p.141). Let f be a continuous function carrying
the compact Hausdorff space (X, T) onto the Hausdorff space (Y, 7). Then (Y, T)
is compact. If f is 1-1, then it is a homeomorphism.

1.18. Corollary. Let (X, ) be a compact Hausdorff space and ' < a Haus-
dorff topology. Then 7' =7.

1.19. Lemma. Let 9] < 7, be Hausdorff topologies on X. Then any set X, X
which is c.c. in (X, 7,) is also c.c. in (X, F]) and X{=X§ (where X§ denotes the
I, -closure of X in (X, 7,), i=1, 2). Furthermore, F] coincides with 7, on X§.

Proof. As 9,<9,,,-compactness of X§ implies Z;-compactness. Hence
X is Fi-closed and therefore X§ < X2 Hence X§ is 7 -compact. As I, =7,
implies X< X§', we obtain X¢' =X By 1.18, 7] coincides with 7, on X§.
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Our main interest in the following sections centers around compactness and
sequential compactness in ca(X, #) endowed with special topologies. One of
them will be the topology of set-wise convergence on Z. In this connection it
turns out that the concept of a sub-o-field #, of # which is sufficient for a family
M|F in ca(X, F) is a very useful tool.

1.20. Definition. Let 7, denote the topology in ca(X, %) of set-wise con-
vergence on %, i.e. 7 is the weakest topology for which all mappings u— u(A),
Ae %, are continuous. In other words: If peca(X, #) and if (up)s 5 is @ net in
ca(X, #), then (ug)s.p I5-converges to ﬂ((ﬂﬂ)ﬁes—’ll(@‘)) iff (,Uﬁ(A))ﬂeB_’H(A)
for all Ae #.

1.21. Remark. If B =B (X, #) denotes the space of all bounded #-measurable
functions on X, then 7, coincides on every bounded Mcca(X, &) with the
topology Z, being the coarsest topology rendering all mappings u— u(f), fe®B,
continuous. (u(f) denotes the integral of f with respect to ) Furthermore, 7
coincides with 7 on ca (X, %) but it can be shown by examples that on ca(X, %)
T is strictly coarser than , in general.

For every peca(X, %) and sub-o-field %, of # we denote by u”°(1,), AeZ,
the conditional expectation of the indicator function 1, of the set Ae&# with
respect to p, given %, i.e. u”°(1,) is defined to be the u-equivalence class of all
F,-measurable functions fulfilling (4 4o)=p(p™(1,)1,,) for every A,e%,.
The existence of u*°(1,) for every peca(X, #) and Ae F follows from the Radon-
Nikodym Theorem ([7], p. 128 together with remark (4) on p.131).

1.22. Definition. A sub-o-field &, of & is called sufficient for M|F cca(X, F)

iff for every Ae % there exists ¢ € ﬂ u7o(1)).
neBt

1.23. Lemma. If M|F is countable, there exists a countably generated sub-c-
field &, of & which is sufficient for M| F.

Proof. Let M|F = {u,|F: neN}. Then A:= ) 27" ﬂt—
lo’ nelN 1+ “ ”

7 /1'{/ (the class of Radon-Nikodym derivatives of p,|# with respect

to A|%), neN, and let %, be the o-field generated by {p,: neIN} (i.e. the smallest
o-field with respect to which all p,, nelN, become measurable). %, is countably
generated and we have for every nelN and AeZ:

:un(A a A ) /l(pn A r\Ag) (/‘I“I (pn Aon)) )'(pn 1A0 /I?O(IA)) = I’Ln (190(1‘4) 1A0)
forall A e%,.

dominates M| 7.

Let p,e

This implies that for every Ae %
A7o(1)e () 1 (Ly),

nelN
hence %, is sufficient for | .

1.24. Lemma. Let M| F cca(X, #) be bounded and suppose that the sub-o-field
Ty of F is sufficient for M| F. Then the topology T (of set-wise convergence on 7))
coincides with I on M. Furthermore: Any sequence p,€I, neN, which converges
on Fy does also converge on F. If M|F =ca_ (X, F), the boundedness assumption
on I can be dropped.
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Proof. Let Ae# be arbitrary. As %, is sufficient for IM|%, there exists

@€ () #%°(1,); in particular: p(4)=pu(p,) for all ueI. Hence for arbitrary
neM

r,selR: {ue: s<u(d)<r}={ueM: s<u(p,)<r}. This implies
Te "M Igx 5oy "M=T5 "M TzNM

(cf. 1.21). The proof of the second assertion follows the same patterns.

2. Compactness and Sequential Compactness in Spaces of Measures
Defined on an Arbitrary Measurable Space (X, %)

Let (X, #) be a measurable space, i.e. X is a non-void set and & a ¢-field of
subsets of X. Our main aim is to give several characterizations of conditionally
compact (c.c.) and conditionally sequentially compact {c.s.c.) subsets of ca (X, #)
endowed with the topology 7 of set-wise convergence on %

2.1. Lemma. Let M| F be bounded. Then M| F is c.c. in (ca(X, F), T) iff each
T g-accumulation point of M in [ — by, bey]” belongs to ca(X, F).

Proof. Follows from 1.15 applied with X =[— b, byy1%, T =95, Xo=M and
X, =ca(X, F)N[—bgy, byp]” together with the fact that IM|F is c.c. in
(ca(X, F), 7) iff M|F is c.c.in (ca(X, F) N[~ by, byl”, 7).

2.2. Lemma. If M| F is c.s.c. [c.c.] in(ca(X, F), T5), then M| Fy is c.s.c. [c.c.]
in (ca(X, ), Z;O) Jor every sub-o-field %, of .

Proof. The c.s.c. case is obvious. As to the c.c. case we remark that the con-
tinuous image of a c.¢. set into a Hausdorft space is again c.c. Applying this for the
continuous map f: (ca(X, #), 7)— (ca(X, %), 75,) defined by f(u|F):=ulF,,
the assertion follows.

2.3. Lemma. Let M| F bec.c.in(ca(X, F), T). If & = F separates the elements
of ca(X, F), then the topologies T, and T4 coincide on the T-closure of M| F in
ca(X, F). Furthermore: Any sequence u,eM, neN, which converges on & also
converges on Z.

Proof. Let I be the F;-closure of M|F in ca(X, ). By assumption I° is
Fz-compact. As & separates the elements of ca(X, #), 7, is a Hausdorff topology.
By 1.19 Z,, coincides with 7, on I and M is also the F -closure of M|.Z in
ca(X, Z). By 2.1 p,eM, neN, and (4,)pen— Ho(Ty) (With pg(A):=lim sup p,(A),
AeZF) implies puoeMe and therefore (1,),en— Ko (T2)-

2.4. Corollary. Let M|F be c.c. in (ca(X, F), T;) and let $=F be a field
generating the o-field &. Then convergence of a sequence j,€I, ne N, on 4 implies
its convergence on &.

Proof. Follows from 2.3 and [5], II1.5.9.

2.5. Example. Convergence on a field does not imply convergence on the gen-
erated o-field, in general: Let X:=[0, 1], # the Borel sets in [0, 1]. For each
nelN let p, be the probability measure concentrated in the point 1/n and p, be
the probability measure concentrated in 0. Let %, be the field generated by the
intervals [a, b) in [0,1]. Then %, generates & and (i,),ox— Ho(F5,) but (11,(4)),cn
is not convergent for A:={27%: keIN}, i.e. (,),on— Ho(T5) is false.
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2.6. Theorem (cf. [5], IV.8.9,1V.9.1,9.2 and [13], p.119). Let M|F cca(X, F)
be bounded. Then the following assertions are equivalent :

(@) M|F is c.c.in(ca(X, F), T5).
(il) M|F is c.s.cin(ca(X, F), T5).
(iii) IM|F is uniformly dominated by some non-negative finite measure ). IN*
and every non-negative measure v|# dominating | F dominates M| F uniformly.
iv) M| F is equicontinuous.
(v) Every countable subset of M| F is equicontinuous.

Proof. (iy=(ii) Let (u,| %), be a sequence in Ji|F ; then according to 1.23
there exists a countably generated sub-o-field %, of & which is sufficient for
{u,|F: neN}. Let 4, be a countable field generating %,. As for every Ae%,
{u,(A): neIN} is bounded in IR, using the diagonal procedure, we obtain an infinite
subset NycIN such that (u,),., converges on %;. As by 2.2 M|%; is c.c. in
(ca(X, ), f%) we obtain, according to 2.4, that r}g}l u,(A) exists in R for all

Ae%,. Since %, is sufficient for {u,|#:neNy}, 1.24 implies convergence of
(Hp)wen, ON &, whence by 1.10 py(A4):= hm ,u,,(A) Ae %, defines a set function
which belongs to ca(X, %).

(ii)==(i) By 2.1 it suffices to show that each Jz-accumulation point of M in
[—ba, ba]?, say u,, belongs to ca(X, #). It is easy to verify that y, is a content,
hence it remains to show that u, is countably additive on £ : Let (4,),.n be a

sequence of pairwise disjoint sets in & and let Ay:= Y A,. As p, is a Tz-accu-
keN
mulation point of 9k, for every nelN there exists p, et such that |y (4,)— u,(4,)]

<1/n for k=0,1,...,n. We have lir}l} UfA)=1o(A4,) for all k=0, 1,.... By (ii)

there exists an infinite subset N, < N and a fipeca(X, &) such that (i,),cn, = flo(T)-
Hence uo(Ak) Jig(A4y) for k=0,1,. As i, is countably additive, we obtain

to(Ao)=fio(4o)= Z:U'O(Ak)_ Z/lo

keN
(ii) = (iii) (a) Flrst we shall show that every c.s.c. subset in (ca(X, #), Tz is

dominated by a non-negative finite measure A 9t*. This follows from the following
auxiliary proposition ([5], p. 307).

(P) For each ¢>0 there exists neN, an n-tuple yi, i,, ..., g,€P and a 6>0
such that |g;|(4)<d, i=1, ..., n implies |u(A)| <& for every ueI.

According to (P) for every neN there exists a finite subset M, of M and §,>0
such that |u|(4) < 8, for all peM, implies |u(A)| < 1/nfor all ueM. As M, := Um,

neN
is countable, there exists by 1.4 a non-negative finite measure Aet which is

equivalent to |9, |. Hence A|# dominates 9i| %

(b) We conclude the proof of (iii) by showing that a c.s.c. subset IMM|F in
(ca(X, 7), ) is uniformly dominated by every non-negative dominating
measure.

If this were not true, there would exist a non-negative dominating measure
vol|F for M|F and an g, >0 such that:

(+) For every nelN there exists A,e# and p,eM with vy(4,)<1/n and
|:un(An)|280‘
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By (ii) there exists an infinite subset N, = N such that (Hr)en, CODVErges on F
fo some pyeca(X, #). According to 1.9 this implies that {u,|%: neN,} is uni-
formly dominated by every non-negative dominating measure; this, however,
contradicts (+).

(iify=(iv) Follows by 1.8.
{iv)e=(v) Obvious.

(v)e=(ii) Let (u,),.n be an arbitrary sequence in M|Z According to 1.23
there exists a countably generated sub-o-field &, of # which is sufficient for
{n,|F: neN}. Let %, be a countable field generating Fy. As for every Ae¥,
the set {u,(4): nelN} is bounded in R, using the diagonal procedure, we obtain
an infinite subset Ny <IN such that (u,), . N, Converges on %;,. As {y,|# : neIN,}
is equicontinuous, (u,), ., cOnverges on %,, by 1.11, and therefore on & by 1.24.
Hence the set function p,|F defined by o{d):=limp (4), AeZ, belongs to
ca(X, ). nedo

2.7. Corollary (Dubrovski [4], p.738, Theorem2). Let M|F —ca(X,F)
be arbitrary. Then equicontinuity of M|F implies that there exists Aeca (X, F)
such that M| F <LA\F and every veca (X, F) dominating W\F dominates M| F
uniformly.

Proof. (a) We shall show first that every equicontinuous M|F =ca(X, Z) is
dominated by some ieca (X, #). For every keINuU {0} let M, |F = {ue:

k<full <k+13}. As|ipl < oo forevery peca (X, #),it follows that M| & = Um |7
&=0

and the equicontinuity of M|# implies that each M, | is equicontinuous. As
M |F is bounded, it follows from 2.6 that there exists A,eca L (X, F) with

A(X)=1 such that M |F KA|F, keNU{0}. If we define 1:= Y 27%4,, then
k=0

Aeca (X, F)and M|F < A|F : For, given any ued, there exists k=k(u)eN U {0}
such that pe,. As 1(4)=0 implies 1,(4)=0, we obtain y(A4)=0.

(b) Next we claim that, given p eca(X, #), neN, with {1 | F: nelN} < 1| %,
equicontinuity of {y,|#: neN} implies that {1 |F: neIN}<A|Z The proof of
this claim can be found in a recent paper of Brooks ([2], p. 468, Theorem 3).

(c) We conclude the proof by showing that (a) and (b) imply the assertion. It
follows from (a) that there exists Jeca X, F) such that M|F <1|Z We show
that every voeca (X, #) dominating M|# dominates I|F uniformly. Assume
that 9| F KA|F does not hold. Then there exists £,> 0 such that (+) (see above
p-130) holds. Since {u,|F : neN} <vo|Z and {u,|% : neN} is equicontinuous, it
follows from (b) that {u,|# : neN}<v,|# which contradicts (+).

2.8. Corollary. If M| F <ho|F and if M|\F <M\ F, then | F <A\ F

Proof. M| F <K Ay|F implies that M|F is equicontinuous, whence the assertion
follows from 2.7.

2.9. Corollary. Let IMM|F cca(X, #) be bounded. Then M|F is c.sc in
(calX, ), I3} iff the auxiliary proposition (P) (see p. 130) is fulfilled.
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Proof. c.s.c. of Mi|F implies (P) (see [5], p. 307). On the other hand (P) implies
that 9|F is equicontinuous, whencce the assertion follows from 2.6.

Finally we obtain the following compactness criterion:

2.10. Proposition. Let M|F cca(X, F) be bounded. Then M|F is c.s.c. in
(ca(X, Z#), I) iff for every countable subfield 4 of F convergence of a sequence
in M on ¥ implies its convergence on the a-field 6(9) generated by 4.

Proof. If M| F is c.s.c. in (ca(X, F), I), 2.2 implies that M|, is c.s.c. in
(ca(X %), 7,) for every sub-g-field #, of Z hence, by 2.6, M|s(¥) is c.c. in
(ca(X, 6 (9)), 7,), whence 2.4 (with # =0 (%)) yields the assertion.

On the other hand, to any sequence p,eI, nelN, there exists, by 1.23, a
countably generated o-field %, of # which is sufficient for {,|% : neN}. Let &
be a countable field generating %,. As for every Ae¥ the set {g,(4): neN} is
bounded in R, using the diagonal procedure, we obtain an infinite subset Ny IN
such that (u,),.n, converges on 4. By assumption this implies convergence on
F, and as %, is sufficient for {i,|# : neIN}, 1.24 implies convergence of (1,),cn,
on Z, whence, by 1.10, it follows that M|F is c.s.c. in (ca(X, F), 7).

In the following we will briefly investigate the connection of compactness
properties with respect to the topologies 7, Z, and the topology J,:=
a(ba(X, F), ba(X, F)*) [resp. o(ca(X, F), ca(X, #)*)] usually used in analysis;
i.e. 7, is defined as the coarsest topology on ba(X, #) [ca(X, #)] rendering all
continuous linear functionals on the Banach space ba (X, #) [ca(X, )] endowed
with | - || continuous.

2.11. Remark. As ba(X, #) is isometrically isomorphic to the dual space
B(X, F)* of B(X,F) (see [5], [V.5.1), the topology Jg=Tgx, #) (cf. 1.21) is the
so-called weak*-topology (in the terminology of [5] (after identifying ba (X, #)
with B(X, #)*) Jg on ba(X,Z) is the B(X, ZF)-topology). Hence it follows
from [5], V.4.3 that every Jgz-compact subset of ba(X,#) is bounded in
(ba(X, #), || H), whence any Jgz-compact [c.c.] Mcca(X, F) is bounded, too.
It follows easily from 1.12 that any J -compact [c.c.] resp. any Jg-s.c. [c.s.c.]
Mcca(X, F) is also bounded. Furthermore, we remark that J is coarser than
Fy(Jg < T,) and that this relation is strict in general (see [1], 2.2, p. 42).

2.12. Lemma ([1], Lemma 2.4, p. 43). For every veca_ (X, F), ca(X, F#;v):=
{ueca(X, F): u|F <v|F} is a Tg-closed linear subspace of ca(X, F) on which Ty
coincides with .

2.13. Proposition. A subset M|F of ca(X, F) is Jy-compact iff it is Tg-compact
or I z-compact.

Proof. If M| F is Fy-compact, I =T, implies Jy-compactness. On the other
hand, if M|.F is Jgz-compact it is bounded by 2.11, hence 2.6 implies that M| F is
dominated by a non-negative finite measure; therefore, by 2.12, 7; and J coincide
on M| Z Hence M| F is J,-compact. In the same way one proves the equivalence
of F,-compactness with z-compactness (cf. 1.21).

2.14. Corollary. A subset M|F of ca(X, F) is c.c. in (ca(X, F), J) iff it is c.c.
in (ca(X, F), Fg) or c.c. in (ca(X, F), I5) and subsets of this kind are necessarily
bounded.
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Proof. We observe first that each of the conditions on I|.F implies that
M| F is bounded. This follows from [5], 11.3.20 and 2.11.

= Follows from 1.19 applied with X =ca(X, #), 7, =9 or 7, 7, =7, and
X, =IM|Z.

<1 I < J, (see 2.11) implies Wi = Wi¢ (where i ] denotes the T, — [Ig — ]
closure of M|F in ca(X, F). If M* is Jz-compact, it is F;-compact by 2.13. As
e is a Jp-closed subset of a Z;-compact set, it is F,-compact itself. In the same
way one obtains the equivalence of Z;-c.c. to J-c.c.

2.15. Proposition. For any sequence p,eca(X,#), neN, F,-convergence is
equivalent to Jg-convergence and the latter is, in turn, equivalent to J,-convergence
(cf. [5], 1V.9.5)).

Proof. = Follows from the fact that 7z[ 7] is coarser than 7.

<0 Let (,)en— Ho(Tg). As {1,|F : neN L {0}} is dominated (see 1.4), 7, and
Fy coincide on {u,[# : ne N U {0}}, by 2.12, whence (1,),cn— £ho(Zg). I (14,), e =
#o(Z3), it follows by 2.11 that {u,|# : neIN} is bounded, whence (i), — £o(Tp)
(see 1.21).

2.16. Corollary. A subset M|F of ca(X, F) is s.c. [c.s.c.] in (ca(X, F), To) iff
it is s.c. [e.s.c] in (ca(X, F), Jg) or s.c. [c.s.c] in (ca(X, F), T,) and subsets of
this kind are necessarily bounded.

Proof. Follows from [5], 11.3.27 and 2.15.

2.17. Corollary ([1], Theorem 3.6, p. 43; cf. also [5], V.6.1). For subsets M|F
of ca(X, F) the following assertions are equivalent :
(i) MF is c.c. in(cal(X, F), Ty).
(i) M| F is c.s.c. in (ca(X, F), Tg)-
(iii) M| F is c.s.c. in (ca(X, F), T).
(iv) M| F is c.c. in (ca(X, F), F,).
Proof. Follows immediately from 1.19, 2.6, 2.14 and 2.16.
Finally we obtain the following criterion:

2.18. Proposition. A subset M|F <ca(X, F) is Tg-compact iff it is Tz-sequen-
tially compact.

Proof. & If M|F is Tz-compact, it is c.c. in (ca(X, #), 7;) and as M|F is
bounded, it follows from 2.6 that Mi|# is c.s.c. in (ca(X, #), 7). Hence any
sequence in 9N contains a subsequence J;-converging to some p,eca(X, F).
As M| F is T,-closed, y,eI.

< If M|.F is s.c. in (ca(X, #), T), it follows from 2.16 that Mi|F is s.c. in
(ca(X, #), J,), hence F,-sequentially closed. Furthermore, it follows from 2.6
and 2.14 that M| F is c.c. in (ca(X, #), 7). As in every metrizable locally convex
space the class of all weakly conditionally compact and weakly sequentially
closed subsets coincide with the class of all weakly compact subsets (see [10],
§24, 1. (7)), it follows that M|F is Jy-compact and hence by 2.13 Jg-compact.

2.19. Corollary. 4 subset M|F < ca(X, F) is Fy-compact iff it is Ty-sequentially
compact.

Proof. Follows from 2.13, 2.18 and 2.16.
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3. Compactness and Sequential Compactness in Spaces of Measures
Defined on the Borel Sets of a Topological Space (X, 7).
Grothendieck’s Theorem

In this section we shall give further compactness criterions under the addi-
tional assumption that the basic space X is endowed with a Hausdorff topology,
say 7, and % is the o-field of Borel sets in X. Let 2 denote the system of compact
subsets of (X, 7). If not stated explicitely, all spaces (X, Z") in the following are
supposed to be Hausdorff spaces.

3.1. Definition. (a) ueca(X, #) is called  -regular iff for every UeJ and
every ¢>0 there exists Ke#', K< U, such that |u(4)j<e for all AeF with
AcU—K. The family of all [non-negative] 4 -regular ueca(X, %) will be
denoted by A -rca(X, #) [A -rca_ (X, F)].

(b) Let veca_ (X, ). We say that 4" v-approximates J iff for every UeJ
and every ¢>0 there exists Ke#", K< U, such that v(U - K)<e.

3.2. Criterion. ue % -rca(X, F) iff A" |u|-approximates 7.

Proof. Follows immediately from the fact that for every peca(X, #)

(+) sup |uAISu(U-K)S2-  sup  |u(d)| (cf. [5], IIL 1.5).
AeF , AcU—-K AeF , AcU-K

3.3. Lemma ([14b]). Let v|.# eca (X, &) and assume that A" v-approximates 7.
Then A~ v-approximates also &, i.e.: For every Borel set A and every e>0 there
exists Ke A", K< A, such that viA— K)<e.

3.4. Corollary. ue # -rca(X, F) iff A |ul-approximates Z.
Proof. Follows from 3.2 and 3.3.

3.5. Proposition. Every pe A -rca(X, F) is outer regular, i.e.: For every AcF
and every >0 there exists UeJ, Ac U, such that |u(B)|<e for all Be F with
BcU-A.

Proof. Follows immediately from 3.4.

3.6. Proposition. M| F < A -rca(X, F) implies that A A-approximates I~ for
every AeIMZ.

Proof. Let e, i.e. ]
A=) 27—
nelN 1+ H:unH

with p,eM, nelN. As p,e A -rca(X, F), it follows from 3.2 that for every UeJ
there exists an increasing sequence of compact sets whose union, say K,, is
contained in U with |y, |(U—K,)=0 for all neN. Therefore A/(U—K,)=0 and
this implies the assertion.

The next theorems are concerned with compactness results first studied by
Grothendieck ([6], Théoréme 2, (1)-(4), p. 146) in the case of Radon measures
on locally compact basic spaces (X, 7). For A -regular measures 3.7 generalizes
in particular Grothendieck’s criterion (4) to arbitrary Hausdorff spaces and 3.11
shows that the equivalence of the statements (1), (3) and (4) in [6], p.146/147,
holds true for regular Hausdorff spaces. Finally 3.12 proves the equivalence of
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(1) to (2) in [6], p. 146, for completely regular Hausdorff basic spaces (X,.7).
Necessary and sufficient conditions for .-compactness of the type (iii), (v)
and (viii) below were obtained independently and with different methods by
Topsge ([16a], Theorems 8 and 9).

3.7. Theorem. Let (X, 7)) be a Hausdorff space and let M|F be a bounded
subset of A "-rca(X, F). Then the following assertions are equivalent:

(i) M|.F is c.c. in (ca(X, F), 7).

(i) M|Z is c.s.c.in(ca(X, F), T5).
(itl) A" |u|-approximates I uniformly with respect to ueIi.
(iv) A |pl-approximates F uniformly with respect to ueI.

(v) (@) For every KeX" and every >0 there exists UeJ such that UsK
and |u|(U—K)<e for all ueIn.
(b) {lul|F: ueM} is uniformly tight, i.e.: For every £>0 there exists
KeX such that |u|(K)<¢ for all ueM.

(vi) (a) For every sequence of pairwise disjoint sets U,eZ, jeN, we have
lim p(U))=0 uniformly with respect to peIR.
jeN

(b) For every sequence of pairwise disjoint sets K,eA', jeIN, we have
lj% (K ;)=0 uniformly with respect to ueI.
je

Proof. (i) &= (ii) see 2.6.

(ii)=(iv) If M|F < A -rca(X, F) is c.s.c. in (ca(X, F), 7,), it follows from
2.6 that there exists Ae9* which dominates 9| uniformly. By 1.6 |9] is also
uniformly dominated by A|#. 3.6 implies that ¢ A-approximates 7 and therefore
also # (see 3.3), whence the assertion follows.

(iv)==(iii) Obvious, since 7 < £.

(iii)=>=(v) It is obvious that (iii) implies (v} (b). To see that (iii) implies (v) (a),
let Ke# and £>0 be given. By assumption there exists for U:=KeJ a K'e X
with K'c U’ and [p|(U'—K')<¢ for all ue9. Therefore U:=K'>U'=K and
[ul{(U—K)=|u|(U' —K')<e¢ for all ueI.

(v)e==(iii) Let UeZ and £>0 be given. According to (v) (b) there exists Ke %~
such that |u|(K)<e¢/2 for all ueM. As U KeA', (v)(a) implies that there exists
U'e with UsUnK and |u/(U —(UnK))<e/2 for all peM. It follows that
K:=UnKeX, KcUnK and [p|((UnK)—K')<ég2, hence K'<U and
|| (U—K")<e for all uedi.

(iii)=(ii) By 2.6 and 1.8 it suffices to show that every countable subset of

M| Z, say {u,|F: neN}, is uniformly dominated by 1:= ) 27"|u,|. As M|.F is
nelN
bounded, A|Z is finite and 4 A-approximates 7 (cf. 3.6). Therefore it is sufficient

(see 3.5) to show that {u, |7 : neN} resp. {I,uani nelN} (see 1.6) is uniformly

dominated by 4|Z. If this were not true, then there would exist ¢, >0 such that

for an infinite subset N,<N there exists U/e7 such that A(U;)<27" and

|, |(Up)Z &g, neN,. For every nelN, let U:=(J{U!: izn, ieNy}. Then U,e 7,

nelN,, is non increasing with ligl A(U)=0 and |u,|(U)=¢, for all neN,. By
nelNg

assumption for every neN, there exists K, e with K, c U, and |u|(U,—K})<
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2-n=1g, for all ueM. For neN, let K,:=() {Kj: 1Si<n, ieNy}; then K, e,

K,cK,c U, and |#,[(K,)=,|(U) ~ |,|(U,— K,). We have
U—-K,=\{U,~K;:15i<n, ieNg} < J{U—Kj: 1Sisn, ieNy},

hence |u,|(U,—K)< Y I, {U—K))<eo/2 and therefore |p,|(K,)=¢&o/2 for all

1<isn
ieNg
nelN,. Furthermore, K:= ﬂ K,ex" and A(K)=ligll(K,,)=0 and therefore

nelNg

|,/ (K)=0 for all neN. As KeJZ, there exists, by assumption, K,€ " such that
Ko,=K and |p,|(K—K,)<ey/2 for all neN. Together with |u,|(K)=0 for all
neN this implies |, |(K,)< £/2 for all neN. As K, is compact, KoK= | ) K,

nelNg

implies that K, = K, for all sufficiently large ne N, and hence || (Ko)Z |1, (K=
g/2 for all sufficiently large ne N, which contradicts | 1, (Kg) < &/2, neN. This
proves the equivalence of (i)-(v).

(v)e>(vi) We shall prove the following even stronger implication: (v) implies
that for any sequence of pairwise disjoint sets 4;€ %, jeN, we have ljgb} u(4)=0
je

uniformly with respect to e 9. Suppose the latter to be wrong. Then there exists
a sequence of pairwise disjoint sets 4;€ % jeN, so that there exists a &,>0, an
infinite subset N, = IN and measures ;e M, jeN,, with_i%f | (A4))> &, Without
jeNo
loss of generality we may assume Ny=N. As A:=) 277|u;| is a finite non-
jelN
negative measure dominating {u,|# : jeIN}, the equivalence of (v) to (ii) already
obtained implies by 2.6 that {i;|#: jeN} is uniformly dominated by /| %. Hence
there exists 8(g,)> 0 such that 1(4)<d(e,) implies sup |u;(A)<go. As A( ). 4))=
jeN jeN

Jje
Y A4 )< oo implies 1'i1}3 AMA;)=0, we obtain |u;(4 M <eg for all sufficiently large
jeN je
jeN which contradicts ian [ (A)]>&g.
Jje

(vi)(@)==(v)(a) Assume (v)(a) to be wrong. Then there exists Ky A~ and g,>0
such that for every UeZ with U oK, there exists pye I with || (U — Ko)>&,.
We shall construct inductively a decreasing sequence V, of open neighborhoods
of K,, a sequence U,e 7 with U,cV¥,_;nV,, neN, and a sequence u,& such
that inng |1, (U,)|> go/4. (This obviously contradicts (vi)(a).) Assume, starting with

V,:=X, that this construction is already done up to n— 1. Then, by assumption,
there exists pu,eM such that |u,|(V,_;—K)>e,. As p,ed -rca(X, F), there
exists K,e# with K, <V, | — K, such that |1, (K,)[>&y/2 (cf. 3.2(+)). As K, and
K, are disjoint compact sets, there exists U,, V€7 such that V> K,, U>K,
and V/ A U, =0, where, according to the outer regularity of x, (see 3.5), U, can be
chosen so that |, |(U —K,)<&o/4. Let U:=U;nV,_y and V,:=V, "V, _,. Then
U,cV,_ 0V, KycV,cV, , and K,cUcU, whence |u,|(U,—K,)<eo/4.
Therefore Iy’n(Un)l g Il’l’n (Kn)| - ‘:unl (Un - Kn)> 80/4‘

(vi)(b)==(v)(b) Assume (v)(b) to be wrong. Then there exists &3>0 such that
for every Ket there exists eI with | il (K)>e,. We shall construct induc-
tively a sequence of disjoint sets K€, jelN, and a sequence eI, jeN, such
that su}g | (K ) > e/2. (This obviously contradicts (vi)(b).) Let Kj:=0. By

je .
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assumption there exists w eI with | ,u1|(IZ’1)>80. As p e -rca(X, F), there

exists K;e" such that K, =K; and |p, (K)|>¢o/2 (cf. 3,2(x)). This proves the

inductive beginning. Now assume that K, and u, with the property stated above
n—1

are already obtained for i=1,...,n—1. As K = Z K, is compact, there exists

__ i=1
u,€M such that |u,|(K;)>¢,. Since y,ef -rca(X, F) there exists K,ex" such
that K, = K and |, (K,)| > &,/2. This concludes the proof of 3.7.

3.8. Proposition. Let M|F < A -rca(X, F) be c.c. [c.s.c] in (ca(X, F), T;).
Then every Jz-accumulation point of M in ca(X, F) belongs to A -rca(X, F). In
particular: If p,e A -rca(X, F),neN, and if (1), e = 1o(T5), then poe A -rca (X, F).

Proof. Let pyeca(X, #) be a I -accumulation point of M|F in ca(X, ), i.e.
Uo= @-—}girg pg for somenet {u;}, 5 < IR. Since M| F isc.c.[c.s.c.]in (ca(X,#),7,),

it is bounded (see 2.11) and 3.7(iv) implies that for every AeZ there exists an

increasing sequence of compact sets whose union, say K, is contained in 4 and

so that sup |u,|(4—K,)=0, i.e. sup u, (F)=0 for all Fe# with Fc4A—K . Hence
feB BeB

a

Tg-convergence of (uy); p to u, implies po(F)=0 for all Fe# with FcA—K
which, in turn, implies |y,|(4—K,)=0, i.e. ye A -rca(X, F).

3.9. Corollary. M|F < A -rca(X, F) is c.c. [c.s.c] in (ca(X, F), Ty) iff M|F
is c.c.[c.s.c.] in (H -rca(X, F), T).

Proof. The c.s.c. case is an immediate consequence of 3.8. To prove the
equivalence in the c.c. case let ¥ and MM denote the Fx-closure of M|.F in
A -rea(X, ) and ca(X, #) respectively. If M|F is c.c. in (ca(X, F), 75), then it
follows from 3.8 that M= is Jz-compact in A -rca(X, #). On the other
hand, if M| F is c.c. in (A -rca(X, F), 75), it follows that M is F-compact in
ca(X, #) and therefore, by 3.8, W (IN) =M. This implies that TN is
Fz-compact which was to be proved.

3.10. Remark. Note that 3.7 ((iii) =(iv)) extends 3.3 from one-point subsets to
bounded subsets of # "-rca(X, #).

3.11. Theorem. Let (X, 7) be a regular Hausdorff space and let M|F be a
bounded subset of A '-rca(X, ). Then each of the assertions in 3.7 is equivalent to
one of the following assertions:

(vii) For every uniformly bounded sequence [,€B(X, F), jeN, converging on
every Ke A" and for every pe Wt in p-measure to a function f, we have lim u(f)=u(f)
uniformly with respect to peIn. Jem

(viii) For every sequence of pairwise disjoint sets UeeZ, jeN, we have
l.irgql p(U;)=0 uniformly with respect to peIN.
je

(Note that (viii) is nothing else than (vi)(a), i.e. for regular Hausdortff spaces
c.c.[c.s.c.] is already implied by (vi)(a).)

Proof. (vii)e==(viii) Let Ue 7, jeNN, be a sequence of pairwise disjoint sets.
Then f;:= ly,, jeN, is a uniformly bounded sequence of #-measurable functions
converging pointwise to the zero function, whence by (vii) (with f=0) lim p( f)=
316%1 #(U)=0 uniformly with respect to ue . JeN

10 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 17
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(viii)>(v)(b) Assume (v)(b) to be wrong. Then there exists &,>0 such that
for every Ke ' there exists y eI so that | ,uKl(K)>e0 This, together with (v)(a)
(which is implied by (viii)=(vi)(a) as we have seen in 3.7), implies that one can
construct inductively sequences K,e#" and U,e 7, neNN, and a sequence p, €N,
neN,such that K,cU,c Uf,neN, Ui n Uy =P ifngm, sug |u|(Uf — K, ) <27 "gy/4,

i
nelN, and innfI |11, (U,)| > &o/4. (This obviously contradicts (viii).)

Let K|:=§. By assumption there exists p;eI with i, (K7)>e,. Since
pe A -rca(X, F), there exists K;e such that K,cK; and |u(K,)|>en/2
(cf. 3.2(x)). By (v)(a) there exists U{eJ such that Ui> K, and sup |p|(Uj— K;) <eo/8.

uen

Since (X, J) is a regular Hausdorff space there exists UjeJ such that K, < U, <
Uf < U/ and therefore

igglul(Uf—Kl)Qo/S and  |py (U] 2 |y (KDl = 1| (UF — K ) > /4.
This proves the inductive beginning. Now, assume that K;, U; and p; with the
properties stated above are already constructed for i=1,...,n. Let F, ;:= O Uf
and K, | UK Then F,,,eJ and K, eX. By assumptlon there exrsts
u”leﬂﬁ such that st (K ) > 0. Hence |p, 4 1(F,,1)> 80— 22 Pgo/4. Since
1 €K -1ca(X, F), it follows that there exists K, w1y such that

par (Ko ) > (so— z 2"i£0/4) .

As K, nF,, =0 and as (X, 7) is a regular Hausdorff space we can conclude
using (v) (a) that there exists U, ;€7 such that U, ,5K, ., U, F, ,,=0and
sup |l (U1 — K, <2~ e /4 Using again that (X,7)isa regular Hausdorff

space it follows that there exists U, ;€7 such that K, < U, ;U =U, ;.
In addition, we have

Urii0 Up=9 for m=1,2...n,  sup{ul (U}~ K, )<27 "V eo/4

and
TP (oY | b V7R ¥ Oy | e VY Uy 1=Kt

>1 (80— ¥ 2—"80/4) _2-0H 0 [hsg /d,
i=1

Since (v) (a), as we have already remarked, is implied by (viii), we have thus proved
that (viii) implies (v).

According to the equivalence of (v) to (ii) (see 3.7), the proof of 3.11 will be
concluded by showing that

(ii)=(vii) Assume (vii) to be wrong. Then there exists a uniformly bounded
sequence f;€B, jeN, so that there exists an £, >0, an infinite subset N,=N and
measures ,uneEIR nelN,, with 1nf |,un(f —)|>&y. W.lo.g. we may assume Ny =IN.
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By assumption C: —sup(sup |f; (x)}) <oo. As (ii) implies (v)(b) (see 3.7). There
exists K,e 4" such that sup | ,un](Ko)<80/4C hence

tnlfa =)= 1 (= 1) ) | S 1l (S, = [ 1g,)<o/2  forall neN

and therefore inngl,un ((f,=1) 1 )| > €0/2.

On the other hand, if we define u:= ) 27" |y, |, it follows that f, convergences
) meN
to f on K, in g-measure. Now (ii) implies by 2.6 and 1.6 that x| % dominates

{lt,|# : meN} uniformly, hence there exists &(go)>0 such that p(4)<d(ey)
implies |u,,| (A)<egy,/8 C for all meN. Taking 5:=min(so/4bwl,5(ao)) (byy:=
sup ||| < o0), we obtain for all n=n,(K,, d) that |, [(Kon {lf,— 1> 0})<ee/8 C
pneIR

for every meN, which implies for all n=ny(K,, 8), neN, that

lﬂn((fn“f) 1K0)|§ |l (S = 1] lKom{|f"~f|§6))
Fal (S =S g1 115 8) < OB +2 C /8 C < 8/2.

This contradicts |u,((f,— /) 1g,)| > €0/2, neN.

3.12. Theorem. Let (X,7) be a completely regular Hausdorff space and let
WM|F be a bounded subset of A -rca(X, F). Then each of the preceeding assertions
(i)-(viii) is equivalent to the following assertion:

(ix) For every uniformly bounded sequence of continuous functions f;, jeN,

converging to zero at every point xe X, we have hm p(f)=0 uniformly with respect
to ueIit.

Proof. (vii)e=(ix) Obvious.

(ix)e=(viil) Suppose (viii) to be wrong. Then there exists a sequence of pairwise
disjoint sets U;e .7, jelN, so that there exists &, >0, an infinite subset N, =N and
pweM With..irgqf [, (Ul >¢5. W.1.0.g. we may assume Ny =N. As ;e #"-rca(X, 7),

JelNo

there exists K;=U; such that |u;[(U,—K))<ey/4. Therefore |u (K )| =|u;(U)l

—|u;I(U;— K;)>3¢0/4 for every jeIN. Since (X, J) is completely regular, for every
xeK; there exists a continuous function f* with 0< f*<1, f*(x)>1—¢; and
ffo 0, where 0<¢;<1 is chosen so that lﬂ,(K)( 5)l>380/4 and ¢;|;|(K))
<80/4 As each f7, xeK is continuous, there exist open neighborhoods V™ of x
contained in U, such that SV >1—¢;. Since K; is compact, finitely many of
them, say V™, ..., V™, will cover K. Put fi= max f . Then f; is continuous,

ngjgl,fj[Kj>1 g andflU 0. It follows that hmf(x) 0 for any xe X and

;12 (1 —e) [ (K =] (U; = K ) —e; |l (K >80/4 This obviously contra-
dicts (ix).

3.13. Remark. In order to give a most unified presentation of compactness
criterions, 3.7, 3.11 and 3.12 are stated in the present form, although the reader
will have realized that in some of the implications proved above there was made
10*
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no use of regularity of (X, ) resp. boundedness of M| Fas it is summarized in the
following table:

I arbitrary Mt bounded
(X, 7) 3.7 31 312 3.12
Hausdorff space (iv) = (iii) (vil)e=(vill)  (vi))e-(ix) (i) =(vii)
(iii)e=(v)
(viii)=(vi)(@)==(v)(a)
{vi)(b)e=(v)(b)
Regular Hausdorff space (viii) e=(v)(b)
Completely regular Hausdorff space (ix) = (viii)

If (X, 7) is an analytical space (i.e. regular Hausdorff space and continuous
image of a Polish space), then every peca(X, &) is A -regular (see [8]). As in
addition analytical spaces are normal (see [8]), we obtain from 3.7, 3.11 and 3.12
the following corollary:

3.14. Corollary. Let (X, 7) be an analytical space. Then for bounded subsets
M| F of ca(X, F) the assertions (1)-(ix) are all equivalent.

Although we will not consider the weak topology 7., we want to mention one
special case where, for non-negative J -regular measures Z-convergence is
implied by J -convergence. 7, (in the sense of [16b]) is defined as the coarsest
topology in ca _ (X, &) for which every map u— u(f), where f: X — R is bounded
and upper semi-continuous, is upper semi-continuous. If # denotes as before
the Borel sets in X, then  is clearly coarser than 7 (cf. 1.21), hence -conver-
gence implies 7 -convergence. The following Lemma goes into the converse
direction:

3.15. Lemma. Let (X, 7) be a Hausdorff space and let p,e A -rca (X, ), neN,
be bounded and uniformly dominated by a finite non-negative measure. Then
(.un)ne]N — U ('9:) lmplles (#n)ne]N_) Ho (‘Z‘)

Proof. As {u,|#:neIN} is bounded and uniformly dominated, 2.6 implies
that {u,|# :nelN} is c.s.c. in (ca(X, %), 7). Hence to every subsequence Ny <IN
there exists a further subsequence N, =N, such that (u,),.x, — tn () With
iy, € X -rca(X, F) (see 3.8), whence (u,), ., = iy, (7). Since (A -rca (X, F), 7,)
is a Hausdorff space (see [16b], Theorem 11.2), we obtain py = p1y. This implies
that the whole sequence (u,), . is Zz-convergent to y,.

(If (X, 7) is a regular Hausdorff space, 3.15 holds for t-smooth rather than
tight measures applying [16b], Theorem 11.2.)

4. On the Theorems of Dieudonné and Wells, Jr.

In this section we will give an application of our previous results to the problem
of giving sufficient conditions on a subfamily € of the family 7 of open sets in a
Hausdorffspace (X, 7 ) to ensure that convergence of a sequence p,€ # -rca(X, F),
nelN, on € implies its convergence on the o-field # of Borel sets in X. Sufficient
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conditions of this type were studied by Dieudonné and Grothendieck with € =
([3], Proposition 8, p. 37 and [6], p. 150) for compact metric resp. locally compact
spaces (X, ) and recently by Wells, jr. ([17], Theorem 3, p. 125) for compact
spaces and families ¥ which are strictly smaller than 7, in general. Topsge ob-
tained in [16a], Corollary 3, p. 28, independently and with different methods a
result which extends, for non-negative tight measures, Dieudonné’s Theorem to
regular Hausdorff spaces.

As we shall see below the techniques presented by Wells, jr. can be extended to
yield together with an application of our compactness criterions the main Theo-
rem 4.10 which covers the results just cited.

4.1. Definition. Let ¥ be a family of open sets in a Hausdorff space (X, 7). We
call ¢ a 7,[J,]-converging class (for A -rca(X, F)) provided every sequence
€A -rca(X, F), neN, which converges on % (i.c. 11m 1, (C) exists in R for
every Ce®) converges for the topology 7, [7;].

% is called a bounding class (for 4 -rca(X, #)) provided every sequence
u,e A -rca(X, F), neN, for which su}g |1, (C)}< oo for every Ce%, is bounded.

4.2, Remark. Tt follows from 2.15 that € is a J,-converging class iff ¥ is a
Jz-converging class.

If % is a F-converging class, it follows from 1.10 and 3.8 that for every sequence
u,e A -rca(X, #) which converges on & there exists a measure yq e A -rca(X, )
such that LEE U, (A)=pq (A) for every Borel set A;i.e.: If € is a Z;-converging class,

then for every sequence u,€ 4 -rca(X, #), ne N, which converges on 4, u,(C):=
linl U, (C), Ce%, is the trace on ¥ of a 4 -regular measure y,|# to which (¢,),en

converges (7).

4.3. Lemma. Let (X, ) be a regular Hausdorff space and let € be a family of
open sets in X satisfying

(S) If Kex',UeT, and K < U, there exists Ce% such that KcCc U.

Then every bounded sequence p,e A -rca(X, ), nelN, which converges on
% is Igp-convergent if (viil) of 3.11 holds with | F = {u,|# : neN}.

Proof. We remark first that any two J -regular measures which coincide on
J (or A)areidentical (cf. 3.3 and 3.5). By (S) it follows that € separates the elements
of A -rca(X, %), hence by 2.3 (applied with #"-rca(X, ) instead of ca(X, #)) 7,
coincides with Z on every c.c. subset M|F of (A -rca(X, F), ,/g) and any
sequence u et which converges on ¢ does also converge on . Therefore it
remains to show that {y,|# : neIN} is c.c. in (A -rca (X, F), Jg—) As by 3.11 (viii)
with M|F={u,|# : neN} implies that {y,|#: nelN} is c.c. in (ca(X, F), T5), it
follows from 3.9 that {u,| % : neIN} is c.c. in (A -rca(X, F), ;).

The following lemma generalizes Lemma 1 in [17] from compact spaces to
arbitrary Hausdorff spaces.

4.4. Lemma (cf. [17], Lemma 1, p. 125). Let (X, ) be a Hausdorff space and
suppose that € is a family of open sets in X fulfilling the following conditions:

(1) € is closed with respect to finite intersections.
(2) C,, C,e¥€ and C{n C5=0 implies C, v C,e¥.
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(3) If FeT,UeJ, and Fc U, there exists C€¥ such that Fc C< U.
(4) If C, and C;,neN, are sequences from € such that

" " 77 14 ’ ! ’
CICCZC”'CCnC”'CCnCCn—IC“'CCZCCD

then there exists C,€% interpolating the given sequence, i.e. C,cCy<C, for
every neIN.
Let C,e%, neNN, and suppose that (| ] C;} n C;=0 for each neN.
i*n
Then for any J.e X -rca (X, F) and every 0>>0 there exists an infinite subset
NocN and a Dy €% such that | ] C, <Dy, and A(Dy)<3.

nelNg

Proof. Let >0 be given and let F:= ( U C2i—-1) .Then FeJ, Fc C4,, hence
- i=1

(3) applied with U:=C, allows us to pick for every neNN a set D,, €% such that
FcD,,c C5, for every neN. By this we obtain the following sequence:

C,e(CuCy)a(Ciu Ciu Cs)c--a(DgnDyn D)= (Dyn Dy Dy,

where, according to (1) and (2), each member occuring within the brackets belongs
to 4. From now on the proof follows exactly the patterns as in [17], p. 126, and
we will not repeat it here.

4.5, Theorem. (1) Let (X, 7) be a regular Hausdorff space and suppose that €
is a family of open sets in X fulfilling the conditions (1), (3) and (4) of 4.4 and

(23 C,, C,e¥ and Cyn C5=0 implies C,u C,€%.

Then every bounded sequence p,e X -tca(X, F), neIN, which converges on €
converges for the topology I .

(IT) Let (X, 7)) be a normal Hausdorff space and suppose that € is a family of
open sets in X fulfilling the conditions (1), (2) and (4) of 4.4 and

(3" If FeZ, Ued, and Fc U, there exists Ce¥ such that Fc CcC*cU.
Then every bounded sequence u,e A -rca(X,F), nelN, which converges on %
converges for the topology I .

Proof. (a) Let y,e A -rca(X, #), neN, be a bounded sequence which converges
on 4. Assume that, for some A e Z, (1,(Ag)),en does not converge. Then there
exists ¢,>0 and for every nelN a m,elN such that |u,(4o)— . (A0)>&.
Therefore v,:= pt,— fiy ., » €N, defines a bounded sequence of X -regular meas-
ures which converges to zero on %, but does not converge to zero on &% The
proof of (I) and (I1) will be concluded by showing that every bounded sequence
of A -regular measures, say (v,),.n, Which converges to zero on ¢ converges to
zero on &. We remark that, if (v,),. is Jz-convergent, it follows already from (S)
in 4.3 that the limiting measure, being 2 -regular by 3.8, must be identically zero.

(b) Assume, on the contrary, that (v,),.y is not 7 -convergent. Then, by 4.3,
(viii) with M| F = {v,|# : neIN} must be wrong, i.e. there exists a sequence of pair-
wise disjoint sets U;e .7, jeN, so that there exists &, >0, an infinite subset Ny <IN
and a subsequence (v,)icn, Of (Vipen With jieréqfo [V, (U)|>¢,. W.Lo.g. we may
assume that inf [v,(U))|>¢,. Since v;e # -rca(X, ), there exists K;e 4", K;= U;,

jeN



Compactness and Sequential Compactness in Spaces of Measures 143

such that [v,{(U;,— K))<|v;(U)| —&,. As (X, 7) is a regular Hausdorff space, there
exist U/, U'eJ with K;c U/ U"c U, jeN. Applying (3) with F: =K, U:=Uj,
there exists C;e% such that K;= C;c U]. It follows that C;= C{= U]’ = U}, hence
(U C))n Ci=0 for each neN; furthermore, [v;(CHI 2 |v; (U —Iv,l(U;—K))>¢&,
i*n
for every jeN.

If we now apply 4.4 with 2:=|v,|, N— {1} instead of N, and d =¢,/3, we obtain
an infinite set N, =N — {1} and a Dy, €% such that Dy = | J C;and |v;}(Dy,) <e,/3.

e ielNy
Applying (3) [(3)] with F:=({J C;) and U:=Cj, we obtain D,e% such that
ielN;
FcD cU[FcD,=D{cU].Put Cy :=Dy, N D,;then,by(l), Cy €%, Cp,> | C;

ielNy
and |v,|(Cy,)<&o/3. Furthermore, Cy N C{=0 [Cy, n C{=0] and therefore it
follows by (2') [(2)] that Cy, v C,€%. Following the inductive process described
in [17], p.127, one obtains a subsequence (C, );. 0f (C,),cn sSuch that (v,), . does
not converge to zero on some C,e% which contradicts our hypothesis that
(vV)new cOnVeErges to zero on every member of 4.

4.6. Remark. If (X, 7") is a normal Hausdorff space, (1), (2), (3') and (4) in 4.5
are fulfilled with ¥ =7, :={UeJ : U=int(U")}, the family of the so-called regular
open setsin X. Itiseasy to see that 7 ={int F: Fe } and that 7 is strictly smaller
than .7, in general.

Proof. We remark first that for any two sets 4 and B we have
(%) int(4 uB)c(int Au B)n(4°vint B).

(1) U, U,ed, implies U nU,ed and U~ U,cint(U nU,); conversely:
int(U, n U,) cint(U] n Us)=int(Uf) nint(U))=U, N U,.

(2) Let U,, U,eZ,, UynU;=0. Then U v U,ed, U vU,cint(U uU,);
conversely by (x): int(U;u U, =int(Uf L Us)=(int(U) U Us) (U w int (Us)) =
(o) (UfuU)=U,uU,.

(3) Since (X,.7) is a normal Hausdorff space, FeZ, UeZ, and Fc U,
implies that there exists Ve with FcVcV<cU. From this it follows that
FeVeint(V9)cVec U and, furthermore, F<V cint(V)<(int(V9))cVcU,
where int(V°)e 7.

@ UcUc-clU'c-cUcU,_c--cUclU with U, U'ed, ieN,
is interpolated by U:=int((J U")’e 7, (or by U:=int((") U/)’e 7).

ieN ielN

So far we have not considered the boundedness problem, i.e., given any
sequence p, €4 -rca(X, %), neN, for which sup |, (C)|< oo for every Ce¥, under

nelN

what conditions on € does it follow that (u,),., is bounded.

Our aim is to prove that the families € considered in 4.5 are also bounding
classes.

Let us start with the following basic result due to Dieudonné:

4.7. Lemma ([ 3], Proposition 9, p.37). If (X, 77) is a compact Hausdorff space,
then 7 is a bounding class ( for A -rca(X, F)).



144 P. Génssler:

4.8. Corollary. Let (X, ) be a Hausdorff space, p,e A -rca(X, F), neN, a
sequence of measures for which sup |u,(U)| < oo for every UeZ. If {| unllf :nelN}
nelN

is uniformly tight, then (11,),. is bounded.
Proof. Let Ke A be arbitrary. Then

sup |, (U K)| < sup |1, (U)|+sup |, (U K)|<oo

for every UeJ. Let % denote the Borel sets in (K, 7); then p, | % € A -rca(K, )
and, by 4.7, it follows that sup |g,|(K)< oo, whence the uniform tightness of
nelN

{l1,||# : ne N} implies the assertion.

4.9. Lemma (cf. [17], Corollary, p. 128). Under the conditions of 4.5 the families
% considered there are also bounding classes, i.e. any sequence p,e A -rca(X, %),
nelN, with sup |u,(C)|< oo for every Ce%, is bounded.
nelN

Proof. If (), is not bounded, there exists an infinite subset N, = N such that
li%} gyl =00. W.lLo.g. we may assume N,=N. Let f;:=u/|nl*; then
neiNp

Hrﬁ fi,(C)=0 for every Ce¥ while maintaining sup | &1l =c0. We shall show

that this is impossible. It follows from the proof of 4.5 (part (b)) that (,),.x fulfills

(viii) and hence (v) which is equivalent to (iii} (see 3.13). According to (iii) there

exists for every UeJ and €>0 a Kef such that sup |fi,|{U — K)<&. Applying
nelN

(3 [(3)] there exists Ce¥ with K< C< U, whence sup |, (U)|<sup |, (C)|+
nelN nelN

sup |i,|(U—K) < oo for every Ue . Since by (v}(b) {|f,]|# : neN} is uniformly

neN

tight, 4.8 yields the desired contradiction.
With 4.9 we obtain

4.10. Theorem. Under the conditions of 4.5, the families € considered there are
both F-converging classes and bounding classes.

5. Extensions

After T had obtained 4.5 it was first discovered by Pfanzagl that for bounded
sequences €A -rca(X, ), nelN, Dieudonné’s Theorem (with ¥=.7") could be
extended even to arbitrary Hausdorff spaces by use of the following lemma:

5.1. Lemma ([14c], Lemma 1). Let (X, %) be a measurable space, A,€ ¥, nelN,
a sequence of pairwise disjoint sets and let y eca(X, F), nelN, be a sequence of
measures such that lirg U,(A,)=0 for every meN and inﬂfJ 114,(4,)]>0. Then there
exists an infinite subset No =N such that ilg |t (> A4,)|>0.
nelNg

melNg

Once becoming aware of 5.1 the main result in [14c] can be proved applying
5.1 and the compactness criterions of Section 3 in rather the same way as 4.5 and
4.9. The final proof given in [14c] for 5.2 below is more comprehensive insofar as
the case of bounded sequences is not handled separately.

5.2. Theorem. Let (X, ) be a Hausdorff space and suppose that € is a family
of open sets in X fulfilling (S) of 4.3 and
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@) Cie%, ieN, implies | ) C,e%.
ieN
Then € is a Iz-converging class.
Proof. As in the proof of 4.5 it suffices to show that every sequence of -
regular measures which converges to zero on % converges to zero on %.

(@) We show first that every bounded sequence of A -regular measures, say
(V)new, Which converges to zero on 4 is c.s.c. in (A -rca(X, #), 7). We remark
that, if this holds true, then every subsequence of (v,), . contains a further sub-
sequence converging to the (2 -regular) measure identically zero on % whence
the whole sequence (v,), . converges to zero on Z.

(b) If a bounded sequence of J -regular measures fails to be c.s.c., then, by
3.7, either (vi)(a) is wrong or, if (vi)(a) holds true, then (vi)(b) is wrong. Applying
5.1 we will show that both assumptions contradict the assumed convergence of
(V\)yen to zero on .

(c) If (vi)(a) is wrong, there exists a sequence of pairwise disjoint sets U,e 7,
jeN, and a subsequence of (v,),.n, W.lo.g. still called (v,),.n, such that
inng|vn(Un)| >g,>0. Since v,e A -rca(X, F), neN, there exists K, e 4, K, = U, , such

that|v,|(U,— K,)<gy/4;hence [v,(K ) = |v,(U)|— v, |(U,— K,)> 3¢, /4 for all neN.
Applying (S) there exists C,e% such that K, < C,< U,, neN, the C, being disjoint
with v, (C)|Z|v,(K,)| —|v,|(U,— K,)>¢,/2 for all neN. Therefore 5.1 yields an
infinite subset N, <N such that 1nf !v ( Z C;)|>0. Hence (v,( Y. C;)),cx does not

ielN o ieNp

converge to zero which is a contradlctlon since, by (4), Y, C,;e%. Therefore (vi)(a)
holds true. ieNg

(d) If (vi)(b) would be wrong, there would exist a sequence of pairwise disjoint
sets K ;& #, jeIN, and a subsequence of (v,),., W.1. 0. g. still called (v,), ., such that
inﬂfI [v.(K,)|>¢&,>0. As (vi)(a) implies (v)(a) (see 3.13) and as (v,),.n cOnverges to

zero on %, it follows from (S) that (v,),. converges to zero on #. Hence again 5.1
can be applied to obtain an infinite subset N, = N such that §: = mf ]v (Y Kj)|>0.

jelNo

Applying (vi)(a) and (S) we obtain C,e%, C;oK;, such that sup v, (C;—K)<
277-1§ and therefore sup|v (U C;— Y K)=6/2, ie. mf|v ( U C))|zé/2,
jeNg jeNp JjeNp

which again contradicts the assumed convergence of (v,),.n to zero on %. This
concludes the proof of 5.2 for bounded sequences v, e # -rca(X, #), neN.

(e) It remains to show that any sequence of 2#"-regular measures which con-
verges to zero on % is bounded.

This follows from the following analogon to 4.9, generalizing [ 3], Proposition 9,
p-37, from compact spaces to arbitrary Hausdorff spaces, and by this the proof
of 5.2 will be concluded.

5.3. Lemma. Let (X, 7) be a Hausdorff space and suppose that € is a Jamily of
open sets in X fulfilling (S) of 4.3 and (4) of 5.2. Then € is a bounding class.

Proof. Let p,eA-rca(X,#), nelN, be a sequence of measures for which
sup |u,(C)l <o for every Ce¥. If (u,),. is not bounded, we arrive at fi, e -
nelN

rca{X, #) with lirg f,(C)=0 for every Ce% while maintaining sup ||fi,| = oo
ne neN
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(cf. 4.9). We shall show that this leads to a contradiction. As pointed out in proving

5.2(c) and (d), it follows from (S) and (4) that (vi) holds true for {fi,|# : neN}.

Since (vi) implies (v) which is equivalent to (iii} (see 3.13), we obtain for every

UeZ and e>0 a Kex such that sup |ij(U— K)<e. Applying (S) there exists
nelN

Ce¥% with K< C< U, whence sup |, {U)| Zsup |, (C)| +sup |4,] (U —K)<co. As
nelN neN nelN
{i unlif : neIN} is uniformly tight, 4.8 yields the desired contradiction.
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